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Energy Based Solutions of the Bidirectional Vortex 

Tony Saad* and Joseph Majdalani† 
University of Tennessee Space Institute, Tullahoma, TN 37388  

In this study, two families of solutions are developed for the bidirectional vortex in a 
cylindrical chamber using Lagrangian optimization.  Our optimization procedure is applied 
to the kinetic energy of the system and is prompted by the idea that a fluid will follow the 
path of least kinetic energy in the absence of forcing.  Once the solution with least kinetic 
energy is obtained, other more energetic profiles that satisfy the problem’s boundary 
conditions are exposed. At the outset, two types of solutions, I and II, are established.  These 
expansions either lag or exceed in system energy the exact Vyas-Majdalani solution (Vyas, A. 
B. and Majdalani, J., “Exact Solution of the Bidirectional Vortex,” AIAA Journal, Vol. 44, 
No. 10, 2006, pp. 2208-2216). Furthermore, the two types of solutions exhibit quantum-like 
energy states that depend on an energy power index, q.  When q is increased, the two classes 
of solutions asymptotically approach the Vyas-Majdalani model while maintaining either 
lower or higher kinetic energies.  From this perspective, the fundamental solution can be 
viewed as a stable saddle function to which all other solutions converge.  Parametrically, the 
energy-based solutions are found to be dependent on the chamber aspect ratio, injection 
flowrate, and energy power index. The present analysis expands our understanding of the 
bidirectional vortex and paves the way for a stability framework that incorporates unsteady 
wave coupling with the mean flow. 

Nomenclature 
a  = chamber radius 

VE  = total volumetric kinetic energy 
E  = kinetic energy density, ( )2 3

VE Lκ  
L   = normalized chamber length, 0 /L a  

iQ   = total inlet volumetric flowrate 
iQ   = normalized inlet volumetric flowrate, ( )2

iQ Ua  
r , z   = normalized radial and axial coordinate, / ,r a  /z a  
u  = normalized velocity ( u ,v , w )/U  
U  = mean inflow velocity ( )0,v a L  
η  = action variable, 2(2 1)n rπ+  
κ  = inflow parameter, 2iQ Lπ  
ρ  = density 
 
Indices 

 = overbars denote dimensional variables 
−  = denotes Type I solutions 
+  = denotes Type II solutions 

I. Introduction 
IGHLY rotating flows are among the most feature-rich motions that are encountered in the analysis of swirling 
fluid formations.  From the devastating power of tornadoes and hurricanes that occur in nature1 to the vortex-
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fired thrust chambers2-4 that are developed for space exploration, highly swirling flows exhibit some of the most 
intriguing and predictively daunting characteristics.  In this vein, a substantial amount of research has been invested 
in studying both confined5-12 and unconfined swirling configurations.13-21  Among them is our particular interest in 
the confined bidirectional vortex, a bipolar fluid structure that emerges in the Vortex Combustion Cold-Wall 
Chamber (VCCWC) developed by Chiaverini et al.3,4 (see Fig. 1a).  
 One of the earliest models to describe this problem may be attributed to Vyas and Majdalani;5 Majdalani and 
Rienstra6 have also focused on spherical geometry and the extraction of new classes of nonlinear solutions not 
exposed previously.  Other relevant solutions include those describing the presence of multiple mantles,12 viscous 
core corrections,11 tangential boundary layers,22 and both radial and axial sidewall boundary layers.8  Numerical and 
experimental investigations of the vortex chamber have also been performed by Anderson et al.,2 Rom, Anderson 
and Chiaverini,23 Murray et al.,24 Sauer et al.25 (using LOX/RP-1), Chiaverini et al.4 (using O2/H2), Fang, Majdalani 
and Chiaverini,26,27 (using both cold and reactive flow conditions), and others.  Due to the striking similarity 
between a bidirectional vortex and a cyclonic flowfield, other pertinent models include those by Fontein and 
Dijksman,28 Smith,29,30 Bloor and Ingham,31,32 and Kelsall.33  Elegant simulations of cyclonic flows have also been 
performed by Boysan, Ayers and Swithenbank,34 Hsieh and Rajamani,35 Hoekstra, Derksen and Van den Akker,36 
Derksen and Van den Akker,37 and Hu et al.38   
 The present article applies the concept of Lagrangian optimization to the set of profiles describing cyclonic 
motion, often referred to as bidirectional vortex motion in the propulsion community.  Such a framework has been 
shown to be valuable in deriving new families of solutions for a variety of physical problems in which a basic mean 
flowfield is established.  In this context, Majdalani and Saad39,40 have derived approximate analytical solutions for 
flows mimicking the internal gaseous motion in solid and hybrid rocket motors.  They have also provided accurate 
representations for slab-rocket chambers simulating both solid and hybrid rockets41,42 with arbitrary headwall 
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Figure 1.  Side-by-side comparison between the Vortex Combustion Cold-Wall Chamber (VCCWC) by Chiaverini et al.3,4

