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Compressibility Effects in Slender Rocket Motors 

Michel Akiki* and Joseph Majdalani† 
University of Tennessee Space Institute, Tullahoma, TN 37388  

In this article, a semi-analytical formulation is provided for the rotational, steady, 
inviscid, compressible motion of a solid rocket motor that is modeled as a slender porous 
chamber.  The analysis overcomes some of the deficiencies encountered in previous work on 
the subject.  The method that we employ consists of reducing the problem’s mass, 
momentum, energy, ideal gas, and isentropic relations into a single integral equation that 
can be solved numerically.  Furthermore, Saint-Robert’s power law representation is used to 
link the pressure to the sidewall mass injection rate.  At the outset, results are presented for 
the axisymmetric porous cylinder and compared to two closed-form analytical solutions 
developed under one-dimensional and two-dimensional, isentropic flow conditions. The 
comparison is carried out assuming either uniformly distributed mass flux or constant radial 
injection speed along the porous wall.  Our amended formulation is shown to agree with the 
one-dimensional solution obtained for the case of uniform wall mass flux and with the 
asymptotic approximation obtained by Majdalani for the constant wall injection speed 
(Majdalani, J., On Steady Rotational High Speed Flows: The Compressible Taylor-Culick 
Profile, Proceedings of the Royal Society of London, Series A: Mathematical, Physical and 
Engineering Sciences, Vol. 463, No. 2077, 2007, pp. 131-162).  While all solutions agree on 
the critical distance to reach sonic conditions, differences among them occur near choking 
and these could be partly attributed to the level of approximation entailed in the integral 
approximation.  

Nomenclature 
a  = chamber radius 

pc  = constant pressure specific heat 

0L  = length of chamber 

sL  = sonic length (critical distance)  
M  = Mach number 
m  = injection mass flux 
P  = nondimensional pressure 
p  = dimensional pressure 
r  = coordinate normal to the propellant surface 
T  = temperature 

wU  = wall injection velocity 
u  = axial velocity 
v  = radial velocity 
X  = nondimensional axial coordinate 
x  = dimensional axial coordinate 

Greek 
  = stream function 
  =  axial coordinate referenced to the sonic length, / sx L  
  = ratio of specific heats 
  = density 
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  = distance from the headwall to the tip of the streamline at the sidewall 

Subscripts 
c  = chocking or centerline conditions 
w  = wall conditions 

I. Introduction 
OLID rocket motors are often idealized as porous channels and ducts in which the effects of compressibility can 
be either retained or dismissed, depending on the gas injection speed and chamber length.  While the 

incompressible motion is relatively well understood,1-2 recent advances have enabled us to account for the presence 
of arbitrary headwall injection,3-4 wall regression,5-6 grain taper,7-8 and variable cross-section.9 Furthermore, flow 
approximations exhibiting smoother or steeper profiles than the cold flow equilibrium state have been studied in 
connection with their energy content.10-11  As for compressible flow effects, these have been first investigated by 
Dunlap, Willoughby and Hermsen,12 and Traineau, Hervat and Kuentzmann13 in the context of two-dimensional 
porous tubes and channels with sidewall injection.  Using either Nitrogen or air as the working substance, these 
investigators have reported rich characteristics of the spatially developing motion including appreciable steepening 
beyond the Taylor-Culick baseline.1-2  In the downstream sections of the domain, compressibility intensified to the 
extent of producing noticeably flattened mean flow profiles.  These observations were further supported by 
numerical simulations attributed to Beddini,14 Baum, Levine and Lovine,15 Liou and Lien,16 and Apte and Yang.17-18  
They were also studied by Gany and Aharon19 and King20 in the context of nozzleless rocket motors.  While the 
former group explored the merits of a one-dimensional theoretical model, the latter employed a pseudo two-
dimensional numerical approach.  Given the relevance of an accurate mean flow description to the study of 
hydrodynamic instability in simulated rocket motors, the problem was revisited by Venugopal, Najjar and Moser21 
and, in complementary work, by Wasistho, Balachandar, and Moser.22  As a windfall, the compressible solutions 
engendered in these studies proved to be valuable resources for verifying numerical results obtained from full-scale 
Navier-Stokes solvers.23-24 This was partly caused by the obstacles placed against the acquisition of specific 
experimental data and, partly, because of the intrusion-resistant environment in rocket chambers. 
 Among the analytical techniques that have been applied to this problem, the first may be the Prandtl-Glauert 
expansion.25  In fact, a variant of this technique was used by Traineau, Hervat and Kuentzmann13 who introduced, in 
a precursor to the present study, an inviscid, rotational, and compressible integral equation that can be solved in a 
planar, two dimensional setting.  In addition to their elegant analytical and numerical work, they produced a 
collection of experimental data based on cold flow measurements that utilized air as the sidewall injectant.  In their 
analytical effort, these investigators have utilized judicious scaling arguments to justify the dismissal of the radial 
momentum equation, thereby reducing the remaining momentum, mass, energy, ideal gas, and isentropic state 
relations to a single integral expression that can be numerically solved for the pressure distribution.  Furthermore, 
their pressure and wall mass flux were related through the Saint-Robert power law, and their Abel integral equation 
could be shown to be soluble analytically in the case for which 2(2 ) / ( 1)    took on an integer value.   
 In mirroring the aforementioned work, Balakrishnan, Liñan and Williams26 sought to reconstruct an inviscid, 
rotational, and compressible integral formulation for the porous channel problem.  However, in their attempt at 
replicating the effort of Traineau and co-workers,13 these researchers have inadvertently produced a planar solution 
that contained multiple blunders.  These were partly rectified in a follow-up sequel in which both axisymmetric and 
planar settings were discussed.27 

