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In this paper, we discuss the merits of two models for the swirl velocity in the core of a
confined bidirectional vortex. The first is piecewise, Rankine-like, based on a combined-
vortex representation. It stems from the notion that a uniform shear stress distribution
may be assumed in the inner vortex region of a cyclone, especially at high Reynolds
numbers. Thereafter, direct integration of the shear stress enables us to retrieve an
expression for the swirl velocity that overcomes the inviscid singularity at the centreline.
The second model consists of a modified asymptotic solution to the problem obtained
directly from the Navier–Stokes equations. Both solutions we present transition
smoothly to the outer, free-vortex approximation at some intermediate position in the
chamber. This position is deduced from available experimental data to the extent of
providing an accurate swirl velocity distribution throughout the chamber. By scaling the
constant shear radius to the core layer thickness, the constant of proportionality is
readily calculated using the method of least squares. Interestingly, the constant of
proportionality is found to be invariant at several vortex Reynolds numbers, thus
helping to achieve closure. The combined-vortex representation is validated against a
large body of experimental measurements and through comparisons to a laminar core
model that is enhanced through the use of an eddy viscosity. Other heuristic schemes are
discussed and the two most suitable models to capture realistic flow behaviour at high
vortex Reynolds numbers are identified. Our two models are first derived analytically
and then anchored on the available experimental measurements.

Keywords: rotating; cyclonic; confined bidirectional vortex; two-cell bipolar;
centrifugal separator; high speed Rankine flow
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1. Introduction

From the pioneering days of Rankine (1858) to the present era, swirling flows
have remained the subject of ceaseless scientific enquiry both owing to their
interesting theoretical challenges and their effective usage in industrial
applications. Historically, the earliest theoretical models have been fundamen-
tally connected with unbounded geophysical flows that spontaneously occur in
nature. In this vein, hurricanes and tornadoes have been sporadically modelled
using a variety of vortex flow fields (see Penner 1972). Even stellar phenomena
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have been subjected to similar exploratory lines of enquiry (Königl 1986). While
large-scale vortex patterns have constituted the motivation for much of the
earlier work, modern investigations have constantly strived to harness the power
of swirl in emerging products and mechanical equipment, both domestic and
commercial. One may also classify applications into those that employ
unidirectional swirl (e.g. swirl combustors) and those that rely on a more
complex, self-reversing motion often termed bidirectional.

In the context of wall-bounded bidirectional swirl, one may cite the work of
ter Linden (1949) that has focused on studying the efficiency of cyclone
separators. Later, Bloor & Ingham (1987) have analysed the incompressible fluid
motion in a conical cyclone using spherical coordinates. More recently, Vyas
et al. (2003), Vyas & Majdalani (2006a,b), Batterson & Majdalani (2007) and
Majdalani & Rienstra (2007) have developed both exact and asymptotic
solutions to describe bidirectional flow motions in cylindrical and spherical
geometries. Their work has been motivated by a propulsive application,
specifically by the need to extend the understanding of gaseous motions in the
vortex combustion cold-wall chamber developed by Chiaverini et al. (2003).

Even with a continually renewed interest in cyclonic flows, especially of the
confined type, one can note a dearth of rigorous analytical models to describe
these flow fields (Vatistas et al. 2005). Given that strictly inviscid solutions
regularly capture most essential features of swirl, more elaborate models are
often deemed either intractable or unnecessary. It may thus be argued that while
inviscid solutions may be appropriate for unbounded, swirling flows, they can fail
to capture the physics of confined motions. When the flow field is surrounded by
solid boundaries, the effects of no slip at the walls and singularities at the core
can significantly alter the bulk motion. In practice, the characteristics of the core
are relatively well understood and have been described by Ogawa (1984),
Vatistas et al. (1986), Hoekstra et al. (1998) and more recently by Derksen &
Van den Akker (2000), Fang et al. (2003), Rom et al. (2004), Murray et al. (2004)
and Hu et al. (2005). Nonetheless, a rigorous analytical model for the core is still
lacking, especially at high Reynolds numbers. Another reason that new models
for confined vortex flows are scant may be linked to the complexity of their
governing equations. Given this perspective, Vyas & Majdalani (2006a,b) have
pursued the development of an exact inviscid model, followed by a laminar
boundary layer model to capture the effects of viscosity on the tangential velocity
in the bidirectional vortex chamber. Along similar lines, Batterson & Majdalani
(2007) have extended the viscous analysis to account for axial and radial
boundary layers. These solutions have not only furthered our understanding of
the flow field but have also opened up new lines of research enquiries.