and the simulated vortex chamber used in conjunction with the present mathematical model.  
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injection.  In these studies, the Lagrangian optimization technique led to additional families of solutions with 
discrete energy signatures.40,42  The energy-based profiles displayed either smoother or steeper profiles that could be 
associated with turbulent or compressible flow motions.43  In this article, we extend our analysis to the more 
complex bidirectional vortex chamber in which the streamlines experience both flow reversal near the head-end and 
rotation about the centerline.  This extension enables us to better understand the intricate similarities that affect both 
injection and swirl driven thrust chambers.  

II. Mathematical Model 
Following Vyas and Majdalani,5 the inviscid bidirectional vortex can be modeled as a cylindrical chamber of 

length 0L  and radius a  with uniform tangential injection along its sidewall (Fig. 1b). The flow is assumed to be 
steady, inviscid, inert and rotational. The solution domain extends from the headwall to the virtual nozzle attachment 
at the exit where 0z L= .  At the injection port, the flow enters the chamber at a given flowrate iQ .  This stream 
then undergoes a double helical motion prompted by the rotation of fluid layers with the lowest pressure occurring 
along the centerline. In what follows, we seek to approximate solutions that may exist besides the basic bidirectional 
vortex model.  In particular, we hope to identify those particular solutions that require lower or higher energies to 
excite. 

A. Equations 
We start with the inviscid Euler flow equations, 

   ( )1 1 0
ru w

r r r zθ
∂ ∂ ∂

+ + =
∂ ∂ ∂

v  (1) 

   
2 1u u u pu w

r r z r rθ ρ
∂ ∂ ∂ ∂

+ + − = −
∂ ∂ ∂ ∂

v v  (2) 

   1u pu w
r r z r rθ ρ θ

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
v v v v v  (3) 

   1w w w pu w
r r z zθ ρ

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
v  (4) 

where u, v, and w stand for the radial, azimuthal, and axial velocities, respectively. Axisymmetry about the 
centerline is useful in eliminating tangential derivatives.   Furthermore, the absence of friction between fluid layers 
enables us to assume a tangential velocity that is independent of the axial direction.5,44 This typical set of 
assumptions helps to transform the governing equations into 

   ( )1 0
ru w

r r z
∂ ∂

+ =
∂ ∂

 (5) 

   
2 1u u pu w

r z r rρ
∂ ∂ ∂

+ − = −
∂ ∂ ∂

v  (6) 

   0uu
r r

∂
+ =

∂
v v  (7) 

   1w w pu w
r z zρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (8) 

B. Boundary Conditions 
 These are physically connected to 
  (a) tangential inflow at the sidewall; 
  (b) vanishing axial flow at the headend;  
  (c) no radial flow at the centerline; 
  (d) no radial inflow at the sidewall; and 
  (d) an axial source that matches the tangential stream entering at the base. 
These conditions can be expressed as 
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( )
( )
( )

0
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0, 0 (no radial flow at the centerline)
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v
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i ib
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w r
u z
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w r L r r Q UA

=

=

=

=
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⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 (9) 

C. Normalization  
 For simplicity, we normalize all variables according to 

   2 2;  ;  ; ;
w

z r pz r p
a a U U a U

ψψ
ρ

= = = = =
uu  (10) 

   2 2 2; ; ;i i o
i o

Q A Q bQ Q a
aUa a Ua

β= = = ∇ = ∇ =  (11) 

 
Here 0( , )v i iU a L Q A= =  is the average injection velocity and b stands for the nozzle radius and mantle location. 
For steady inviscid motion, the vorticity transport equation reduces to  
   ( ) 0∇ × × =u Ω ;  = ∇ ×Ω u  (12) 
Similarly, the dimensionless boundary conditions take the form 

   

( )
( )
( )
( )

( )
2

0 0

1, 1 (tangential inflow)
,0 0 (vanishing axial flow at the headend)

0, 0 (no radial flow at the centerline)
1, 0 (no radial inflow at the sidewall)

, d d (axial inflow matching tangentiali

L
w r
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u z

w r L r r Q
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θ
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=

=

=

=∫ ∫
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 source) 