The second analytical approach used in this context consists of a variant of the Rayleigh-Janzen expansion. This 
asymptotic technique is based on small parameter perturbations in the square of the wall injection Mach number.  
The Rayleigh-Janzen expansion was first applied by Majdalani28 in the treatment of the axisymmetric porous 
cylinder and by Maicke and Majdalani29 in the planar flow analog.  The axisymmetric analysis led to two closed-
form solutions, one exact, satisfying all first principles, and one approximate, essentially equivalent alternative.  The 
planar effort gave rise to a single compact expression satisfying all physical requirements. In consequence, both 
streamwise and wall-normal velocity profiles could be readily calculated in addition to the critical length needed to 
achieve sonic conditions.  Moreover, the effort led to the identification of the sonic distance as the appropriate 
lengthscale which, when inserted into the solution, would promote a self-similar, parameter-independent behavior 
for all wall Mach numbers.  It also disclosed a simple criterion that could help to determine the relative effects of 
compressibility and the centerline amplification during flow development.  By circumventing the need to compute 

S 
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the mean flow over the fluid domain, the resulting expressions opened up new avenues for carrying out parametric 
trade analyses.  

With the advent of a closed-form analytical solution for the internal burning porous cylinder in two dimensions, 
it is the purpose of this study to reconstruct the integral formulation developed initially by Traineau, Hervat and 
Kuentzmann13 and later reproduced by Balakrishnan, Liñan and Williams.27  Our objective is to obtain a clear and 
verifiable pseudo-two-dimensional approximation that could be compared to the one- and two-dimensional closed-
form representations.   

II. Mathematical Model 

A. Geometry 
We consider the steady, inviscid flow of an ideal gas in a cylinder of length 0L  and radius a .  A schematic 

diagram of the problem considered is presented in Fig. 1. The origin of the coordinate system is located at the center 
of the headwall. Due to axisymmetry, half of the chamber will be investigated.  Note that   represents a streamline 
and   denotes the axial distance from the headwall to the point where a streamline is born at the sidewall i.e., the 
tip of a streamline. 

B. Formulation 
 A solid rocket motor is often idealized as a slender, elongated chamber with sidewall injection.26-27  Under the 
assumption of low chamber aspect ratio, 0/ 1a L  , the system’s conservation equations may be conveniently 
reduced to the following set:  

   
   

0
ur vr

x r

  
 

 
 (compressible continuity) (1) 

   u u p
u v

x r x
   

  
  

 (axial momentum) (2) 

   0
p

r





 (radial momentum) (3) 

and 

   
2 2

0
2 2p p

u u
u c T v c T

x r
 

    
          

 (energy) (4) 

