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In this paper, Taylor’s incompressible and rotational flow in a porous channel with surface mass addition is

extended to account for arbitrary headwall injection. Our analysis considers Euler’s steady-state equations from

which an approximate solution is derived. The resulting mean flow representation satisfies the vanishing axial

velocity condition at the blowing walls and is confirmed through comparisons with inviscid finite volume numerical

simulations. For a given class of symmetric headwall injection profiles, our solutions are exact at the sidewall and

along themidsection plane, where the error in the approximations vanishes identically. The case of uniform injection

stands as an exception due to its discontinuity at the sidewall. All solutions become increasingly more accurate in the

downstream direction. They hence enable us to approximate the bulk flowfield in both hybrid and solid rockets with

variable headwall injection.

I. Introduction

T AYLOR’S simple analytical solution for the mean gaseous
motion in solid rocket motors (SRMs) was obtained under the

assumptions of steady, incompressible, rotational, and axisymmetric
conditions [1]. Despite its strictly inviscid origin, its streamlines
observed the vanishing axial velocity requirement at the porous
sidewalls, where a blown-off boundary layer is established [2]. In
recent work, Majdalani and Saad [3] presented a closed-form
inviscid solution for the axisymmetric Taylor–Culick flow with
arbitrary headwall injection; their model was suitable for describing
the bulk fluidmotion in a porous cylinder with surfacemass addition.
In this paper, we investigate the two-dimensional porous channel
and explore additional solutions and headwall injection conditions.
Obtaining an analytical model for the planar problem not only adds
to our repertoire of approximations for mean flowfields, but also
carries the advantage of providing an avenue for comparison with
experimental and numerical studies of slit flows and slab burner
grains in both hybrid and solid rocket systems. These configurations
are becoming increasingly more popular in reactive flow investi-
gations and in technological applications involving flow through
porous media, starting with the original Taylor profile itself [1].
Examples abound as a host of research studies have been conducted
in two-dimensional settings. To cite a few, one may enumerate, in
reverse chronological order: Fischbach et al. [4]; Féraille and Casalis
[5]; Fabignon et al. [6]; Chu et al. [7]; Najjar et al. [8]; Griffond [9];
Apte and Yang [10,11]; Griffond and Casalis [12,13]; Venugopal
et al. [14,15]; Ugurtas [16]; Couton et al. [17]; Lupoglazoff and
Vuillot [18]; Balakrishnan et al. [19]; Ma et al. [20,21]; Watson et al.
[22]; and finally, perhaps one of themost influential in its category, is
the 1986 paper by Traineau et al. [23]. The geometric and physical
parameters used in Traineau’s experimental and theoretical work are
later adopted by several researchers such as Balakrishnan et al. [19],
Venugopal et al. [14,15], and Apte and Yang [10,11]. Traineau’s

analysis is also used as a baseline for the compressible flow study
conducted by Maicke and Majdalani [24].

Overall, our solution is intended to offer a basic cold-flow model
for both solid and hybrid slab rockets. Because the porous channel
flow has been shown to provide a reliable approximation for the
core flowfield in a slab rocket, it can be employed in a multitude of
studies seeking to examine 1) internal rocket gas dynamics, 2) flow
instability, 3) particle-mean flow interactions, and 4) fluid–structure
interactions. Other technological applications of two-dimensional
flows with sidewall mass addition include 1) surface transpiration,
2) film cooling, 3) filtration, and 4) isotope separation. For the solid
rocket motor, the headwall-to-sidewall injection-velocity ratio is
typically of order unity; however, it proves to be one-to-two orders of
magnitude larger for hybrids. With typical values at around 50 and
above, the relatively large headwall injection ratio associated with
hybrid rocket faceplates leads to the onset of a distinct stream-tube
motion that permeates a vast portion of the chamber volume. To
model the resulting outer field, our analysis is carried out under
incompressible, inviscid, and nonreactive conditions.

The paper is organized as follows. The mathematical model is
first defined along with its appropriate boundary conditions. Sub-
sequently, a general solution for an arbitrary headwall injection
profile is developed. This is followed by special applications
corresponding to uniform, Berman’s half-cosine, Poiseuille’s, and
turbulent injection profiles. Finally, a numerical comparison with
inviscid flow simulations is presented, and the error in the approxi-
mations is quantified. A family of solutions that represent complex
symmetric flowfields is then obtained as functional perturbations
about either Berman’s or Poiseuille’s injection patterns.