Realizing that the existing solutions stem from fundamental equations that
govern laminar flow motion, it may be useful to follow tradition and employ
them as a springboard for developing approximations for turbulent flows. At
first, this paradigm may be perhaps counterintuitive, as turbulence is unsteady,
random and three-dimensional in nature, all of which are being contrary to the
conditions employed here. However, experimental observation has repeatedly
shown that the core of the confined vortex is nearly laminar in behaviour
(Escudier et al. 1982; Derksen 2005). This widely accepted hypothesis inspires us
to explore a core model based on the constant shear stress that one would expect
in the low turbulence region at the centre of the chamber. With this in mind, it is
Proc. R. Soc. A (2009)



Figure 1. Geometric characteristics of the bidirectional vortex chamber.
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the goal of this study to present an alternative swirl velocity model that
approximates the turbulent core behaviour in a bidirectional vortex chamber.
A combined-vortex, Rankine-type matching radius is then specified to grant the
model some freedom in reproducing the essential features of a swirl-dominated
motion. Two fundamental examples of the matching technique are explored. In
the first, the constant shear stress representation is compared with the
asymptotic solution of Vyas et al. (2003) obtained in the presence of a viscous
core boundary layer. This comparison enables us to verify that the alternate
model provides a suitable theoretical basis for capturing the fundamental
characteristics of the flow. In the second, the theoretical model is anchored based
on experimental data obtained by Rom (2006) at high vortex Reynolds numbers.
Finally, the validity of the resulting models is discussed and an outlook towards
future research is presented.
2. Mathematical model

(a ) Geometry

This work focuses on the swirl velocity of an axisymmetric, incompressible,
steady, rotational flow spiralling inside a cylindrical chamber of length L0 and
radius a. The origin of the coordinate system is fixed at the centre of the inert
headwall, and a partially open downstream end is taken to have a radius b
(figure 1). The radial and axial directions are denoted by �r and �z, respectively.
A single phase, non-chemically reactive fluid is injected at the base of the
chamber, at �rZa, in a purely tangential manner and at an average
circumferential velocity of �uqZU : Owing to wall collisions and subsequent
bending, the tangentially injected fluid quickly develops axial motion that
follows a helical path up to the headwall. The flow then reverses axial direction
and spirals down the centre of the chamber, thus exiting at �zZL0. The attendant
geometric parameters consist of the fraction of radius open at the base, defined as
bZb/a, and the aspect ratio of the chamber, given by LZL0/a.

(b ) Basic formulation

The formulation follows precisely that presented by Vyas & Majdalani
(2006a). For the reader’s convenience, the normalized governing equations are
reproduced here, assuming axisymmetric conditions and an axially invariant
Proc. R. Soc. A (2009)
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swirl velocity as
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Here �Qi is the volumetric flow rate at the inlet and Ai is the inlet area. We define
the Stokes stream function as
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Given steady inviscid conditions, one may relate the azimuthal vorticity to the
stream function using UqZC 2rj. When coupled with (2.5), this relation allows
us to satisfy the vorticity transport equation while transforming the vorticity
equation into
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Following Leibovich (1978), Bloor & Ingham (1987) and Szeri & Holmes (1988),
the swirl velocity may be assumed to be independent of both axial and azimuthal
variations. At the outset, (2.2) decouples from the other velocity terms. This
enables us to employ the stream function-vorticity relation, given by (2.6), and
subject to the following boundary conditions

�r Z a; �z ZL0; �uq ZU circumferential velocity at entry

�r Z a; �z!L0; �uq Z 0 no slip condition at the sidewall

�r Z 0; c �z; �uq Z 0 forced vortex center

�z Z 0; c �r; �uz Z 0 impervious headwall

�r Z 0; c �z; �ur Z 0 no flow across centreline

�r Z a; c �z; �ur Z 0 impervious sidewallÐ a
b �uzð�r;L0Þ�r d�r Z �Qi axial inflow matching tangential source:
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ð2:7Þ
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The (r, z) versus q segregation allows us to introduce a swirl velocity model after
Vyas & Majdalani (2006a). Their exact inviscid solution is simply
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where the geometric inflow parameter is defined as kZQi/(2pL) The
corresponding quasi-viscous solution that captures the forced vortex near the
core has also been derived by Vyas & Majdalani (2006b). It can be written as
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where the vortex Reynolds number is given by

