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Taylor’s incompressible and rotational profile is extended to a porous cylinder with arbitrary
headwall injection. This profile, often referred to as Culick’s mean flow, is now generalized to
permit the imposition of reactive headwall conditions. Starting with Euler’s steady equations, the
solution that we derive is approximate, being exact only at the sidewall, the centerline, or for
similarity-conforming inlet profiles. Furthermore, the approximation is quasiviscous, being
observant of the no slip requirement at the sidewall. Based on numerical experiments under inviscid
flow conditions, the closed-form approximation that we obtain appears to be well suited to describe
the bulk flow field in basic models of solid and hybrid rockets where uniform sidewall injection is
imposed at the propellant surface. For similarity-nonconforming profiles, the approximation
becomes more accurate as we move away from the headwall. Results are verified using
computational fluid dynamics for several headwall injection patterns. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2746003�

I. INTRODUCTION

Culick’s solution for describing the gaseous motion in
solid rocket motors �SRMs� was obtained under the contin-
gencies of steady, incompressible, rotational, axisymmetric,
and quasiviscous flow.1 Despite being strictly inviscid, its
streamlines observed the no slip requirement along the po-
rous wall. It also coincided with Taylor’s expression obtained
a decade earlier, albeit in an entirely different physical
context.2 As noted by many specialists in the propulsion
field, the corresponding mean flow was driven by inviscid
pressure forces and did not need viscosity to exhibit vorticity
or satisfy the apparent no-slip condition at the porous side-
wall. Furthermore, the often cited Taylor-Culick profile was
repeatedly verified in a number of investigations. These start
with the inventive tests reported by Taylor2 and continue to
those carried out in later years by way of computation �Dun-
lap, Willoughby, and Hermsen;3 Baum, Levine, and Lovine;4

Sabnis, Gibeling, and McDonald5�, laboratory experiments
�Yamada, Goto, and Ishikawa;6 Dunlap et al.7�, and theory
�Clayton;8 Balachandar, Buckmaster, and Short;9 Majdalani
and Roh;10 Majdalani and Flandro11�. In short, a collective
body of research has confirmed the suitability of the Taylor-
Culick model in approximating the bulk flow in a full-length
cylindrical motor �Kuentzmann;12 Traineau, Hervat, and
Kuentzmann;13 Apte and Yang14�. Due to its robustness, this
profile has stood at the foundation of many theoretical stud-
ies, especially, those concerned with wave propagation �Ma-
jdalani and Flandro11� and both hydrodynamic and combus-
tion instability theories in porous chambers including those
that account for particle interactions �Griffond and
Casalis;15,16 Féraille and Casalis17�.

The Taylor-Culick profile has also been extended to

simulate solid rocket motors with regressing walls. This was
accomplished using a nozzleless, nonreactive, rotational, vis-
cous, and incompressible approximation that employs simi-
larity in time to model the expansion pattern of the porous
wall.18 It has also been submitted by Majdalani and Vyas19 as
a basic model for simulating the bulk motion in hybrid rock-
ets exhibiting circular-port fuel grains. This was achieved by
imposing a sinusoidal headwall injection profile to mimic
oxidizer injection. In this article, we extend the solution by
incorporating variable headwall injection in the context of
steady, incompressible, axisymmetric, inviscid, and rota-
tional flow. We first derive the solution for uniform headwall
injection to the extent of making it applicable to solid and
hybrid rockets in which the inflow at the headwall is nearly
uniform. The headwall-to-sidewall injection velocity ratio
will be considerably larger in the case of hybrids, thus lead-
ing to the onset of stream tube motion. The present solution,
based on the vorticity stream function approach, will fully
capture this behavior. The resulting formulation will provide
an elemental approximation as it discounts the effects of
compressibility, mixing, viscosity, and chemical reactions.
However, by satisfying the no slip condition on the walls, the
solution will exhibit a quasiviscous trait akin to that dis-
played by the Taylor-Culick profile. The same may be said of
the solution that we then formulate for arbitrary headwall
injection. The ensuing representation will permit the incor-
poration of practical injection scenarios that can be verified
numerically.