II. Mathematical Model

The slab motor can be idealized as a two-dimensional channel of
porous lengthL0 and height 2awith both a permeable headwall and a
nozzleless aft end (see Fig. 1). At the headwall, a fluid stream (which
may denote an oxidizer or gaseous propellant mixture) is injected
into the chamber at a maximum centerline speed Uc. This incoming
stream is assimilated with the lateral crossflow, driven by uniform
mass addition at the porous sidewalls. Naturally, the sidewall
injection velocity Uw is commensurate with the solid-propellant or
fuel regression rates. In hybrids,Uw can be appreciably smaller than
Uc due to slow fuel pyrolysis, whereas these two values are the same
in SRM analysis. As shown in Fig. 1, �x and �y stand for the axial and
transverse coordinates used to describe the position from the
headwall to the typical nozzle attachment point at the aft boundary. In
the event that the fuel or solid-propellant burning rates are not
uniform, the sidewall injection velocity may be estimated from the
average value:
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A. Normalization

We begin by normalizing the principal variables and operators.
This can be done by setting

x� �x

a
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a
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; L� L0
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(3)

Here, Uc � �u�0; 0� and Uw �� �v� �x; a� � �v� �x;�a� allude to the
centerline and uniform fluid injection velocities along the headwall
and sidewalls, respectively. For steady inviscid motion, the vorticity
transport equation reduces to

r � u ��� 0; ��r � u (4)

Assuming symmetry, we consider only half of the channel and make
use of the standard stream function. This enables us to write the
following.

For no flow across the midsection plane,

v�x; 0� � � x�x; 0� � 0 (5a)

For vanishing axial velocity at the sidewall,

u�x; 1� �  y�x; 1� � 0 (5b)

For constant sidewall mass addition,

v�x; 1� � � x�x; 1� � �1 (5c)

For the headwall injection profile,

u�0; y� �  y�0; y� � u0�y� (5d)

where

u�  y; v�� x (6)

B. Vorticity-Stream-Function Formulation

Recognizing that the vorticity has a single nonzero spanwise
component (in the z direction), one can turn Eq. (4) into

r2 ��� (7)

As usual, the next step is to substitute into the vorticity transport
equation given by Eq. (4). Its fulfillment beckons a functional
relation for � of the form

�� F� � since
���x
���y

� �F� ��x�F� ��y
�
F  x
F  y

�  x
 y

(8)

A useful choice can be shown to be

�� C2 (9)

Despite the nonuniqueness of this relation, it leads to a model that
permits the assimilation of the four boundary conditions in Eq. (5). In
fact, straightforward substitution into Eq. (7) yields the Helmholtz
equation:

r2 � C2 � 0 (10)

III. Solution

Using separation of variables, the solution of Eq. (10) is found to
be

 �x; y� � ��x� ���A cos�Cy� � B sin�Cy�� (11)

We note that, by linearity, any combination of equations akin to
Eq. (11) is also a solution to Eq. (10). Implementation of the four
constraints may be systematically carried out, preferably in the order
in which they appear. For instance, Eq. (5a) gives

 x�x; 0� � �A cos�Cy� � �B sin�Cy�jy�0 � 0 (12)

This implies that A� 0. With no loss in generality, we setB� 1 and
rewrite Eq. (5b) as

 y�x; 1� � C��x� �� cos�C� � 0 or Cn � �n� 1
2
��

8 n 2 f0; 1; 2; 3; . . . ;1g
(13)

The ensuing eigenfunctions take the form

 n � ��nx� �n� sin��n� 1
2
��y� (14)

Using Cn � �n� 1
2
�� enables us to sum over eigenfunctions that

alternate between wall suction and injection. The total solution can
be obtained via superposition. We collect

 �x; y� �
X1
n�0
��nx� �n� sin

��
n� 1

2

�
�y

�
(15)

A. Taylor-Type Solutions

At this juncture, we can resume implementing the problem’s
constraints. Forthwith, the auxiliary condition given by Eq. (5c)
yields

 x�x; 1� �
X1
n�0

�n sin

��
n� 1

2

�
�

�
� 1 or

X1
n�0
��1�n�n � 1

(16)

Several distinct solutions may therefore exist depending on the
choice of f�ng. Here, we shall focus on the case leading to Taylor’s;
this may be uniquely recovered by setting

�0 � 1 and �n � 0 8 n ≠ 0 (17)

Lastly, the headwall boundary condition renders

 y�0; y� �
1

2
�
X1
n�0
�2n� 1��n cos

��
n� 1

2

�
�y

�
� u0�y� (18)