Note that pressure variations have been discounted in the radial direction due to the chamber’s low aspect ratio.  
Furthermore, the gas may be taken to be ideal and calorically perfect, thus resulting in a constant pc . At the outset, 
one may write 

   
1

pp c T
 



 (ideal gas) (5) 

At this point, Eq. (4) may be expanded and rearranged into 

 
 

Figure 1. Schematic diagram of a slender porous chamber.
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   0p p

T T u u
uc vc u u v

x r x r
               

 (6) 

Both Eqs. (2) and (5) may then be substituted into Eq. (6) to produce 

   
1

0
T T p T

u v
x p x r

 


    
      

 (7) 

Finally, inserting the isentropic relation,  1 /
/T p

     , into Eq. (7), one obtains 

   0,u v
x r

   
 

 
          0,  u      or     D

0
Dt

   (8) 

Since the material derivative vanishes in Eq. (8), it is clear that   remains constant along a streamline.  

C. Boundary Conditions 
 The physical requirements at the sidewall, headwall, and centerline are enumerated below: 

   

 
 
   
 
   
  0

, 0 (no slip at sidewall)

0, 0 (no headwall injection)

, (radial sidewall injection)

,0 0 (no cross-flow at the centerline)

, (sidewall temperature) 

0 (headwall pressure) 

w

w

u x a

u r

v x a U x

v x

T x a T x

p p





  



 
 

 (9) 

Moreover, the pressure ( )p p x  is permitted to evolve only with respect to x  as a result of the slender motor 
assumption, 0/ 1a L  , and in view of Eq. (3).  Meanwhile, the temperature and the velocity profiles are allowed to 
retain their two-dimensional aspects and can be determined as functions of both x  and r .  

D. Stream Function Transformation 
For axisymmetric motions, the stream function may be written as 

   ur
r

 



 (10) 

   vr
x

 
 


 (11) 

Given that the stagnation enthalpy,  2 / 2pc T u , remains invariant along a streamline, one can put 
        2, , / (2 )p wT x u x c T     (12) 

where  wT   is the total, stagnation temperature along a streamline.  Likewise for  , the isentropic pressure-
temperature relation may be expressed as 

              1 / 1 /
, / /w wT x p x T p

   
  

 
        (13) 

Given that all streamlines are initiated through surface injection at r a , Eq. (11) may be evaluated at the sidewall. 
This is performed while using the ideal gas expression for the density.  Subsequent integration in the axial direction 
yields 

   
       

0
/ d

1 w w
p

a
U x p x T x x

c




      (14) 

As depicted in Fig. 1,   denotes the distance from the headwall to the point where the streamline originates at the 
sidewall.  Since a unique value of   may be associated with a given  , one may transform the independent 
variables from  ,x   to  ,x  .  In this new coordinate system, Eqs. (12) and (13) may be written as 

          2, , / 2 p wT x u x c T     (15) 

              1 / 1 /
, / /wT x p x T p

   
  

 
        (16) 

Next, the expression for the stream function given by Eq. (14) may be substituted into Eq. (10) and integrated in the 
radial direction. This enables us to deduce the coordinate r  associated with a given axial position x  and streamline 
emanating from  : 
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 

   
   

 
2

0

,
2 d

,
w

w

T x U p
r a

p x u x T

   


 
      

        
  (17) 

One can also replace the variables u  and T  using Eqs. (15) and (16) to produce an expression solely in terms of the 
pressure.  This operation yields 

   
 
 

 
 

   
 

1 21 1

2

0
2 1 d

2

w

p w

p p x U
r a

p x p c T

  
  


 

                  
  (18) 

At this point, we are ready to evaluate Eq. (18) knowing that x   at r a ; we get 

   
 
 

 
 

   
 

1 21 1

0
2 1 d

2

x w

p w

p p x U
a

p x p c T

  
 


 

              
  (19) 

E. Integral Formulation with No Pressure Dependence 
The dimensionless variables ( )P X , X  and   may be introduced to simplify the analysis.  These are defined 

according to 

      
0

p x
P X

p
  (20) 

   
 
 0

1
d

1 2

x w

p w

U x
X x

a c T x







   (21) 

   
 
 0

1
d

1 2

w

p w

U x
x

a c T x





 

   (22) 

While the normalization of P  is straightforward, that of X  and   is based on their upper integral bounds.  The 
dimensionless expressions are then inserted into Eqs. (18) and (19) to obtain 

   
 
 

 
 

  1 21 12

0

1
2 1 d

P P Xr

a P X P

  




                         
  (23) 

   
 
 

 
 

  1 21 1

0
2 1 d

1

X P P X

P X P

  




                   
  (24) 

Equations (23) and (24) differ from the result obtained by Balakrishnan, Liñan and Williams26 who (inadvertently) 
include an extra  / X  term as part of their integrand. 