II. MATHEMATICAL MODEL

As usual, a rocket motor can be idealized as a cylindrical
chamber of porous length L0 and radius a with both a reac-
tive headwall and a nozzleless aft end �see Fig. 1�. At the
headwall, a fluid stream �which may denote an oxidizer or
gaseous propellant mixture� is injected into the chamber at a
prescribed velocity ū0; this could be given by
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ū0�r̄� =�
Uc = const; uniform

Uc cos� 1
2�r̄2/a2�; half - cosine

Uc�1 − �r̄/a�m�; laminar and turbulent

Uc�1 − r̄/a�1/m; turbulent
�

�1�

where Uc= ūz�0,0� is the centerline velocity at the headwall
�a constant�, m is some integer, and the overbar denotes di-
mensional variables. The incoming stream merges with the
crossflow sustained by uniform mass addition along the po-
rous sidewall. Naturally, the sidewall injection velocity Uw

=−ūr�a , z̄� is commensurate with propellant or fuel regres-
sion rates. In hybrids, Uw can be appreciably smaller than Uc

due to slow fuel pyrolysis; in SRM analysis, these two values
are identical. As shown in Fig. 1, r̄ and z̄ stand for the radial
and axial coordinates used to describe the solution from the
headwall to the typical nozzle attachment point at the aft end.
The solution that we seek applies, in particular, to simulated
rocket motors and, in general, to injection-driven porous
tubes with headwall injection.

A. Normalization

For expediency, it is helpful to normalize all recurring
variables and operators. This can be done by setting

r =
r̄

a
; z =

z̄

a
; � = a�̄; p =

p̄

�Uw
2 ; � =

�̄

a2Uw
; �2�

ur =
ūr

Uw
; uz =

ūz

Uw
; � =

�̄a

Uw
; uc =

Uc

Uw
; L =

L0

a
.

�3�

For steady inviscid motion, the vorticity transport equation
reduces to

� � �u � �� = 0; � = � � u . �4�

An assortment of four boundary conditions can be prescribed
by writing

ur�0,z� = 0; no flow across centerline

uz�1,z� = 0; no slip at sidewall

ur�1,z� = − 1; constant radial inflow at sidewall

uz�r,0� = u0�r�; axial inflow at headwall

�5�

u0�r� = �
uc = const

uc cos� 1
2�r2�

uc�1 − rm�
uc�1 − r�1/m.

�
B. Vorticity-stream function approach

Continuity is fulfilled by the Stokes stream function
when it is written as

ur = −
1

r

��

�z
; uz =

1

r

��

�r
. �6�

Substitution into Eq. �4� requires

� = rF��� , �7�

so we follow tradition1 and set

� = C2r� . �8�

Despite the nonuniqueness of this relation, it enables us to
satisfy Eq. �4�. Straightforward substitution into the vorticity
equation yields the standard PDE,

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
+ C2r2� = 0 �9�

with the particular set of constraints,

lim
r→0

1

r

���r,z�
�z

= 0 �a�;
���1,z�

�r
= 0 �b�;

�10�
1

r

���1,z�
�z

= 1 �c�;
1

r

���r,0�
�r

= u0�r� �d� .

By virtue of L’Hôpital’s rule, removing the singularity in Eq.
�10��a� requires that both

���0,z�
�z

= 0 �a� and
�2��0,z�

�r � z
= 0 �b� . �11�

Being linear, Eq. �9� is solvable by separation of variables; it
yields

FIG. 1. Sketch of a porous tube with variable headwall
injection.
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��r,z� = ��z + ���A cos� 1
2Cr2� + B sin� 1

2Cr2�� . �12�

This expression satisfies Eq. �11��b� identically. Thus, from
this point forward, Eq. �10��a� may be superseded by Eq.
�11��a�.

III. SOLUTIONS

A. Solution by general eigenfunction expansions

Application of the boundary conditions must be carried
out, preferably, in the order in which they appear. For ex-
ample, Eq. �11��a� gives

���0,z�
�z

= ��A cos� 1
2Cr2� + �B sin� 1

2Cr2��r=0 = 0 �13�

or A=0. Without loss in generality, we set B=1 and rewrite
Eq. �10��b� as

rC��z + ��cos�� 1
2Cr2��r=1 = 0; ∀ z �14�

and so cos�C /2�=0; this is satisfied by

C = Cn = �2n + 1��; n = �0,1,2, . . . , � 	 � N . �15�

Using Cn= �2n+1�� enables us to sum over eigenfunctions
corresponding to wall suction and injection. This process in-
troduces an error term in Eq. �4� that will be examined later.
We now put

�n�r,z� = ��nz + �n�sin��n + 1
2��r2� or

�16�

��r,z� = 

n=0

�

��nz + �n�sin��n + 1
2��r2� .