Orthogonality may then be imposed to retrieve f�ng; one recovers

�n

Z
1

0

�2n� 1�cos2
��
n� 1

2

�
�y

�
dy

� �2=��
Z

1

0

u0�y� cos
��
n� 1

2

�
�y

�
dy (19)

or
�n �

4

�2n� 1��

Z
1

0

u0�y� cos
��
n� 1

2
��y

�
dy (20)

The extended Taylor solution is thus at hand. Based on Eq. (15), one
can put
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Fig. 1 Rocket chamber simulated as a porous channel with arbitrary
headwall injection.
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 �x; y� � x sin
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�
�
X1
n�0

�n sin

��
n� 1

2

�
�y

�
(21)

where

�n �

8>>>>><
>>>>>:

8��1�nuc=��2�2n� 1�2� u0 � uc
2uc=�; n� 0 �0 8 n ≠ 0� u0 � uc cos�12�y�
64��1�nuc=��4�2n� 1�4� u0 � uc�1 � y2�
f1792��1�nuc=��10�2n� 1�10�g

�
�46; 080� 5760�2�2n� 1�2
�120�4�2n� 1�4 � �6�2n� 1�6

�
u0 � uc�1 � y8�

(22)

Corresponding axial and normal velocities emerge as

u�x;y��1

2
�xcos

�
1

2
�y

�
�1

2
�
X1
n�0
�2n�1��n cos

��
n�1

2

�
�y

�

v�x;y���sin
�
1

2
�y

�
(23)

Similarly, the vorticity takes the form

��x; y� � 1

4
�2x sin

�
1

2
�y

�

� 1

4
�2
X1
n�0
�2n� 1�2�n sin

��
n� 1

2

�
�y

�
(24)

Based on Eq. (20), specific solutions may be secured for various inlet
profiles. Here, we consider those corresponding to inert headwall
(i.e., no injection), uniform injection, Berman’s half-cosine,
Poiseuille’s, and an eighth-power polynomial to mimic turbulent
flow. These are posted in Table 1. For a simulated hybrid rocket, the
centerline velocities of arbitrary profiles can be calculated to produce
the sameflux at x� 0 as that due to uniform injection. A simplemass
balance yields

Z
1

�1
u0�y�dy�

Z
1

�1
ucdy� 2uc (25)

The equivalent centerline velocities for Berman’s half-cosine,
Poiseuille’s, and turbulent flow profiles of the type uc�1 � ym� are
found to be

uc �
�
1

2
�;

3

2
;

2�m� 1�
��1�m�1 � 2m� 1

�
(26)

Note that the third member in Eq. (26) can reproduce the Poiseuille
case ofuc � 3

2
form� 2. Plots of the vorticity contours are shown for

uniform (Fig. 2a), Berman’s half-cosine (Fig. 2b), Poiseuille’s

(Fig. 2c), and power-law profiles (Fig. 2d). Interestingly, in the case
of uniform injection, the effects of vorticity are restricted to a narrow
region near the sidewall, as the corresponding flow is essentially
irrotational. This may explain the absence of the headwall injection
term uc in the expression for mean flow vorticity in the third column
of Table 1.

Table 1 Stream function, axial velocity, and vorticity for several headwall injection patternsa

u0 0 (inert) uc uc cos�12�y� uc�1 � y2� uc�1 � y�8

 x sin � x sin �� 8uc
X1
n�0

��1�n
d2n

sin � �x� uh� sin � x sin �� 64uc
X1
n�0

��1�n
d4n

sin � EQ-TARGET;temp:intralink-;;419;702x sin �� uc
X1
n�0

��1�n
d10n

� sin �

u 1
2
�x cos � 1

2
�x cos �� 4uc

X1
n�0

��1�n
dn

cos �
1
2
��x� uh� cos � 1

2
�x cos �� 32uc

X1
n�0

��1�n
d3n

cos � EQ-TARGET;temp:intralink-;;419;675

1

2
�x cos �� 1

2
uc
X1
n�0

��1�n
d9n

� cos �

� 1
4
�2x sin � 1

4
�2x sin � 1

4
�2�x� uh� sin � 1

4
�2x sin �� 16uc

X1
n�0

��1�n
d2n

sin � EQ-TARGET;temp:intralink-;;419;647

1

4
�2x sin �� 1

4
uc
X1
n�0

��1�n
d8n

� sin �

aHere, dn � �2n� 1��, �� 1
2
�y, �� �n� 1

2
��y, uh � �2=��uc , and � � 1792�d6n � 120d4n � 5760d2n � 46; 080�.