F. Integral Formulation with Pressure Dependence 
 One can also link  wU   to  p   by assuming a dependence on the burning-rate that follows Saint-Robert’s 
law with constant K  and n , 

   n
w w wm U Kp   (25) 

where wm  represents the mass flux at the wall.  Then using the ideal gas law to eliminate the density, the injection 
velocity may be expressed as 

   
 
   1 w

w p w

T
U c m

p

 
 

 
  
 

 (26) 

After substituting the above into Eq. (19), the dimensionless forms of ( )P X , X  and   are updated to obtain 

      
0

p x
P X

p
  (27) 

    
1

0

0

1
2 d

2

n
x

p w

Kp
X c T x x

a




     (28) 



6 
American Institute of Aeronautics and Astronautics 

 

 

    
1

0

0

1
2 d

2

n

p w

Kp
c T x x

a




      (29) 

At length, Eqs. (18) and (19) become 

      
 

 
 

  1 21 12
1

0

1
2 1 d

n P P Xr
P

a P X P

  




 

                             
  (30) 

      
 

 
 

  1 21 1
1

0
2 1 d

1

X n P P X
P

P X P

  







                       
  (31) 

 The procedure for solving this problem consists of integrating Eq. (31) to the extent of determining the pressure 
as a function of x .  Equation (30) can then be evaluated to deduce the radial coordinate in terms of x  and .   With 
the pressure distribution at hand, the temperature can be obtained using the isentropic relation of Eq. (16).  The 
velocity may then be extracted from the total temperature relation given by Eq. (15).   

For the calculation of the Mach number, one can employ the compressible flow relation  / 1 pM u c T  .  
In fact, the substitution of Eq. (15) into the Mach number relation gives 

   
 

 
2

1
1 ,

wT
M

T x


 

  
      

 
 

 1 /
2

1
1

P

P X

 



                
 (32) 

where the right-hand-side expression may be obtained using the isentropic identity given by Eq. (16).   

G. Numerical Procedure 
For the numerical integration of Eq. (31), an inverse procedure may be pursued.  This is accomplished by 

switching to P  as the independent variable and calculating X  in increments of P .  The scheme begins at the 
headwall boundary, where 0X   at 1.P   Choking conditions occur when d / dP X   at a pressure denoted by 

cP .  Transforming the independent variable in Eq. (31) results in 

    
     

1 21 1
1 11 d1

2 1 d d 1
d

n

P P

X PP P
P P f P P

P P P

  



                            

   (33) 

In order to overcome the singularities at the boundaries, we split the integral into three parts: 

    
1

d
P

f P P        1

1

1 1

1

31 2

d d d 1
i

i i

P P

P P P
f P P f P P f P P








          

 (34) 

In the region near iP P , we approximate the first integrand and retrieve an expression that can be readily evaluated 
for an arbitrary pressure exponent n , 

      1 1

1/2
1 d

d 2 d
d

i i

i i

P P n i

P P
i

P P X
f P P P P

P P
 


                 (35) 

The second integral may be computed, let us say, using the trapezoidal rule. This involves finite step discretization, 

    
1

21
1 1

2

d
2i

iP
i

kP
k

f f
f P P P f



 



      
 

  (36) 

where 

    
  1 21 1

11 d
2 1

d

n k i
k k

ki k

P P X
f P

P P P

  






                    
 (37) 

In the third integral, where X  is small,  P X  may be expanded using a polynomial of the form 
     21P X X    (38) 

By inserting Eq. (38) into the integral and assuming 2 1   , we are left with  

          1 21 1 1

1

1
d 2 1i iP

P
f P P P P

  
 

 



     
   (39) 
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To evaluate Eq. (39),   must be known beforehand. This is achieved by substituting Eq. (38) into Eq. (31) and 
returning 