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 (13) 

D. Decoupling of Euler’s Equations 
The governing equations can be decoupled from the tangential velocity component via Eq. (7), namely, 

   10 oru
r r r

∂⎛ ⎞+ = =⎜ ⎟
∂⎝ ⎠
v v v  (14) 

This relation represents a free vortex.  The singularity at the centerline is due to the absence of friction, a necessary 
ingredient to attenuate the tangential velocity at the centerline.5 This undesirable deficiency may be circumvented by 
adding viscous core corrections, as shown by Vyas and Majdalani.22  Their result may be expressed as function of a 
vortex Reynolds number V , where 
 

   

( )

2 22 1 11
4 64

21
4

( 1) (1 )

0

1 1 ; 0 ;

1 1 ;                                (tangential injection at entry)
v

V rVr i

Vr

UAe e z L V
r L

e z L
r

π ρ
μ

− − −−

−

⎧ ⎡ ⎤− − < < ≡⎪ ⎢ ⎥⎣ ⎦⎪= ⎨
⎪ − =⎪⎩

 (15) 

 
With the tangential velocity decoupled from the axial and radial equations, we are left with a reduced axisymmteric 
problem that can be further simplified by making use of the stream function. 

E. Vorticity-Stream Function Approach 
 The Stokes stream function may be introduced through 

   
1u
r z

ψ∂
= −

∂
      and      

1w
r r

ψ∂
=

∂
 (16) 

As usual, substitution into Eq. (12) requires that 
   2( )Ω= rF C rψ ψ=  (17) 
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Despite the non-uniqueness of this expression, it satisfies Eq. (12).  Then by inserting Eq. (17) into the vorticity 
equation, one obtains the characteristic equation for this problem, specifically 

   
2 2

2 2
2 2

1 0ψ ψ ψ ψ∂ ∂ ∂
+ − + =

∂∂ ∂
C r

r rz r
 (18) 

with 

   

( )
2

0 0

(a) 0 : 0; 0;
(b) 0 : 0; 0;
(d) 1: 0; 0;

(d) d d = .i

z w r
r u z
r u z

r r Q
π β

ψ
ψ
ψ

ψ θ

= = ∂ ∂ =⎧
⎪ = = ∂ ∂ =⎪
⎨ = = ∂ ∂ =
⎪
⎪ ∂ ∂⎩ ∫ ∫

 (19) 

When Eq. (18) is solved by separation of variables, one finds 
   2 2( , ) ( )[ cos( ) sin( )]r z z A Cr B Crψ α ϕ= + +  (20) 

III. Energy Triggered Solutions 

A. Solution by Eigenfunction Expansions 
 The boundary conditions may be applied sequentially.  Starting with Eq. (19)a 

   2 21 1
2 2

( ,0) [ cos( ) sin( )] 0r C rA Cr C rB Cr
r

ψ ϕ∂
= + =

∂
 (21) 

we get 0ϕ = . Next, application of Eq. (19)b yields 

   
(0, ) 0z A
z

ψ α∂
= =

∂
 (22) 

Since 0,α ≠  we take 0A = . Without loss in generality, we set 1=B  and rewrite the remaining solution as 
   2( , ) sin( )r z z Crψ α=  (23) 
At this point, application of Eq. (19)c returns 

   
(1, ) sin( ) 0z C
z

ψ α∂
= =

∂
 (24) 

and so sin( ) 0C = . In order to derive energy-based profiles, we introduce eigensolutions that observe this constraint. 
Therefore, instead of limiting our attention to the fundamental solution given by ,C π= 5 we consider the general 
form of C as 
   ( 1) ; {0,1, 2,..., }kC C k kπ= = + = ∞ ∈  (25) 
Using ( 1)kC k π= +  enables us to sum over infinite eigenfunctions, thus setting the stage for the energy 
optimization technique to be implemented.  We proceed by disregarding negative integers that lead to self-
cancellation, and sum over all possible eigensolutions 

   2

0
( , ) sin ( 1) ;k

k
r z z k rψ α π

∞

=

⎡ ⎤= +⎣ ⎦∑      where     2( , ) sin ( 1)k kr z z k rψ α π⎡ ⎤= +⎣ ⎦  (26) 

The last boundary condition provides the constraint for { }kα .  From Eq. (19)d we obtain 

   ( )2 2
0 0

0
2 1 cos ( 1) d dk i

k
L k k r r r Q

π β
πα π θ

∞

=

⎡ ⎤+ + =⎣ ⎦∑∫ ∫  (27) 

or 

   2

0
sin ( 1)