V Z
Re

s

a

L0

Z
�Qi

L0n
: ð2:10Þ

Note that sZa2/Ai constitutes a modified form of the swirl number introduced
by Gupta et al. (1984), namely, SZpab=AiZpba2=AiZpbs. In the remainder
of this study, (2.9) will be referred to as the laminar core model.
3. Constant shear-stress model

The free vortex motion in the outer domain is dictated by the inviscid solution
given by (2.8). Our main focus is directed to the inner region, specifically to the
development of a model that can capture the behaviour of the flow in the core
vortex at high Reynolds numbers. We require the model to remain consistent
with the outer motion, merging smoothly with the outer vortex without
becoming unbounded at the centreline. Since the flow under high speed
conditions can deviate from the inviscid representation, one must tread carefully
in conceiving a suitable model. Following Townsend (1976) or Tennekes &
Lumley (1976), one can put

ðu$VÞuZKVpCV$t: ð3:1Þ

For fully developed motion in the tangential direction, it follows that an
equilibrium may be maintained between shear and pressure terms under either
laminar or turbulent conditions. Then considering a flow with a zero tangential
pressure gradient, the dominant shear stress in the tangential direction may be
Proc. R. Soc. A (2009)
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assumed to be spatially uniform. This enables us to set
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where the viscous parameter 3 is small, being inversely proportional to the
Reynolds number
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The forced vortex solution, for which vorticity is uniformly distributed in the
core region, uqfr, may be restored from (3.2) by setting C1Z0. To obtain a more
general expression, we assume a constant shear in the core region (Tennekes &
Lumley 1976; Townsend 1976; White 1991). We then integrate (3.2) to obtain
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It may be interesting to note that each of the two undetermined constants, C1

and C2, have a clear physical meaning: while the first relates to the swirl strength
of the velocity component generating the stress, the second corresponds to the
swirl strength of a flow undergoing solid body rotation. Here, the superscript (i)
denotes a solution in the inner region. The two undetermined constants can be
manipulated to match the inner solution with the outer, free vortex expression at
their intersection point. This is achieved by equating the velocity and its
derivative to the outer vortex at a specific matching radius. Since the matching
radius is not known a priori, it must be carefully specified. For the moment, we
solve for a yet to be determined matching point XZf (V ), where X is an
unspecified location written as a function of the vortex Reynolds number. At the
outset, (3.4) may be expressed as
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In what follows, this combined-vortex model is referred to as the constant shear
model. The incontrovertible analogy with Rankine’s laminar model is evident.
Using our nomenclature, Rankine’s combined vortex may be represented by

uq Z
r=X2; r%X

1=r; rOX :

(
ð3:6Þ

Here XZU=�uqðaXÞ is the point where the inner vortex line intersects with the
sloping tail of the outer vortex. This location also defines Rankine’s maximum
swirl velocity ð�uqÞmaxZ �uqðaXÞ. By contrast to the constant shear solution that
predicts constant shear throughout the core region, Rankine’s model predicts
constant vorticity for r%X.

Given that the inner core velocity is bounded at the centreline, a companion
pressure may be obtained that does not exhibit the inviscid singularity of its
predecessor (see Vyas & Majdalani 2006a). From (2.1) and (2.3), the axially and
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radially integrated pressures become
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Integration and combination of these equations provides the pressure distribution
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where DpZpKp(1, 0). The constant K1 is determined by setting the piecewise
parts equal at rZX, while K2 is calculated by securing the boundary condition at
the outer radius of the headwall
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We hence extract the piecewise distribution

DpZ

1

2
K

3

X2
Kk2 4p2zC

sin2ðpr2Þ
2r2

" #

C
1

2k4r2
r4 5C ln

r4

X4

 !
ln

r

X

 !
K2

" #( )
Kk2X4sin2ðpr2Þ

 !
; r%X ;

1

2
K

1

2r2
½1Ck2sin2ðpr2Þ�Kk2 4p2zC

sin2ðpr2Þ
2r2

" #
; rOX :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:10Þ

4. Discussion

(a ) Laminar core model

To illustrate the ability of the constant shear solution to embody different
patterns, we start by reproducing the laminar core boundary layer model derived
by Vyas & Majdalani (2006b). Clearly, if we are to claim a portable solution, the
swirl velocity calculated from the present work must approximate key features
Proc. R. Soc. A (2009)
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connected with the boundary layer model. For a simple demonstration of the
matching paradigm, we implement the notion that swirl velocities from the
laminar and constant shear models must exhibit the same maxima. This enables
us to compare the principal flow attributes and gain insight into how the
matching radius varies with the vortex Reynolds number.