   
0 2 2

2 1
d 1

X

X
 


  (40) 

This enables us to deduce that 2.   
Equation (34) is now linear in iX .  Starting with 0X   at 1P  , one may solve for iX  at every step until 

choking conditions are reached.  Choking occurs at a point where P  approaches its limiting value cP  at an infinitely 
steep slope and where the average Mach number reaches unity.  With the pressure distribution fully determined, it 
may be employed in Eq. (30) and integrated numerically. This returns r  which is needed for the complete 
description of the streamlines.  Equations (15) and (16) may then be utilized to extract the temperature and velocity.  
This process is illustrated in the flowchart diagram posted as Fig. 2. 

III. Results and Discussion 
After solving Eq. (33) in decrements of P , the pressure is reproduced as a function of the axial distance.  The 

resulting solutions for P  and T  are showcased in Fig. 3 for 0n   and 1n  .  Also shown on the graphs are the 
analytical predictions based on the one-dimensional theory of Gany and Aharon19 and the two-dimensional analysis 
of Majdalani.28  

Based on Fig. 3, a qualitative agreement may be seen to be established between the present, semi-analytical 
formulation, and Majdalani’s closed form solution.28 The same may be said concerning the one-dimensional solution 
of Gany and Aharon19 despite its entirely dissimilar form. The small differences separating these estimates may be 
attributed to their underlying assumptions. On the one hand, the instantaneous burning rate of the one-dimensional 
solution19 is taken to be uniform along the grain, thus leading to a constant mass flux at the simulated propellant 
surface.  A corresponding relation may be reproduced in the present solution by setting 0,n   as reflected in the 
improved agreement with one-dimensional theory that may be inferred from Figs. 3a-b.  Note that the one-
dimensional model yields19 

   
2

1D 2

1 1
;

1 1 s

x
M

L




 

 
 

 
,   1 2

1D (1 ) 1 1P       ,   1 1/
1/ 1 2

1D (1 ) 1 1T


  


     (41) 

On the other hand, the uniform sidewall injection velocity of the two-dimensional axisymmetric solution of 
Majdalani28 corresponds to the 1n   case presented here. This may also explain the improved agreement with two-
dimensional theory in Figs. 3c-d.  In the interest of clarity, the two-dimensional solution obtained by Majdalani28 is 
reproduced below: 

   2 2 2 2 21 1 1 1
0 04 3 2 21 1 cos( ) ; sin( )w wM r M x r              (stream funtion) (42) 

  
2 2 21

3

2 2

2
;

4 2( 1)

w
c

M
M




 

  
 

  
 (centerline Mach number) (43) 

  2 2 2 4 41 1
2 241 (1 )c wp M          (centerline pressure) (44) 

  2 2 2 4 41 1
2 61 ( 1) (1 ) ( 1)c wT M            (centerline temperature) (45) 

where the sonic length, also known as the critical distance, is related to the   function through 

  22 2 2(2 1) /w sM L              

 
 

Figure 2. Flowchart depicting the main steps of the numerical procedure needed to extract the velocity from the integral 
formulation of the pressure. 
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   2 30.884622 0.177299( 1) 0.0539119( 1) 0.0180615( 1)          (46) 

and 

    1/3
2 3 2 3 428 12 6 8 6 22 18 6 14 3                 (47) 

 
In Figs. 3a-b, the reason for the slight discrepancy at 0n   may be attributed to the dismissal of radial pressure 

variations in the pseudo-two-dimensional formulation.  As for the 1n   case, the present model appears to be in 
excellent agreement with Majdalani’s solution everywhere except in the vicinity of the choke point.  Specifically, 
the tailing ends of the numerical curves in Figs. 3c-d suddenly undergo an abrupt steepening process as the choke 
point is approached, thus leading to a slight discrepancy with Majdalani’s two-dimensional formulation.28  Two 
possible explanations may be offered in this respect.  The first attributes the attendant divergence to the dismissal of 
radial pressure variations in the semi-analytical formulation, and to the polynomial approximation affecting pressure 
integration in Eq. (39).  These approximations are likely to deteriorate near the choke point.  The second source of 
disparity may be connected to the accuracy of Majdalani’s Rayleigh-Janzen expansion in the vicinity of .sx L
However, according to Tollmien30 and Kaplan,31 it is formally proven that the Rayleigh-Janzen paradigm continues 
to be robust past sonic conditions.  The first explanation is hence more plausible. On a separate subject, we remind 
the reader that the four parts of Fig. 3 are obtained with an injection wall Mach number of 0.05. Nonetheless, these 
plots remain rather universal and therefore characteristic of the solution at other wall Mach numbers as well.  This 
may be attributed to the results being displayed as function of the geometric similarity coordinate, / .sx L  As one 
may surmise from Eqs. (42)-(45), the similarity with respect to / sx L  leads to a virtual independence of .wM  