2
i

k
k

Q
k

L
α πβ κ

π

∞

=

⎡ ⎤+ = ≡⎣ ⎦∑  (28) 

B. Mantle Location 
 To make headway, we must first determine the value of β  that sets the theoretical location of the mantle. The 
mantle is defined as that rotating layer where the axial velocity vanishes.5  Its locus is the root of ( ), 0.w zβ =  For 
our solution, we have 

   ( ) ( ) ( ) ( ) ( )2 2 2 2
0 1

0
1 cos ( 1) cos 2 cos 2 ... 1 cos 1 0k k

k
k k k kα πβ α πβ α πβ α πβ

∞

=

⎡ ⎤ ⎡ ⎤+ + = + + + + + =⎣ ⎦⎣ ⎦∑  (29) 
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Each term in the series has to vanish identically if Eq. (29) is to be satisfied. However, since { }kα  is nonzero then 
the cosine terms in Eq. (29) should be null for the same value of .β   This can be extracted from the first term as 
   ( )2cos 0πβ =    or   1 / 2β =  (30) 
This value coincides, as it should, with the single mantle location derived by Vyas and Majdalani.5  Interestingly, 
when 1 2β =  is substituted back into Eq. (29), only terms with even indices vanish. This guides us to ignore odd 
indices in the Fourier-type summation and write 2 , {0,1, 2,..., } .k n n= = ∞ ∈   The corresponding constants take the 
form 
   ( ) ( )1 2 1 ; {0,1, 2,..., }k nC k C n nπ π= + → = + = ∞ ∈  (31) 
Note that the refinement in the choice of { }nC  does not alter the character of the solution, but only remaps the 
interval of { }nC  to odd multiples of .π   The ensuing series expansion becomes 

   2

0
( , ) sin (2 1)n

n
r z z n rψ α π

∞

=

⎡ ⎤= +⎣ ⎦∑  (32) 

With the mantle location determined, Eq. (28) becomes 

   ( )
0

1 n
n

n
α κ

∞

=

− =∑  (33) 

We now proceed to determine an auxiliary equation that can be imposed on { }nα . 

C. Energy Optimization 
Clearly, an infinite number of possibilities exist that may, in principle, satisfy Eq. (33), depending on the 

behavior of { }nα .  One of these choices may be arrived at by optimizing the total kinetic energy in the chamber. The 
underlying principle projects that a flow may choose the path of least or most energy requirement. To test this 
behavior, we evaluate the local kinetic energy at ( , )r z  for each eigensolution using  
   2 2 21 1

2 2( , ) ( )n n n nE r z u w= = +u  (34) 
where each mode is an exact solution bearing the form 

   sin ; 2(2 1) cosn
n n nu w n z

r
α η π α η= − = + ;  2(2 1)n rη π≡ +  (35) 

Note that the tangential velocity is not included in the evaluation of nE  because it is decoupled from the remaining 
velocity components and hence independent of .n   Stated differently, the contribution of the tangential velocity to 
the kinetic energy remains fixed irrespective of the energy level being considered. By assuming a system of 
eigensolutions with individual kinetic energies, their cumulative energy can be written locally as 

   ( )22 2 2 2 2 2 21
2

0 0
( , ) sin 4 2 1 cosL n n n

n n
E E r z r n zα η π α η

∞ ∞
−

= =

⎡ ⎤= = + +⎣ ⎦∑ ∑  (36) 

The total kinetic energy in the chamber volume V  may be calculated by integrating the local kinetic energy over the 
length and chamber cross-section.  One puts 

   ( )2 1 1 22 2 2 2 2 2 2
0 0 0 0 0

0
d d sin 4 2 1 cos d d

L L
V L n n

n
E E r r z d r n z r r z

π
θ π α η π α η

∞
−

=

⎡ ⎤= = + +⎣ ⎦∑∫ ∫ ∫ ∫ ∫  (37) 

Straightforward evaluation and simplification over the chamber volume yields 

   3 3 2 2 2 21
12

0
V n n n n

n
E L a L bπ α π α

∞
− −

=

= +∑  (38) 

where 
   ( )[ ]24(2 1) ; 3Cin 2 2 1n na n b n π= + = +  (39) 

Here ( ) 1
0

Cin( ) 1 cos d
x

x t t t−= −∫  is the entire cosine integral. At this point, one may seek the extremum of the total 

kinetic energy subject to the fundamental constraint 

   
0
( 1)n

n
n

α κ
∞

=

− =∑   (40) 