 a) Uniform injection

b) Berman

c) Poiseuille

d) Power law (m = 8)
Fig. 2 Vorticity contours for a porous channel with varying headwall

injection patterns and uc � 1.
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B. Pressure Analysis

The pressure distribution can be easily obtained from u 	 ru�
�rp by integrating in two spatial directions and adding the results.
One obtains

p� k � 1

2
u 	 u�

Z
vuydx �

Z
uvxdy� k �

1

2
u 	 u �

Z
vuydx

v ≠ v�x� (27)

where k is chosen such that p�0; 0� � p0. However, such integration
is only possible when the integrability condition is satisfied: that is,
�py�x � �px�y. This can be written in terms of the velocity field as

uuxy � vuyy � 0 (28)

where we have used the fact that u and v satisfy the continuity
equation and v�� sin�1

2
�y�. One finds that the constraint given by

Eq. (28) is satisfied inside the chamber volume in the case of inert and
half-cosine injection, whereas it is only admissible at the midsection
plane for power-law profiles. For the inert and Berman profiles, one
obtains

p�x; y� � p0 � 1
8
��2x2 � 4uc�x� 2 � 2 cos��y�� (29)

and themidsection plane pressure for the remaining injection profiles
may be expressed as

p�x; 0� � p0 � 1
8
�x��x� 4uc� (30)

It is interesting to note that the centerline pressure is invariant with
respect to the headwall injection profile.

C. Nonlinear Residual in Vorticity Transport Equation

To test the accuracy of our solutions, we substitute Eqs. (9) and
(15) into Eq. (4). Terms that do not entirely cancel are hereby referred
to as the residual error Q�x; y�. For each eigensolution given by
Eq. (14), the vorticity transport equation is satisfied and the residual
error Qn is identically zero:

Qn�x; y� � � n�x��n�y � � n�y��n�x � C2
n� n�x� n�y

� C2
n� n�y� n�x � 0 (31)

where �n � C2
n n and Cn � �n� 1

2
��. Thus, when Eq. (31) is

summed over all eigenmodes, it vanishes. This represents an
interesting situation, albeit hypothetical, for which the eigensolu-
tions coexist with no interaction. In practice, when coupling between
the eigenmodes is entertained, the total vorticity and stream function

a) Berman b) Berman

c) Poiseuille d) Poiseuille
Fig. 3 Comparison between analytical (lines) and numerical simulations (circles) for the axial velocities. Curves are shown for x=L� 0:1, 0.3, 0.5, 0.7,
and 0.9.

a) 

b)
Fig. 4 Comparison between analytical (solid dots) and numerical

simulations (hollow circles) for the transverse velocity using Berman’s

half-cosine injection.
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given by Eq. (15) are substituted into Eq. (4). The cumulative error
becomes

Q�x; y� �  x�y �  y�x �
X1
n�0
� n�x

X1
n�0
��n�y

�
X1
n�0
� n�y

X1
n�0
��n�x (32)

where

� n�x � �n sin�Cny�; ��n�x � C2
n� n�x

� n�y � Cn��nx� �n� cos�Cny�; ��n�y � C2
n� n�y

�
(33)

If we further take into account that for the Taylor-type solutions,

�0 � 1 and �n � 0 8 n ≠ 0 (34)

then Eq. (32) simplifies into

Q�y� � sin�C0y�
X1
n�0
�C2

n � C2
0�� n�y (35)

Equation (35) represents the error in the vorticity transport equation
due to nonlinear coupling of the eigenfunctions. In general, it is not
zero, except in the case of self-similar headwall injection profiles
such as Berman’s. When � n�y is replaced by its corresponding
expression given by Eq. (33), one obtains

Q�y� � sin�C0y�
X1
n�0

Rn cos�Cny� (36)

where Rn � �C2
n � C2

0�Cn�n. It is clear through Eq. (36) that the
residual error is controlled by Rn. This parameter embodies the
deviation from the exact solution corresponding to Berman’s
half-cosine injection. In the case of an inert headwall, �n � Rn � 0,
and the solution is exact. As Rn ! 0, the solutions become more
accurate. However, when �n ≠ 0, Rn will vanish when C2

n � C2
0,

as in the case of Berman’s injection. To illustrate this behavior,
three specific examples are given. First, for Poiseuille’s injection,
one gets