Concerning the calculation of the critical length, our computation of sL  leads to a sonic distance that matches 
quite closely the value predicted by Eq. (46).  On this note, it should be borne in mind that, according to 
Majdalani,28 the critical length denotes in the classic sense the distance from the headwall to the point at which the 
centerline velocity first reaches the speed of sound.  At that station, the area-averaged Mach number would not have 
reached unity yet.  However, in order to reconcile with one-dimensional predictions in which values are essentially 
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Figure 3. Comparison between the present semi-analytical formulation and both 1D and 2D solutions by Gany & 
Aharon (1999) and Majdalani (2007). Results are shown for γ = 1.4 and wM = 0.05.  
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area-averaged at a given axial station, a new definition is warranted, namely, of an area-averaged critical length, sL .  
In this vein, a cross-section will be fully choked when the average Mach number reaches unity.  This condition 
always occurs at ,s sL L  with a typical 1.2 .s sL L    

Using sL  in lieu of ,sL  a comparison of the centerline Mach numbers is provided in Figs. 4a,b for 0n   and 
1n  , respectively.  In both parts of this figure, the 2D analytical model is seen to outperform the 1D solution 

although better agreement with the integral representation appears in Fig. 4b.  This behavior may be naturally 
expected because the 2D model is derived under the 1n   assumption.  Another point of disparity may be associated 
with the centerline Mach numbers exceeding unity at .sx L   Conversely, the 1D Mach number, in which area-
averaging is intrinsic, is seen to reach sonic conditions at .sx L   Although not shown, the analytical area-averaged 
Mach number and, in principle, the numerically area-averaged solution of the present formulation will exhibit 
steeper curvatures that closely follow the dotted, 1D line.28 

It may be instructive to add that, based on Eq. (32), the Mach number may be calculated over the entire chamber. 
However, owing to the variables being expressed in terms of the axial location and the stream function “tip”  , a 
transformation is required to convert   back to the radial coordinate by way of Eq. (30).  The results lead to a non-
uniform mesh that requires careful treatment and “reverse engineering.”  After some effort, the contour plots of the 
numerically extracted local Mach numbers are displayed in Fig 5a, where the shape of the 1M   curve is clearly 
delineated. The two-dimensional analytical predictions of the iso-Mach number lines are presented side-by-side in 
Fig. 5b.  Despite the dissimilarity in the contour curvature near choking (upper rightmost corner), the two models 
appear to be in fairly good agreement. Note that the traditional choking point is rather a curved line and, in reality, a 
surface due to axisymmetry, that can be captured either numerically, or analytically for 1M  . Note that Figs. 4 and 
5 are essentially universal and, being plotted versus / ,sx L   will not change if a different wall Mach number is 
used to reproduce them. This again is due to the geometric self-similarity with respect to   that may be inferred 
from Eqs. (42)-(45). 
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Figure 4. Evolution of centerline Mach numbers along with available 1D and 2D solutions. Here γ = 1.4 and wM = 0.05.  
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Figure 5. Local Mach number contours according to a) numerical integration and b) analytical solution by Majdalani.28 
Here γ = 1.4 and wM = 0.01.  
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Having completed our description of the Mach number variation, characteristic streamlines are displayed in Fig. 
6 based on the numerical integration of Eq. (30). This is carried out by first specifying a value of  , and then 
integrating at discrete locations of x  until the centerline Mach number has reached unity. This marks the critical 
distance to the sonic point and enables us to calculate sL  for each of the test cases at hand. The procedure also 
enables us to collect the family of coordinates at a fixed value of  , thus leading to an assortment of points that 
constitute a streamline.  By comparing the results in Fig. 6 at two wall Mach numbers of a) 0.01 and b) 0.005, it is 
clear that compressibility becomes more pronounced when the mean flow velocity is increased (here 1.4  ).  This 
is reflected in the faster flow turning that occurs at higher injection Mach numbers, specifically faster in Fig. 6a 
where 24.44,sL   than in Fig. 6b where 48.87.sL    However, by replotting these two cases versus / sx L  in Figs. 
6c,d, the ensuing graphs become identical! This is caused by the strong similarity with respect to  . 
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Figure 6. Numerical streamlines for a,c) wM = 0.01  and b,d) wM = 0.005  compared to the incompressible solution by 