While the inner part of the piecewise velocity yields
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Equation (4.3) enables us to solve for X as a function of V directly from
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This matching radius X permits our piecewise velocity to capture the same peak
velocity that the laminar boundary-layer solution projects as a function of V.

A comparison of the different swirl velocity models at three increasing vortex
Reynolds numbers is presented in figure 2. While the free vortex is invariant with
respect to V, both the present study and the laminar boundary layer model
capture the increasing velocity peaks and their translation towards the centreline
with successive increases in V. Note that the two models match identically at the
point of the highest velocity, owing to the imposed matching treatment. They
also behave rather similarly elsewhere in the domain, with the constant shear
model decreasing from the peak velocity more slowly, owing to its wider profile.
This behaviour is consistent with observations of turbulent vortices.

Figure 3 compares the pressure distributions of the two models at two vortex
Reynolds numbers. The radial pressure gradient in figure 3a is slightly higher in
the case of the constant shear model, especially in the core region. This behaviour
can be accounted for by the slightly increased velocity anticipated from the
piecewise model near the centreline. Except for these differences, the piecewise
model seems to faithfully capture the general shape of the radial pressure
distribution. The actual pressure drop is shown in figure 3b. The constant shear
pressure starts slightly higher, but then quickly diminishes to match the laminar
core approximation. It should be noted that the constant shear solution offers one
degree of freedom that can be adjusted to suit a particular application. For
example, should accurate prediction of the pressure stand as the most valuable
requirement for a specific situation, then the matching radius could be adjusted
to best fit the experimental pressure data near the core. A similar paradigm is
Proc. R. Soc. A (2009)
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used in modelling large atmospheric flows where only pressure-related
measurements may be available (Trapp 2000). As affirmed by Alekseenko
et al. (1999), the swirl velocity core may be reconstructed in the absence of
vortex breakdown using pressure measurements alone.

Before concluding this comparison, it may be instructive to examine the
behaviour of shear and vorticity near the axis of rotation. In the view of the shear
stress being a quintessential contributor in the derivation of the constant shear
approximation, we compare the present result to the laminar core solution by
Vyas et al. (2003). The latter is given by

trq ZK23rK2 1K 1C
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4
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Since only amendments to the swirl velocity are considered here, the affected
member of the shear stress tensor is trq. Recalling the general form from (3.2), we
find after substitution
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For the vorticity, we find
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The resultant curves are plotted in figure 4 and compared with the results of the
laminar core treatment, namely, to UzZ

1
2 V expðK1

4 Vr
2Þ. In both parts of figure 4,

we see that past the matching radius, a good agreement between the models is
attained. Closer to the core, a deviation is manifested as a result of the constant
shear stress model becoming uniform. As shown in figure 4a, the constant core
value of the absolute shear jtrqj is slightly lower than the maximum laminar core
value. Aside from this disparity near the centreline, the constant shear and
laminar core curves are concurrent elsewhere in the domain. In figure 4b, the
vorticity prescribed by the piecewise model is seen to mimic the laminar core
curve. However, unlike the laminar model that smoothly tapers off in the vicinity
of the core, the constant shear vorticity does not approach a constant as r/0.