The method of Lagrangian multipliers may be employed by introducing the constrained energy function 
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0
( 1)n

V n
n

g E λ α κ
∞

=

⎡ ⎤
= + − −⎢ ⎥

⎣ ⎦
∑  (41) 

Equation (41) can then be maximized or minimized by imposing 0 1 2( , , ,..., ) 0.g α α α λ∇ =   In shorthand notation, 
one sets 
   { }( , ) 0 0,1, 2...,ng nα λ∇ = = ∞  (42) 
Subsequently, the constrained energy function may be differentiated with respect to each of its variables to obtain 

  ( ) { }
3 3

2 22 2 ( 1) 0; 0,1, 2...,
12

n
n n n n

n

g L a L b nπ α π α λ
α

− −∂
= + + − = = ∞

∂
 (43) 

  
0
( 1) 0n

n
n

g α κ
λ

∞

=

∂
= − − =

∂ ∑   (44) 

Equation (43) can be solved for { }nα  in terms of λ  such that 

   
3 3

2 2
6 ( 1)n

n
n n

L
a L b
π λα

π

− −

− −

−
= −

+
 (45) 

The outcome can be suitably substituted into Eq. (44) to procure 

   
3 3

2 2 1

0
6 ( )n n

n

L

a L b

π κλ
π

∞
− − −

=

= −
+∑

 (46) 

When λ  is inserted into Eq. (45), an expression for { }nα  is obtained, specifically, 

   
( )

2 2 2 2 1

0

1

( ) ( )

n

n

n n i i
i

a L b a L b

κα
π π

∞
− − − − −

=

−
=

+ +∑
 (47) 

With this relation at hand, the total energy given by Eq. (38) is fully determined.  Then from Eqs. (47) and (38) one 
can segregate κ .  It is then useful to introduce a compact form of the energy density such as 2 3/ ( )VE Lκ=E .  The 
long expression resulting for E  is omitted here for the sake of brevity. Its asymptotic approximation will be 
presented instead. 
 By plotting E  versus L  in Fig. 2, one is able to estimate the energy requirements associated with the 
bidirectional vortex depending on the chamber length. One also finds that as the length of the chamber is increased 
at fixed radius, E  approaches a constant asymptotic value of 8 / 3 8.3776π−

∞ =E .  A critical aspect ratio crL  can 
be proposed beyond which the kinetic energy will vary by less than 1% from its final asymptotic value .−

∞E
Technically, we would have 0.01− −

∞ ∞− ≤E E E .  Thus, for a chamber with crL L≥ , one may safely assume that 
L → ∞  in evaluating Eq. (47), as a less than 1% error will be entailed.  The outcome of this approximation 
translates into a substantial reduction in complexity. The critical length can be calculated to be 3.95125 for the 
bidirectional vortex. This relatively small value for the critical length is fortuitous as existing vortex engines have 
comparable aspect ratios and, therefore, the simplification obtained by letting L → ∞  can be implemented with a 
reasonable degree of approximation. 
 A simple case may be illustrated for a vortex chamber 
with an aspect ratio that exceeds crL . Letting L → ∞ , Eq. 
(47) reduces to 

  
1

1
2 2

0

8( 1)( 1)
(2 1)

n
n

n n i
i

a a
n

κα κ
π

−∞
−

=

⎛ ⎞ −
= − =⎜ ⎟ +⎝ ⎠

∑  (48) 

This simple relation fully satisfies the fundamental 
constraint expressed through Eq. (40). 

D. Least Kinetic Energy Solution 
It should be noted that the optimization technique based 
on Lagrangian multipliers enables us to identify the 
problem’s extremum with no indication of whether the 
outcome corresponds to a minimum or a maximum. A 
substitution of Eq. (48) into Eq. (38) is resorted to for 
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Figure 2. Kinetic energy variation vs. chamber length L.  
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comparing the energy content of the present approximation to that of the Euler formulation given by Vyas and 
Majdalani.5 We find that the strategy just pursued exposes the solution with least kinetic energy.  When L → ∞  the 
energy-minimized formulation that emerges from Eq. (26) reduces to 

   2
2 2

0

8 ( 1)( , ) sin (2 1)
(2 1)

n

n
r z z n r

n
ψ κ π

π

∞

=

−
= ⎡ ⎤+⎣ ⎦+∑  (49) 

Corresponding streamlines are illustrated in Fig. 3a. Using solid lines to denote the fundamental solution, the 
steepened curves are shown using broken lines. The energy-minimized solution exhibits steep curvatures that are 
reminiscent of those associated with turbulent or compressible flow motions.43 The radial and axial velocities with 
least kinetic energy are obtained from Eq. (49) and posted in Table 1.  