The third condition becomes

���1,z�
�z

= 

n=0

�

�n sin��n + 1
2��� = 1 or

�17�



n=0

�

�− 1�n�n = 1.

This constraint may exhibit several outcomes depending on
the behavior of �n. Lastly, the headwall condition may be
satisfied by evoking the ideas of superposition and orthogo-
nality. Starting with

1

r

���r,0�
�r

= �

n=0

�

�2n + 1��n cos��n + 1
2��r2� = u0�r�

�18�

one can apply orthogonality to secure
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FIG. 2. Streamlines for uc=1 depicted in the r−z plane for the uniform headwall injection case. Results shown in �a�–�f� are enhancements that illustrate the
streamline curvature in different sectors of the chamber.

093601-3 Taylor-Culick flow with headwall injection Phys. Fluids 19, 093601 �2007�



�n�
0

1

�2n + 1�cos2��n + 1
2��r2�rdr

=
1

�
�

0

1

u0�r�cos��n + 1
2��r2�rdr �19�

or

�n =� 4�
0

1

u0�r�cos��n + 1
2��r2�rdr

��2n + 1�
; general

4�− 1�n

�2�2n + 1�2

Uc

Uw
=

4�− 1�nuc

�2�2n + 1�2 ; u0 = uc = const.
�
�20�

Backward substitution into Eq. �16� enables us to extract

� = �

n=0

�

��nz + �n�sin��n + 1
2��r2� ; general



n=0

� 
�nz +
4�− 1�nuc

�2�2n + 1�2�sin��n + 1
2��r2� ; u0 = uc.�

�21�

Note that many solutions may be arrived at depending on the
choice of �n that properly fulfills Eq. �17�. One such case
corresponds to Taylor’s family of solutions for which

�0 = 1 and �n = 0; ∀ n � 0. �22�

At the outset, Eq. �21� reduces to

��r,z� = �z sin� 1
2�r2� + 


n=0

�

�n sin��n + 1
2��r2� ; general Taylor - Culick

z sin� 1
2�r2� +

4uc

�2 

n=0

�
�− 1�n

�2n + 1�2 sin��n + 1
2��r2� ; Taylor - Culick with u0 = uc.� �23�
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FIG. 3. Same as above except for uc=1000.
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Note that the general Taylor-Culick profile represents a solu-
tion for uniform sidewall injection and an arbitrary headwall
injection pattern u0�r� that can be captured by the general
form of �n from Eq. �20�. This expression is deliberately left
as an infinite series albeit collapsible into closed form when
put in terms of special functions. The classical Taylor-Culick
solution with inert headwall is easily recovered by setting
�n=0; ∀n, �0=1 and �n=0; ∀n�0.

The character of Eq. �23� is illustrated in Fig. 2 for a
uniform headwall injection rate appropriate of SRMs with
reactive head end. Using u0=uc=1, a balance between side-
wall and headwall injection causes the streamline originating
at the corner �1,0� to bisect the flow field at an angle of � /4.
By concentrating on specific areas, it may be seen that the
solution conforms to the stated boundary conditions. While
Fig. 2�b� illustrates the corner streamlines, Figs. 2�c� and

2�d� confirm the satisfaction of the no slip condition by re-
producing the local behavior in different sectors. Similarly,
Figs. 2�e� and 2�f� confirm the headwall injection boundary
condition.

When the same analysis is repeated in Fig. 3 for uc

=1000, a stream tube motion akin to that of hybrid rocket
core flow is seen to dominate. This is true everywhere except
in the close vicinity of the sidewall. While Fig. 3�a� offers an
overview of the stream tube motion, magnification near the
sidewalls enables us to reaffirm that the fluid enters the
chamber perpendicularly to the sidewall. By approaching the
headwall, the presence of parallel flow in Figs. 3�e� and 3�f�
lends support to the local orthogonality.