By comparing the combined-vortex representation to the laminar core model,
two key observations may be drawn. The first consists of the ability of the shear
stress model to mimic the features seen in the laminar core without a viscous
perturbation near the centreline. By avoiding such analysis, we no longer depend
Proc. R. Soc. A (2009)



925A constant shear stress core flow model
on the existence of a first-order radial velocity and small parameter expansions.
The outcome is a model that captures the core behaviour while requiring less
overhead. The second benefit of a laminar core analogy is the development of a
relation such as (4.4). This analytical expression linking the vortex Reynolds
number to the matching radius X will later prove instrumental for properly
interpreting experimental case studies.
(b ) Experimentally correlated model

One of the chief attributes of the piecewise solution stems from its display of a
single degree of freedom that can be adjusted to minimize the error in its prediction.
For example, knowing that the laminar boundary layer treatment can over-predict
the velocity distribution near the core when the flow is turbulent, an empirically
based correction is necessary (e.g. when VZ104 the laminar model predicts
(uq)max£32, an overestimated value). One avenue to evaluate this correction is
through a least-squares analysis that enables us to determine the optimal matching
radius that best fits experimental data. If a sufficient number of experiments are used,
one could then deduce a relationship between the vortex Reynolds number and the
matching location. Another possible approach is to introduce an effective vortex
Reynolds number that can be correlated to its experimental counterpart. Given the
increased turbulent viscosity at high speeds, the Reynolds number measured in
laboratory tests could thus be converted into a smaller effective laminar equivalent
that would be suitably retrofitted into the laminar solution.We explore both of these
methods vis-à-vis the experimental data obtained by Rom (2006).

To set the stage, Rom’s apparatus is equipped with particle image velocimetry
(PIV) and a smoke generator that is capable of producing 0.2 mm seed particles.
Particle images are captured by a LaVision Flowmaster 3 camera and cross-
correlated to provide the swirl velocity at three axial locations in the cylindrical
quartz chamber.To create different test cases, amodular chamber is used to alter the
aspect ratio. Four tangentially located inlets in the base plate provide an injection
method consistent with the boundary conditions outlined in (2.7). Given an
operating pressure of 275 kPa for the chamber, variable inlets provide injection
pressure drops that range from 10 to 30% of the chamber pressure. A summary of
the conditions for each trial of the experiment are provided in table 1. A schematic of
the experimental setup is illustrated infigure 5 anda completedescription is provided
by Rom (2006). While the constant shear model may be applicable to other
experiments and numerical simulations, results available in the literature are seldom
correlated with the vortex Reynolds number.

Using a modified least-squares method similar to that employed by Vatistas
(2006) we analyse Rom’s data and seek to determine the matching radius that
minimizes the error between theory and experiment. Realizing that the radii
calculated by this method vary with the vortex Reynolds number, we embed the
dependence on V using a theoretically based relation similar in form to (4.4)

X Z
X0ffiffiffiffiffiffi
Vt

p ; ð4:8Þ

where Vt is the turbulent vortex Reynolds number based on the molecular
viscosity m. In (4.8) the matching radius X is connected to the vortex Reynolds
number through a yet to be determined constant. Because X only appears in the
Proc. R. Soc. A (2009)



Table 1. Experimental parameters for six test cases.

parameter case 1 case 2 case 3 case 4 case 5 case 6

injector pressure drop,
D�p ðkPaÞ

27.6 55.2 82.8 55.2 27.6 55.2

chamber aspect ratio, L 2.4 2.4 4.4 3.4 4.4 4.4
total injection area, Ai (m

2) 2.30
!10K4

1.57
!10K4

1.23
!10K4

1.57
!10K4

2.30
!10K4

1.57
!10K4

average injection speed,
U (m$sK1)

68.73 77.72 89.61 88.78 74.81 88.31

modified swirl number,
sZa2/Ai

2.81 4.10 5.26 4.10 2.81 4.10

inflow parameter,
kZ1/(2psL)

0.0239 0.0164 0.0069 0.0114 0.0129 0.0088

vortex Reynolds number,
VZ _mi=ðL0mÞ

47 150 36 540 30 160 29 150 27 650 22 370
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core region (r!X), the optimization procedure focuses on the points inside the
matching radius, especially that the error outside of this region is invariant with
respect to X. This permits the least squares methodology to optimize the solution
in the crucially important core region. We select from three of the available cases
summarized in table 2. We also hold three cases in reserve, so that we can test
the validity of the relationship in (4.8) with independent data. While each set of
experimental cases exhibits a slightly different matching radius, the values for X0

appear to be in relatively good agreement (i.e. 50.7, 49.6 and 49.0 for turbulent
vortex Reynolds numbers of Vt£30, 37 and 47!103, respectively). This
agreement lends support to our foregoing assumptions and enables us to seek a
weighted average of the values for X0. We get

X Z
50:0ffiffiffiffiffiffi
Vt

p : ð4:9Þ

By the way of confirmation, the same constant, X0£50, is obtained when the
method of least squares is applied to the entire collection of data, thus sweeping
over the three cases simultaneously with the role of Vt being fully factored in.