IV. Generalization 
The solution that we have obtained reflects the least kinetic energy that the flow may be able to sustain. If a family 
of solutions could be envisioned with other energy states, then the particular solution that we have identified could 
be viewed as the datum for all possible permutations.  Evidently, it would be valuable to identify other mean flow 
solutions that exhibit increasing levels of kinetic energy, specifically those leading to the flowfield with maximum 
energy. It would also be informative to rank the solution given by Vyas and Majdalani5 according to its energy 
content.  Being explicitly closed, the Vyas-Majdalani profile will be referred to as the Type 0 or baseline solution.  
In our quest for a generalization, we consider 4L ≥  and make use of Eq. (48) as a guide.  We also recognize that 
the source of steepening stems from the main injection sequence, and thus { }αn  contains the key parameters that 
control the energy level for a given flowfield.   

0 0.5 1

 ψ
κ

0.25 L

0.5 L

0

0.75 L

z

L

a) r
    

0 0.5 1

b)

 
r  

     
Figure 3. Flow streamlines for either (a) Type I solutions (left) with increasing energy levels or (b) Type II solutions
(right) with decreasing energy levels. 
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A. Type I Solutions with Increasing Energy Levels 
Our objective here is to produce a family of solutions with valid sets of { }αn  that conform to the solution obtained 
through Lagrangian optimization.  We begin by remarking that 

   
( )
( )

2
2 2 2

18( 1)
(2 1) 2 1

nn

n
A

n n

κκα
π

−−
= =

+ +
 (50) 

where 2
2 8 /π=A  is connected with the constraint given by Eq. (40).  Similarly, the subscript may be linked to the 

power of (2 1)+n  in the denominator.  To generalize, we introduce the Type I family of solutions with 

   ( ) ( )
( )

1
; 2

2 1

n
q

n q

A
q q

n

κ
α − −

= ≥
+

 (51) 

where 2=q  reproduces the state of least energy disbursement.  This relation can be made to satisfy Eq. (40) when 

   
( )
( )0

1
( 1) 1

2 1

∞

=

−
− =

+
∑

n
qn
q

n

A

n
     or     

( )
1

0

1 1 ; ( )
( )(1 2 )2 1

q
q q kq

n

A q k
qn

ζ
ζ

∞ −
∞ − =

−

=

= = =
−+

∑
∑

 (52) 

Interestingly, Riemann’s zeta function surfaces. Note that the 2≥q  condition is needed to ensure series 
convergence down to the vorticity.  Backward substitution enables us to collect the proper form of { }nα , namely, 

   ( ) ( ) ( )

( )

( ) ( )

0

1 2 1 1 2 1
; 2

( )(1 2 )2 1

n q n q

n q
q

k

n n
q q

qk

κ κ
α

ζ

− −
−

∞ −
−

=

− + − +
= = ≥

−+∑
    (Type I) (53) 

Here the exponent q  represents the kinetic energy power index.  The ‘minus’ sign in the superscript implies an 
energy state that is lower than the baseline case.  With the form given by Eq. (53), one can plot the variation of the 
total kinetic energy versus the kinetic energy power index q . This plot is shown in Fig. 4a for several aspect ratios. 
Interestingly, as → ∞q , the baseline solution is recovered. In fact, the analytical limit of Eq. (53) can be shown to 
be 

   ( )
1; 0

lim
0; {1,2,..., }nq

n
q

n
α −

→∞

=⎧
= ⎨ = ∞⎩

 (54) 

The elimination of all constants except for the first identically reproduces the baseline solution. The family of Type I 
expansions that are unraveled from Eq. (53) possess kinetic energies that are lower than the baseline.  They can be 
bracketed between Eq. (49) and 2( , ) sin( )r z z rψ κ π= .  