Rn;Poiseuille �
8

�
uc��1�n��2n� 1��1 � �2n� 1��3� (37)

a) Berman b) Berman

c) Poiseuille d) Poiseuille

e) Power law (m = 8) f) Power law (m = 8)
Fig. 5 Comparison between analytical (lines) and numerical simulations (squares) for the centerline pressure.
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This term quickly converges to zerowith successive increases inn. In
this case, the residual is sufficiently small but nonzero, because only
the first few terms of Eq. (37) contribute to the residual error. Second,
for the case of a power-law profile, one collects

Rn;power law �
�2

4
��2n� 1�2 � 1���1�nucd�10n � (38)

where

dn � �2n� 1��

and

� � 1792�d6n � 120d4n � 5760d2n � 46; 080�

Here too, although Eq. (38) converges to zero quite rapidly, the first
few terms are relatively larger than their counterparts in the Poiseuille
case. Third, for uniform injection, one arrives at

Rn;uniform � �uc��1�n��2n� 1� � �2n� 1��1� (39)

This residual remains undefined because the alternating sequence of
increasing terms in Eq. (39) diverges. Note that whenever Eq. (36)
converges, the residual is identically zero both at the midsection
plane and at the chamber sidewalls. Moreover, being independent of
the axial position, the residual becomes proportionately smaller in
long porous channels such as those associated with simulated rocket
grains. These factors help to explain the accuracy of the present
approximations for several case studies that are discussed
subsequently.

D. Convergence

The absolute convergence and ratio tests can be used to show that
the series obtained herein are convergent. For the sake of illustration,
we present the procedure used for the case of uniform injection, being
the most intransigent of the group. Starting with the stream function

 �x; y� � x sin
�
1

2
�y

�
� 8uc

X1
n�0

��1�n
�2�2n� 1�2 sin �

��
�
n� 1

2

�
�y (40)

the absolute convergence test may be applied to show that

X1
n�0

���� ��1�
n

�2n� 1�2 sin �
����

X1
n�0

1

�2n� 1�2 (41)

where the right-hand side converges to 1
8
�2. The axial velocity

obtained using term-by-term differentiation returns

u�x; y� � 1

2
�x cos

�
1

2
�y

�
� 4

uc
�

X1
n�0

��1�n
�2n� 1� cos � (42)

The summation in Eq. (42) is the Fourier series representation of a
square wave and is therefore a convergent sum. Finally, to obtain the
vorticity, wemake use of closed-form representations of summations
to avoid the pitfalls of term-by-term differentiation. In this case, the
second term in Eq. (42) may be written as the sum of two inverse
tangents:

X1
n�0

��1�n
�2n� 1� cos ��

1

2
�tan�1�e�12i�y� � tan�1�e1

2i�y�� (43)

The derivative of Eq. (43) vanishes inside the channel aswell as at the
sidewall. The latter is obtained by taking the limit as y! 1.

IV. Numerical Verification

By way of verification, we present a numerical solution for the
inviscid flow equations and several headwall injection profiles. The
simulations are carried out using a two-dimensional finite volume
code. These are based on a chamber with an average sidewall
velocity of 1 m=s and purely inviscid conditions. The aspect ratio is
chosen to beL� 16 and the actual size of the domain is 1:6 � 0:1 m.

a) Berman b) Berman

c) Poiseuille d) Poiseuille
Fig. 6 Comparison between analytical (lines) and numerical vorticity (triangles) with headwall injection constants of uc � 1 (left) and 10 (right).
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We use a fine mesh of 589,824 equally spaced control volumes
numbering 3072 � 192. A first-order upwind scheme is resorted to
for spatial discretization and the SIMPLE algorithm is applied to
resolve pressure-velocity coupling. The boundary conditions at the
sidewalls are specified as velocity inlets withUw � 1 m=s to closely
mimic the mathematical model whereby injection is imposed
uniformly along the grain surface. The headwall is also specified as a
velocity inlet withUc � 1 and 10 m=s. On the right-hand side of the
domain, a pressure outlet boundary condition is prescribed with a
pressure corresponding to atmospheric conditions. Although an
outflow boundary condition can also be assumed at the downstream
section, it is discounted here to avoid the potential case of partially
developed flow. At the midsection plane, a symmetry condition is
imposed. Finally, the working fluid is taken to be air at standard
conditions.

Some results of our inviscid simulations are shown in Figs. 3–6. In
Figs. 3 and 4, the axial and transverse velocities are plotted foruc � 1
and 10, respectively. In both figures, the streamwise evolution of the
velocities is depicted in the forward segment of the chamber, in
which the curves are located at x=L� 0:1, 0.3, 0.5, 0.7, and 0.9.
These particular axial positions are consistently used to display our

results in the remainder of this study. Using identical inviscid
conditions in both numerical and analytical models, the agreement
with the numerics is seen to gradually improve with further flow
development.