Having found �, the velocity and vorticity components
may be recovered from Eqs. �6� and �8�. One obtains ur�r�
=−r−1 sin��r2 /2� for all cases and

uz�r,z� = ��z cos� 1
2�r2� + �


n=0

�

�2n + 1��n cos��n + 1
2��r2� ; general Taylor - Culick

�z cos� 1
2�r2� +

4uc

�


n=0

�
�− 1�n

�2n + 1�
cos��n + 1

2��r2� ; Taylor - Culick with u0 = uc
� �24�

��r,z� = ��2rz sin� 1
2�r2� + �2r


n=0

�

�2n + 1�2�n sin��n + 1
2��r2� ; general Taylor - Culick

�2rz sin� 1
2�r2� ; Taylor - Culick with u0 = uc.

�25�

Note that uniform headwall injection does not alter the radial
velocity nor does it introduce any mean flow vorticity. Fur-
thermore, one may confirm that uz�1,z�=0 because each
cos��n+ 1

2
��� term vanishes along the sidewall. This behavior

is illustrated in Figs. 4�a� and 4�b� at the headwall and, using
L=2, at six equally spaced axial stations corresponding to 0,
0.4, 0.8, 1.2, 1.6, and 2. It may be interesting to note that the
streamwise velocity is also collapsible into closed form by
recognizing that, for uniform headwall injection,

4uc

�


n=0

�
�− 1�n

�2n + 1�
cos��n + 1

2��r2� =
2uc

�
q�r�;

�26�
q�r� = tan−1�ei�r2/2� + tan−1�e−i�r2/2� .

B. Solution by injection-driven eigenfunctions

The same analysis may be repeated by retaining only the
even eigenvalues associated with an injection-driven wall
contribution. This can be seen by reconsidering Eq. �14� and
selecting

C = Cn = �4n + 1��; n � Z . �27�

This choice enables us to skip every other multiple of � /2,
thus producing a series of injection-based solutions. The
third condition becomes



n=−�

�

�n sin��2n + 1
2��� = 1 or 


n=−�

�

�n = 1. �28�

Note that we start our sum at negative infinity lest we capture
half of the headwall injection velocity. As we pursue this
route, the headwall requirement reduces to
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FIG. 4. Radial evolution of the streamwise velocity uz

corresponding to uc=1. This value may be associated
with a simulated SRM with reactive headwall. Results
are shown at �a� z=0 and �b� six equidistant positions
corresponding to z=0, 0.4, 0.8, 1.2, 1.6, and 2.
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� 

n=−�

�

�4n + 1��n cos��2n + 1
2��r2� = u0 �29�

and so, by use of orthogonality, we reap

�n =� 4�
0

1

u0�r�cos��2n + 1
2��r2�rdr

��4n + 1�
; general

4uc

�2�4n + 1�2 ; u0 = uc.

�30�

The injection-based stream function becomes

�inj = � 

n=−�

�

��nz + �n�sin��2n + 1
2��r2� ; general



n=−�

� 
�nz +
4uc

�2�4n + 1�2�sin
�2n + 1
2��r2� ; u0 = uc.

�31�

Note that both �inj and � are equivalent representations.

C. Nonlinear residual in the vorticity transport
equation

Based on Eq. �4�, the residual Q of the vorticity transport
equation may be calculated from

Q�r,z� = �� � u � �� = − 
 �

�r
�ur�� +

�

�z
�uz��� . �32�

In terms of the stream function, we therefore have

Q = −
�

r2

��

�z
+

1

r

��

�z

��

�r
−

1

r

��

�r

��

�z
. �33�

For each eigensolution given by Eq. �21�, the vorticity trans-
port equation vanishes upon substitution. Using �=�n

=Cn
2r�n, Eq. �33� becomes

Qn = −
Cn

2�n

r

��n

�z
+

1

r

��n

�z

�

�r
�Cn

2r�n� −
1

r

��n

�r

�

�z
�Cn

2r�n�

= −
Cn

2�n

r

��n

�z
+

1

r

��n

�z
Cn

2�n + Cn
2��n

�z

��n

�r

− Cn
2��n

�r

��n

�z
= 0. �34�

The summation of Eq. �34� over all eigenmodes is identically
zero. However, when coupling between eigenmodes is con-
sidered, the total vorticity and stream function must be ac-
counted for in the vorticity transport equation. Substitution
into Eq. �33� requires evaluating