Culick (1966).  In c-d) the axial coordinate is rescaled by the critical length, thus leading to self-similarity.  Here γ = 1.4. 
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Figure 7. Spatial evolution of the axial velocity for wM = 0.01  at sx / L  0.2, 0.4, 0.6, 0.8, and 1. Results are compared 

to the 2D axisymmetric solution by Majdalani.28 Here γ = 1.4. 
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As sketched in Fig. 2, the last procedural step consists of extracting the axial velocity from Eq. (15).  Results are 
shown in Fig. 7 at evenly spaced intervals of / 0.2,0.4, ,1.sx L     Also featured on the graph is Majdalani’s 2D 
analytical solution.28  As expected, these profiles bear a striking resemblance to the numerical results and to both 
laboratory and computational experiments obtained by Traineau, Hervat and Kuentzmann,13 Balakrishnan, Liñan 
and Williams,27 Apte and Yang,17-18 and others. By comparison to Taylor-Culick’s incompressible mean flow 
solution,1 we note that the streamwise velocity develops into a much fuller, top-hat profile as choking is approached.  
The evolution into a blunter, turbulent-like, or pseudo-one-dimensional plug flow is conformant to both theory and 
experiment.  It faithfully captures the increased gradients at the sidewall and these can have important implications 
in mean-flow related analyses. 

IV. Conclusions 
The integral formulation of the axisymmetric porous cylinder that was initiated by Traineau, Hervat and 

Kuentzmann13 is reconstructed and compared to one- and two-dimensional analytical approximations obtained under 
isentropic flow conditions.  Unsurprisingly, the level of agreement with the integral representation is found to be 
commensurate with the sidewall boundary conditions associated with each of these models.  Being derived for a 
uniform mass flux at the sidewall, the one-dimensional model seems to provide closer predictions to the inverted 
integral solution with a pressure exponent of 0.n    Such a condition suppresses the velocity dependence on the 
pressure and ensures a constant mass flux at the sidewall.  Conversely, the 1n   case leads to a constant wall-
normal velocity that coincides with one of the boundary conditions used in deriving the two-dimensional analytical 
model.28  Consequently, numerical predictions for this case fall in closer agreement with the two-dimensional 
solution.  In all cases, the main discrepancies occur near the sonic point and may be attributed to the various forms 
of approximations and linearizations befalling the integral approach.  Furthermore, when comparing the level of 
difficulty needed to reproduce these solutions, the closed-form analytical approximations seem to substantially 
outperform the semi-analytical treatment.  The latter requires piecewise numerical integrations, sequential 
inversions, and backward transformations to retrieve the original variables of interest.  As if these multiple 
operations are not enough, the problem is further exacerbated by the variable extraction process occurring over a 
highly non-uniform mesh.  This can render simple steps extraordinarily challenging especially when attempting to 
extrapolate other related variables and derivatives that are needed over a uniform grid.  Such effort can be quite 
laborious when compared to the ease with which the fully analytical models are implemented and resolved.  
Nonetheless, the numerical formulation helps to confirm several useful characteristics associated with the two-
dimensional theory introduced previously by Majdalani.28  Among them is the strong, albeit non-exact, self-
similarity with respect to the critical length. This can be seen by rescaling the axial coordinate with respect to 

;sx L  numerically obtained streamline, pressure, and temperature plots taken at two different Mach numbers 
become visually identical.  The observed behavior confirms two-dimensional theory which, in turn, projects 
deviations from self-similarity to be of the order of the wall Mach number squared, a practically small quantity that 
leads to relative differences of less than 1%.  
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