We also compare a modified version of the laminar solution to both the
experimental data and to the constant shear stress model. To this end, the
laminar model is modified by an estimated turbulent eddy viscosity that reduces
the experimental vortex Reynolds number to a value that conforms to the
experimental data. Following Faler & Leibovich (1978) or Escudier et al. (1980),
we introduce the eddy viscosity ratio

[t Z
mt

m
Z

nt

n
: ð4:10Þ

This enables us to determine [t empirically from a standard least-squares
analysis. As shown in table 2, we find for each Vt a corresponding value for [t.
Then based on the same three cases and 879 points, minimizing the least-squares
error yields

[t Z 151:8 or V Z
Vt

[t
Z

�Qi

L0nt
Z

_mi

L0mt

: ð4:11Þ
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Table 2. Least-squares parameters for the constant shear and laminar core models.

Vt X0 X (matching point) 50=
ffiffiffiffiffiffi
Vt

p
[t

47 150 49.04 0.243 0.230 150.3
36 540 49.63 0.267 0.262 154.1
30 160 50.67 0.314 0.288 151.0
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Figure 5. Schematic of experimental setup used by Rom (2006).
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It is reassuring to note, within experimental uncertainty, the constancy of the
eddy viscosity ratio over the range of Reynolds numbers considered. Physically,
the adjustment in (4.11) leads to a vortex Reynolds number calculation based on
the turbulent viscosity. Substitution into (2.9) enables us to express the modified
laminar core solution in the form

uq Z
1

r
ð1KeKVr 2=4Þ;

DpZK
1

2r2

1C
1

2
k2½8p2r2z2 C1Kcosð2pr2Þ�;

CeKVr 2=2K2eKVr 2=4C
1

2
Vr2 Ei K

1

2
Vr2

 !
KEi K

1

4
Vr2

 !" #
:

8>>>><
>>>>:

9>>>>=
>>>>;

9>>>>>>>>>=
>>>>>>>>>;

ð4:12Þ
To objectively compare the accuracy of the two models, we calculate several

statistical parameters (table 3). By comparing correlation coefficients, rcc,
standard errors, se and total relative errors, DEt, the constant shear-based model
seems to provide a slightly better fit to the data than the modified laminar
distribution. The standard and total relative errors are calculated from

se Z
1ffiffiffiffiffiffiffiffiffiffiffi
nK1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
iZ1

½huqðriÞKuqðriÞ�2
s

and

DEt Z
Xn
iZ1

½huqðriÞKuqðriÞ�2=
Xn
iZ1

hu2
qðriÞ; ð4:13Þ
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Table 3. Statistical characteristics of the constant shear and laminar core representations.

Vt
47 150 36 540 30 160

rcc se DEt% rcc se DEt% rcc se DEt%

constant shear 0.900 0.558 4.36 0.968 0.253 1.23 0.880 0.376 3.19
laminar core 0.887 0.592 4.91 0.962 0.276 1.47 0.870 0.391 3.45
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where n and huqðriÞ denote the number of data points and the measured velocity
at ri, the radius of the ith data point. The standard error of the estimate
quantifies the spread of data about the regression line, such as the standard
deviation that measures the spread about a mean value. As shown in table 3, the
total relative error falls under 3.2, 1.3 and 4.4% for the three cases associated
with the constant shear approach. The corresponding experimental correlation
coefficients are 0.88, 0.97 and 0.90, respectively. When the modified laminar core
technique is used, the relative errors slightly increase to 3.5, 1.5 and 5.0%, with
an equally minute reduction in rcc.