In Fig. 5, the centerline pressure is plotted for uc � 1 and 10. The
reference pressure p0 is obtained from the computational data at
�x; y� � �0; 0� and then used in Eq. (30) to generate the analytical
baseline. For convenience, the pressure is normalized by the
atmospheric pressure patm taken at 101,325 Pa: namely, by setting
pc � �pc=patm. Foruc � 1, the agreement is excellent for all injection
profiles, and for uc � 10, the best agreement is for Berman’s and
Poiseuille’s, followed by the power-law profile.

Finally, in Fig. 6, the vorticity is displayed for uc � 1 and 10. The
agreement is seen to be excellent at uc � 1 for both Berman and
Poiseuille injections. At uc � 10 the agreement continues to hold,
especially when removed from the headwall. However, in the
vicinity of the headwall, smoothing of the numerically obtained
curves is required to improve the agreement with the analytical
solutions.

Despite the comparison being limited in scope, it reaffirms the
viability of the analytical approximations obtained in Sec. III. For

a) Berman-based polynomials b) Poiseuille-based polynomials

c) λ  = 0.25 d) λ  = 0.5

e) λ  = 1 f) λ  = 4
Fig. 7 Comparison between polynomial-based injection solutions (lines) and numerical simulations (circles). The comparison with numerics is shown

for x=L� 0:1, 0.3, and 0.5.
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larger values of uc, the inviscid simulation diverges, thus necessi-
tating the use of a turbulence model. At this point, the comparison
between the analytical solution and the turbulent simulations ceases
to be relevant.

V. Modeling Irregular Injection Patterns

For injection profiles that are close to Berman’s half-cosine, it is
clear that the present solution provides a useful approximation. If one
introduces a set of profiles with a finite departure from Berman’s
half-cosine, the resulting solutions can then be used to approximate
more complex flowfields. Given that the Poiseuille injection profile
closely resembles Berman’s, both may be used as a basis for
generating a polynomial with the facility to reproduce complex
injection patterns. This is accomplished by setting the power series:

u0�y�
uc
� f�y� � �

X2k�1
m�2
��y2�m � f�y� � ��y4 � y6 � 	 	 	� (44)

where

f�y� �
�
cos�1

2
�y�

1 � y2 (45)

In Eq. (44), �4k� 2� is the power-series order, and � � 0 is a
control parameter. Onemust take k 
 4 to ensure convergence of the
infinite series in Eq. (21). In practice, setting k > 4 leads to
unphysical injection profiles. Note that the summation in Eq. (44)
includes an even number of terms to allow the velocity to vanish at
the sidewalls. The power-series order affects the bluntness of the
profile at y��1 and � controls its breadth. This behavior may be
seen in Figs. 7a and 7b, in which different parametric combinations
are used. Here, profiles represent functional perturbations with
respect to 1) Berman’s and 2) Poiseuille’s injection. Numerical
simulations (Figs. 7c–7f) use four terms (k� 2) and four values
of �, as shown. These are based on Poiseuille’s parabolic profile and
a headwall injection constant of uc � 1. In Figs. 7c–7f, a comparison
between the analytical solutions and numerical simulations is
presented for this family of profiles. The agreement appears to be
satisfactory for all cases considered, given that they represent
functional perturbations about the exact solution. In closing, we note
that regardless of the initial deviation from the cosine shape, the
ensuing motion rapidly evolves into Taylor–Culick’s self-similar
form.

VI. Conclusions

In this study, we derive approximate solutions for the inviscid
incompressible Taylor flow in a two-dimensional porous channel
with arbitrary headwall injection. Our solutions closely mimic
numerical simulations of this problem while securing the no-slip
boundary condition at the sidewalls. This is especially true for the
hybrid model, in which the large headwall injection velocity offsets
the secondary crossflow effect caused by small sidewall injection at
the fore-end corner points. The known singularity in the planar
Taylor flow at x� 0 is mitigated in the hybrid representation (i.e., for
large headwall-to-sidewall injection). Furthermore, provided that
headwall mass addition is kept constant, the effect of varying the
headwall injection shape is found to be negligible in sufficiently
long chambers. Our analysis enables us to capture several head-
wall injection patterns, including complex flowfields defined as
functional perturbations about the similarity-conforming Berman or
Poiseuille injection.
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