Q = −
1

r2 

n=0

m

�n

n=0

m
��n

�z
+

1

r


n=0

m
��n

�z 

n=0

m
��n

�r

−
1

r


n=0

m
��n

�r 

n=0

m
��n

�z
. �35�

Then, by taking into account that

�n�r,z� = ��nz + �n�sin� 1
2Cnr2� ;

��n

�z
�r� = �n sin� 1

2Cnr2�
��n

�r
�r,z� = rCn��nz + �n�cos� 1

2Cnr2� ;
��n

�z
�r� = rCn

2�n sin� 1
2Cnr2�

�36�

and, for the Taylor-Culick class of solutions, �0=1 and �n

=0 �∀n�0�, one is left with

��n

�z
= ��0 sin� 1

2C0r2� n = 0

0 ∀n � 0
�

��n

�z
= �C0

2r�0 sin� 1
2C0r2� = C0

2r
��0

�z
n = 0

0 ∀n � 0
� �37�

where the axial derivatives are solely due to the zeroth eigen-
mode. This reduces Eq. �35� into

Q =
��0

�z
�−

1

r2 

n=0

m

�n +
1

r


n=0

m
��n

�r
− C0

2

n=0

m
��n

�r
� . �38�

We may skip the n=0 case for which the residual vanishes.
Finally, noting that

��n

�r
= Cn

2�n + Cn
2r

��n

�r
�39�

we retrieve

Q�r� =
��0

�z


n=0

m

�Cn
2 − C0

2�
��n

�r
. �40�

Equation �40� represents the net residual of the vorticity
transport equation due to nonlinear coupling; it is not neces-
sarily zero except for inert or sinusoidal headwall injection
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profiles. Based on the general Taylor-Culick solution of Eq.
�23�, one recovers

Q�r� = r sin� 1
2�r2�


n=0

m

�Cn
2 − C0

2�Cn�n cos� 1
2Cnr2�

� 1
2�r3


n=0

m

�Cn
2 − C0

2�Cn�n + O�r5�

� 2�r3

n=0

m

��2n + 1�2�2 − �2��
0

1

u0�r�

�cos��n + 1
2��r2�rdr + O�r5� . �41�

Clearly, solutions with modes for which Cn
2−C0

2�0 entail a
residual and become, at the outset, nonexact. However, being
independent of z, the residual becomes relatively smaller as
we move away from the headwall. Furthermore, the solution
becomes more accurate near the sidewall boundary and along
the centerline where the residual vanishes identically. The
diminution in the streamwise direction makes the approxima-
tion appropriate for long SRMs. The behavior is also consis-
tent with the Taylor-Culick model which is known for its
subtle discontinuity at z=0. In all cases, the core flow ap-
proximations become increasingly more accurate away from
the headwall, a condition that is compatible with the parallel

flow assumption used in many stability studies of SRM flow
fields.20–22

D. Pressure analysis

The steady momentum equation may be readily solved
for the pressure distribution. By ignoring viscous diffusion,
one may start with u ·�u=−�p and integrate in two spatial
directions to retrieve, at length,

p = p0 − 1
2u · u −� ur

�uz

�r
dz �42�

where p0= p�0,0� represents the headwall pressure. Immedi-
ate integration and substitution based on Eq. �24� and uni-
form headwall injection lead to

p = p0 − 1
2�2z2 − 1

2r−2 sin2� 1
2�r2� + 1

2uc
2 − 2�−2ucq�r�

��ucq�r� + �2z cos� 1
2�r2�� . �43�

At this juncture, one may use q�r�= 1
2��1−	k�1−r�� and

write

p = p0 − 1
2�2z2 − 1

2r−2 sin2� 1
2�r2� + 1

2uc
2	k�1 − r�

− �ucz cos� 1
2�r2��1 − 	k�1 − r�� �44�

where 	k is the Kronecker delta. At the centerline, we re-
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FIG. 5. Radial evolution of the streamwise velocity for
uc=1 and several headwall inlet profiles associated with
�a�–�b� Berman’s half-cosine, �c�–�d� Poiseuille, 1−r2,
�e�–�f� 1−r8, and �g�–�h� �1−r�1/7. As in Fig. 4, results
are shown at the headwall �left� and six equidistant po-
sitions corresponding to z=0, 0.4, 0.8, 1.2, 1.6, and 2
�right�.