Using (4.9) and (4.11), a comparison is drawn in figures 6 and 7 between the
two empirical models and the experimental spread. The measurements collected
in each trial case correspond to the data acquired at three axial locations in the
vortex chamber, specifically at zZ0.2, 0.5, and 0.7. On one hand, figures 6a–c
display the collection of data that was used in the least squares analysis leading
to the determination of the eddy viscosity ratio and the empirically based
matching radius X. These three trials were selected for the fitting process
owing to the relative fidelity of their data in the core region. On the other hand,
figures 7a–c compare our solutions to the reserve datasets that were not used in
the calculations, but rather saved for the sole purpose of testing the accuracy of
these models at various Reynolds numbers. In both cases, the outer data follows
quite faithfully the free vortex behaviour predicted by the outer solution. The
agreement inside the core region is less appreciable. While both models capture
the essential features of the data scatter, the constant shear-based model shows a
broader bell-shaped contour than the narrower laminar profile. It is clear that as
we approach the centreline, the experimental velocity begins to deviate from the
maximum theoretical values projected by the analytical models. Of equal
concern is the scatter and scarcity of data in the core region. Contrary to the
large number of closely packed data points in the outer vortex region, fewer and
more scattered data points appear near the core. This trend may be attributed to
increased drag on seed particles in the high-speed region and to the natural
tendency for separation of particles due to centrifugal entrainment. To overcome
this problem, a different seeding method can be employed with a more elaborate
experimental setup that correlates, for example, particle pairs from two pulsed
laser planes. Additionally, strict control of the vortex Reynolds number for
separate trial runs may increase the confidence in the measurements and
corresponding matching-radius correlation. It may thus be speculated that data
obtained from a more focused experiment could be higher and less noisy than the
ones considered here.
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Figure 6. Comparison of the turbulent and modified laminar models with the experimental data
used for the least squares analysis. Results are shown for (a) VtZ47 150, (b) 36 540, and (c) 30 160.
Plus, z/LZ0.2; cross, z/LZ0.5; star, z/LZ0.7.

929A constant shear stress core flow model
Interestingly, the reduced fidelity in the vicinity of the core is also depicted in
the Reynolds shear-stress model data and laser doppler velocimetry (LDV)
measurements taken by Hu et al. (2005). Their LDV data acquisition system also
deteriorates inwardly, past the point of maximum swirl.
(c ) Pressure distribution

A comparison with the experimental pressure data is presented in figure 8.
The data are obtained using the apparatus described in the previous section
and the first three cases defined in table 1. Instead of seeding the flow for the
purpose of PIV acquisition, a modified end cap is substituted with pressure
taps located at non-dimensional radial intervals of 0.15, with the exception of
two additional taps being placed near the wall at rZ0.9 and 0.967. For
simplicity, the experimental measurements are normalized by their values at
the sidewall. As depicted in figure 8a–c, direct comparison with the shear
stress model reflects substantial agreement in the outer region leading to the
sidewall. As the data approaches the centreline, the model continues to mimic
the general shape of the experimental distribution, although the measure-
ments are seen to fall below the theoretical prediction. This trend may
be attributed, in part, to the incompressible character of our approximation.
Proc. R. Soc. A (2009)



0

100

200

300

400

0

100

200

300

0 0.2 0.4 0.6 0.8 1.0

100

200

300

(a)

(b)

(c)

Figure 7. Comparison of the turbulent and modified laminar models with independent
experimental data held in reserve for (a) VtZ29 150, (b) 27 650, and (c) 22 370. Plus, z/LZ0.2;
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In two recent investigations by Majdalani (2007) and Maicke & Majdalani
(2008), accounting for compressibility effects was shown to reduce the pressure
values near the core of the chamber with successive increases in flow speed.
This behaviour is further confirmed by Vatistas & Aboelkassem (2006) in a
similar study of industrial cyclones.

(d ) Limitations

Clearly, the models presented here are not unique as other reconciliatory
schemes may be arrived at. The constant shear model swirl velocity overshoot
and location must be thoroughly interrogated for validity via comparisons with
experimental and robust computational predictions. Another model that may be
pursued consists of calculating the matching radius such that the integrated
shear stress associated with the constant shear approximation can be made to
match the corresponding value predicted by the laminar core solution. At the
outset, the surface areas under the trq curves in figure 4a may be matched.
Whether such a scheme could produce a more accurate approximation will
remain a matter of conjecture until such time when the model is compared with a
sufficiently large collection of experimental measurements and numerical
predictions that are focused on parametric variations in the vortex Reynolds
numbers. In similar fashion, the pressure distribution could be taken to be the
Proc. R. Soc. A (2009)
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931A constant shear stress core flow model
target function for the model. As alluded to earlier, one may attempt to match
pressure profiles such as those arising in figure 3 to the observed patterns. In
short, the matching radius could be adjusted in a variety of ways to best model
laboratory or numerical experiments.