B. Type II Solutions with Decreasing Energy Levels 
 To capture solutions with energies that exceed the baseline case, a modified formulation for { }nα  is in order. 
One may set  

Table 1. Solutions with least or most kinetic energies compared to the Vyas-Majdalani profile 
 

Quantity Type I (least KE) Vyas-Majdalani5 Type II (most KE) 

ψ  2 2
0

8 ( 1) sin
(2 1)

n

n
z

n
κ η

π

∞

=

−
+∑  2sin( )z rκ π 2

0

1 sin
(2 1)n

z
n

κ η
∞

= +∑C
 

u  2 2
0

8 ( 1) sin
(2 1)

n

nr n
κ η

π

∞

=

−
−

+∑  2sin( )r
r
κ π− 2

0

1 sin
(2 1)nr n

κ η
∞

=

−
+∑C

 

w  
0

16 ( 1) cos
(2 1)

n

n
z

n
κ η

π

∞

=

−
+∑  22 cos( )z rπκ π

0

2 1 cos
(2 1)n

z
n

π κ η
∞

= +∑C
 

θω  0  2 24 sin( )rz rπ κ π
2

22 csc( )rz rπ κ π
C

 



10 
American Institute of Aeronautics and Astronautics 

 

   ( )
( )

; 2
2 1

q
n q

B
q q

n

κ
α + = ≥

+
 (55) 

The key difference here stands in the exclusion of the ( )1− n  multiplier, a term that was previously retained in Eq. 
(50).  Unless this term is lumped into qB , no expansions can be constructed with energies that are higher than the 
baseline. In denoting Type II behavior, the ‘plus’ sign tagged in the superscript alludes to higher energies. Our 
remaining steps are similar to those used before.  Substitution into Eq. (40) yields 

   
( )0

( 1) 1
2 1

∞

=

− =
+

∑ qn
q

n

B

n
     or     

( ) ( )
31

4 4

0

1 4
( , ) ( , )1 2 1

q

q
n q

n

B
q qn ζ ζ∞

−

=

= =
−

− +∑
 (56) 

where ( )
0

( , ) q

k
q a k aζ

∞
−

=

= +∑  is Riemann’s generalized zeta function.  Equation (56) produces 

   ( ) ( )

( ) ( )

( )
31

4 4

0

2 1 4 2 1
( , ) ( , )1 2 1

q qq

n
k q

k

n n
q

q qk

κ κ
α

ζ ζ

− −
+

∞
−

=

+ +
= =

−− +∑
    (Type II) (57) 

It can be shown that the Type II expansions issuing from Eq. (57) exhibit higher kinetic energies than the Type 0 
solution. The variation of their kinetic energy with respect to q  is illustrated in Fig. 4b for several aspect ratios. 
According to this form of { },nα +  the model proposed by Vyas and Majdalani5 is recoverable asymptotically by 
taking the limit as → ∞q . So common to the two types of expansions obtained heretofore, the Vyas-Majdalani 
profile5 seems to constitute a stable saddle function to which all series solutions quickly converge when their 
energies are either increased or decreased.  
 For the Type II expansions, when the energy level is fixed at 2q = , a simplification follows.  Catalan’s constant 
emerges in Eq. (57), namely, in the form 
     2

0
( 1) (2 1) 0.915966k

k
n∞ −

=
= − +∑C  (58) 

The streamlines corresponding to the solution with the most kinetic energy are plotted in Fig. 3b. The Type II 
approximation is seen to overshoot the baseline streamline curvature.  We also note that in computing the kinetic 
energy density shown in Fig. 4, the large L approximation is only used in evaluating { }nα . 

C. Velocity and Vorticity 
 The radial and axial velocities may be determined from 

     
0

sinn
n

u
r
κ α η

∞

=

= − ∑ ;   
0

2 2 1) cosn
n

w nκπ α η
∞

=

= ( +∑  (59) 

These expressions are evaluated for the Type 0, I, and II cases ( 2q = ) and catalogued in Table 1. The effect of 
varying the energy power index on the velocity field is shown in Fig. 5 for the streamline turn angle as well as the 
radial and axial velocities. The turn angle is defined as 
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q     2 4 6 8 10 12
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15
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qb)

 

     
Figure 4. Total kinetic energy density in a vortex chamber for either (a) Type I solutions (left) with increasing energy
levels or (b) Type II solutions (right) with decreasing energy levels.  Results are for L = 2, 4, 6, and 8. 
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     1180 1( ) tan z

r

u
r

z u
θ

π
− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (60) 

 Finally, the vorticity may be determined from 

     ( )22

0
4 2 1 sinn

n

u w rz n
z rθω π α η

∞

=

∂ ∂
= − = +

∂ ∂ ∑  (61) 

This is evaluated for the least and most kinetic energy formulations ( 2)q =  as well as the reference case. These are 
also found in Table 1. 