093601-7 Taylor-Culick flow with headwall injection Phys. Fluids 19, 093601 �2007�



cover p�0,z�= p0− 1
2�2z2−�ucz. To put this in Culick’s tradi-

tional form, we first write the dimensional pressure, p̄= p̄0

− 1
2�Uw

2 �z��z+2uc�, and then renormalize by p̄0=�a0
2 /


�based on the speed of sound a0 and ratio of specific heats 
�.
We get

p* = p̄/p̄0 = 1 − 1
2
Mw

2 ��2z2 + r−2 sin2� 1
2�r2� − uc

2

+ 4�−2ucq�r��ucq�r� + �2z cos� 1
2�r2��	

= 1 − 1
2
Mw

2 ��2z2 + r−2 sin2� 1
2�r2�

− uc
2	k�1 − r� + 2�ucz cos� 1

2�r2�
��1 − 	k�1 − r��	 �45�

with p*�0,z�=1− 1
2
Mw

2 �z��z+2uc�. This matches Culick’s
result for the impervious headwall �uc=0�.

E. Variable headwall injection profile

The analysis may be illustrated using a variable headwall
injection profile. To be specific, one may use

u0�r� = �uc cos� 1
2�r2� �a�

uc�1 − rm� �b�
uc�1 − r�1/m �c�.

�46�

These are prescribed by classic profiles used by Berman �i.e.,
the half-cosine�,23 Poiseuille, and others. For uniform head-
wall injection, it is evident that u0=uc=1 corresponds to a
simulated solid propellant grain that is burning evenly along
its surfaces. However, when the headwall injection profile is
altered according to Eq. �46�, the centerline speed needed to

0 1
r

uruz

(a) uniform
0 1

r

uruz

(b) half-cosine
0 1

r

uruz

(c) Poiseuille

FIG. 6. Comparison between inviscid analytical and numerical simulations for �a� uniform, �b� half-cosine, and �c� Poiseuille injection profiles in a cylindrical
chamber using Uw=10 m/s and uc=1,� /2 ,2, respectively. Hollow circles denote computational results. Axial positions correspond to z /L
=0.1,0.2,0.3, . . . ,0.9.

093601-8 J. Majdalani and T. Saad Phys. Fluids 19, 093601 �2007�



produce the same flux at z=0 may be calculated from a
simple mass balance, namely,

2�
0

1

u0�r�rdr = 1 or uc = �
1
2� �a�
�m + 2�/m �b�
�m + 1��m + 1

2�/m2 �c� .

�47�

In all cases, one may obtain the Taylor-Culick solution from
Eq. �23�. For Berman’s half-cosine, we use Eq. �20� to get
�0=uc /� and �n=0,n�0. Equation �24� becomes

uz = �z cos� 1
2�r2� + uc cos� 1

2�r2�
= ��z + uh�cos� 1

2�r2� ; uh � uc/� . �48�

This step restores the solution applied by Majdalani and
Vyas19 for modeling hybrid rocket core flows.

For the Poiseuille profile, one may use u0�r�=uc�1−r2�
to obtain

�n = 8uc/�n
3; �n � � + 2n� . �49�

Both Berman’s and Poiseuille’s headwall injection velocities
are illustrated in Fig. 5 using the same representative param-
eters of Fig. 4 and fixed uc=1. As evidenced by the right-
hand side graphs, the effect of varying the headwall injection
profile becomes negligible as the chamber length is in-
creased. However, it remains important near the headwall
and, particularly, in short chambers such as those entailed in
upper stage SRMs and T-burners. As for the turbulent pro-
files corresponding to Eq. �46�, three commonly examined
cases may be connected with m=6,8 ,10. These lead to

�n
2+m/2�n

uc
= �96��− 1�n�n − 2� m = 6

192�− 1�n��n
2 − 8� m = 8

320��− 1�n�n��n
2 − 24� + 48� m = 10

where uc = �4/3 m = 6

5/4 m = 8

6/5 m = 10.