D. Asymptotic Behavior of the Kinetic Energy Density 
The limit of the kinetic energy density as L → ∞  can be written as 

     ( ) ( )2 23 2 21
3

0 0
2 1 2 1n n

n n
n nπ α α

∞ ∞
∞

∞ ∞
= =

= + = +∑ ∑E E  (62) 

where 3 / 3 10.335π∞
∞ ≡E  is the asymptotic limit of the kinetic energy of the Type 0 ( L → ∞  and q → ∞ ).  For 

the Type I solutions, substitution of Eq. (53) yields a closed-form expression, namely, 

     ( ) ( ) ( )
2

2 2
2 2

0 0

4 4 (2 2)2 1 2 1
(2 1) [ ( )]

q
q q

q
k n

qq k n
q

ζ
ζ

−∞ ∞
− −− ∞ ∞

∞ ∞ ∞
= =

⎡ ⎤ − −
= + + =⎢ ⎥ −⎣ ⎦

∑ ∑E E E  (63) 

In like manner, for the Type II solutions, Eq. (57) leads to 

     ( ) ( ) ( ) ( )
2

2 2
231

0 0 4 4

4 (4 4) (2 2)1 2 1 2 1
[ ( , ) ( , )]

q q
k q q

k n

qq k n
q q

ζ
ζ ζ

−∞ ∞
− −+ ∞ ∞

∞ ∞ ∞
= =

⎡ ⎤ − −
= − + + =⎢ ⎥ −⎣ ⎦

∑ ∑E E E  (64) 

 Specific values of these limits are ( )2 8.377−
∞E , ( )4 10.053,−

∞E
 
and ( )6 10.305−

∞E  for the Type I, and 
( )2 15.197,+

∞E ( )4 10.583,+
∞E

 
and ( )6 10.362+

∞E  for the Type II.  Both types approach ∞
∞E  either from 

below or above. The energy level entertained with each power index may be extracted from Fig. 6. Evidently, all 
solutions with 5q ≥  are indiscernible from the fundamental Type 0 solution with an energy difference of less than 
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Figure 5. Effect of the energy power index on the velocity field for the flow with an inert headwall; (a) turn angle, (b) 
normal velocity, and (c) axial velocity. 
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1%.  Each family of solutions exhibits a different range 
of higher or lower energies than the Type 0 solution. For 
example, the most noticeable Type I solutions are 
associated with 2,q =  3, and 4 with energies that are 
81.1, 91.7, and 97.3% of the baseline solution. In a 
similar fashion, the Type II solutions exhibit energies 
that are 47.0, 8.08, and 2.40% higher. All other solutions 
are indiscernible from the Vyas-Majdalani profile.5 The 
asymptotic limit of 10.335 is quickly recovered by both 
Type I and Type II solutions with differences of less 
than 0.287 and 0.265% at 6q = . Finally, the maximum 
energy range occurs at 2.q =   This is the total allowable 
excursion in energy that the mean flow can undergo and 
may be estimated at ( ) ( )2 2 / 66.0%,+ − ∞

∞ ∞ ∞⎡ ⎤− =⎣ ⎦E E E  
an appreciable portion of the available energy. 

V. Conclusions 
 In the past four decades, vortex technology has been gaining interest almost evenly in the military and 
commercial sectors.  Recently, an extension to a similar family of solutions has been carried out to improve the 
models for solid rocket motors and hybrids by incorporating arbitrary headwall injection and multiple energy-based 
solutions. In this article, we have applied the energy optimization technique to the bidirectional vortex chamber. We 
have shown that other solutions may be obtained, and these are accompanied by lower or higher kinetic energies that 
vary by up to 66% of their mean value.  After identifying that 2~ ( 1) (2 1)n

n nα − −− +  yields the profile with least 
kinetic energy, similar Type I solutions are unraveled in ascending order, ~ ( 1) (2 1) ; 2n q

n n qα − −− + > , up to the 
reference model proposed by Vyas and Majdalani.5  In all cases, the Vyas-Majdalani profile is asymptotically 
recovered in the limit as → ∞q .  In practice, most solutions become indiscernible from the reference case for 

5.q ≥   Interestingly, those obtained with q = 2, 3, and 4 exhibit energies that are 18.9, 8.28 and 2.73% lower than 
their remaining counterparts.  When the same analysis is repeated using ~ (2 1) ; 2,q

n n qα + −+ ≥  a complementary 
family of Type II solutions is identified with descending energy levels.  Their most notable expansions correspond 
to q = 2, 3, and 4, with energies that are 47.0, 8.08, and 2.40% higher than the reference profile.  Effectively, the 
Type I and II families converge to the Vyas-Majdalani5 representation when their energies are augmented or 
reduced, respectively. In future work, experimental validation of the energy-based solutions will be invaluable as 
will be the use of the energy-based models to represent physically realistic flows. 
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