�50�

Finally, for the turbulent model associated with Eq. �46�,
one may obtain a recursive relation in terms of the general-
ized hypergeometric function pFq�a ;b ;z�
= pFq��a1 , . . . ,ap	 ; �b1 , . . . ,bq	 ;z�; for our specific cases, we
find the arguments to be p=3 and q=4 such that

�n =
4m2uc

�1 + m��1 + 2m��n
3F4�� 3

4 ,1, 5
4	 ,

�� 3
4 + 1

4m ,1 + 1
4m , 5

4 + 1
4m , 3

2 + 1
4m	,− 1

16�n
2�; �51�

uc = �91/72 m = 6

60/49 m = 7

153/128 m = 8.

The commonly employed �middle� values in Eqs. �50� and
�51� are illustrated in Figs. 5�e�–5�h� using a fixed uc=1.

IV. NUMERICAL VERIFICATION

So far we have described an approximate Euler solution
for the Taylor-Culick flow with variable headwall injection.
By way of confirmation, we now present an inviscid numeri-
cal solution for the mean flow field using three illustrative

0
8
16
24
32
40
48
uz Uw = 10 m/s

(a) uniform

0
8
16
24
32
40
48

(b) half-cosine

0 1
0
8
16
24
32
40
48 analytic

numeric

(c) Poiseuille r

FIG. 7. Same as above except for the axial velocities being enlarged for
better comparison.
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headwall injection profiles. Our simulations are carried out
using a pressure-based, finite volume, unstructured, two-
dimensional code. The targeted flow is that corresponding to
a rocket motor with an average sidewall Mach number of
0.03 and purely inviscid conditions. The large sidewall Mach
number is deliberately chosen to draw attention to the flow
behavior near the boundaries and its ability to observe the
wall-normal injection requirement. The aspect ratio of the
domain is set at L=16. The actual length and radius are taken
at 1.6 m�0.1 m and the wall injection velocity is taken at
10 m/s for the simulated SRM. The boundary conditions at
the sidewall are specified as velocity inlets to closely mimic
the mathematical model where injection is imposed uni-
formly along the grain surface. The headwall is also specified
as an inlet. On the right-hand side of the domain a pressure
outlet boundary condition is prescribed. Although an outflow
boundary condition can also be imposed at the downstream
section, it is discounted here to avoid the possible case of
partially developed flow. The difference between an outflow
and a pressure outlet boundary condition is that, in the latter
case, the exit pressure is fixed at the boundary. The domain is
meshed into 589 824 equally spaced control volumes �3072
�192�. While the first order upwind is called upon for spa-
tial discretization, the SIMPLE algorithm is used to handle
pressure and velocity.

Results for the inviscid simulations are shown in Figs. 6
and 7. These are carried out for uc=1,� /2 ,2 and show the
streamwise evolution of the axial and transverse velocities at
z /L=0.1,0.2,0.3, . . . ,0.9. For the sake of comparison, the
working fluid is taken to be ambient air. It may be seen that
the agreement with the computations is excellent. These lim-
ited numerical experiments reaffirm the viability of the ana-
lytical approximations described above.

V. CONCLUSIONS

In this study we revisit the incompressible Taylor-Culick
flow problem with arbitrary headwall injection. Two solu-
tions are obtained that satisfy the principal surface require-
ments including the velocity adherence condition on the
wall. The two formulations are found to yield identical re-
sults. Their behavior is illustrated for the cases of small and
large headwall injection pertaining, for example, to SRM and
hybrid rocket models, respectively. The analysis encom-
passes not only uniform but variable inlet velocities. We find
the effect of varying the headwall injection profile to be
small in sufficiently long chambers. However, it plays a key
role in short chambers and T-burners where the foregoing
formulations may be applied. In hybrid rockets, our models
are seen to capture the stream tube motion quite effectively.
The expressions presented here increase our repertoire of en-
gineering approximations for the modeling of injection-
driven porous tubes. In future work, we hope to consider
other geometric shapes that are of interest to the propulsion
community.
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