Finally, it must be borne in mind that with the full onset of turbulence, the
models presented here may retain their predictive value albeit at the expense of
some loss in accuracy. Despite the presence of a nearly laminar core flow, the
outer, annular motion may no longer remain irrotational. Turbulence has the
ability to attract the surrounding irrotational fluid through frictional effects,
specifically through entrainment (Kundu & Cohen 2002). While the source of
entrainment may be attributed to viscous shear in laminar flows, it is mostly
inertial in turbulent flows. In fact, the entrainment rate under turbulent
conditions can far exceed any effects that are attributable to fluid friction. When
the laminar core is affected by the turbulent outer flow, the resulting fluid is
turbularized by the introduction of small viscous eddies that can be formed at the
interface between the rotational and irrotational regions. In the bidirectional
vortex chamber, the turbulent annulus can therefore entrain the core fluid to the
extent of causing further departures from the newly established solutions. When
these turbulent effects occur, we may expect to see higher swirl velocities from
the peak region to the wall.
Proc. R. Soc. A (2009)
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(e ) Analogy with the Rankine model

Figure 9 compares the shapes of the swirl velocity profiles for the laminar core
model and constant shear solutions to Rankine’s. In order to draw meaningful
comparisons, both dependent and independent variables are renormalized. First,
the radial coordinate is normalized by rmax such that the maximum velocity
occurs at a value of unity. Second, each velocity is divided by its respective peak
value in order to enforce uniformity of height. The unified normalization used
here enables us to capture the basic similarities shared by these profiles. While
the combined Rankine model consists of matching the forced vortex line with the
outer vortex, both laminar core model and constant shear curves represent
smooth blending of the inner and outer regions. In conformance with turbulent
flow theory, a slight bulging of the constant shear velocity is observed (chained
line) in relation to the laminar models (solid or broken lines).
(f ) Uniformly valid representation

The constant shear model velocity described earlier appears to be a viable
model for the bidirectional vortex core. However, it does not satisfy the no-slip
condition at the wall. Instead, the tangential velocity at the sidewall remains
equal to the circumferential injection speed, �uqða; �zÞZU : This particular
requirement coincides with the wall boundary condition that one may impose
in a centrifuge where the cyclonic motion is induced by the rotating sidewall. The
corresponding circular speed may be calculated to be ufZU/a. A model that
more adequately captures the behaviour of the bulk gas motion in the vortex
combustion cold wall chamber is one that assumes a stationary sidewall. The
wall-bounded counterpart of the present solution may hence be obtained by
combining the constant shear-based core approximation with an outer, annular
profile that observes the velocity adherence condition. Such profile may be
directly obtained from the work of Vyas & Majdalani (2006b) for the tangential
velocity. Furthermore, the axial and radial velocity components may be
asymptotically extended to account for the confining wall. As shown by
Batterson & Majdalani (2007) a wall-bounded solution may be arrived at using
the tools of matched-asymptotic expansions. A uniformly valid wall-to-wall
approximation may be constructed in which the three components of the velocity
are given by
Proc. R. Soc. A (2009)
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where X0£50. Equation (4.14) is a modified form of the constant shear
approximation that is rectified so as to satisfy the no slip condition. It closely
resembles (3.5) and (2.8) except near the sidewall.
5. Conclusions

In this paper, two basic formulations for the swirl velocity of the bidirectional
vortex under high speed conditions are presented and discussed. A constant
shear stress model is first employed to extract the velocity near the core that is
then matched to an outer solution that is mainly irrotational. The ensuing
approximation exhibits one degree of freedom that enables us to anchor our
solution for a given flow pattern. This predictive feature is set by relating the
matching radius of the constant shear stress model to the vortex Reynolds
number arising in a given application, X£X0=

ffiffiffiffiffiffi
Vt

p
. Since the matching point

delimits the inner zone, where the shear stress may be taken to be uniform,
linking this radius to the vortex Reynolds number enables us to control the
thickness of the core region along with the maximum speed that the tangential
velocity may reach. The matching process grants our constant shear stress model
the ability to conform to a nearly arbitrary swirl pattern over a practical range of
Reynolds numbers. Based on available laboratory measurements and least-
squares analyses, the correlation constant X0£50 is obtained and shown to be
nearly invariant with the vortex Reynolds number. Compared with the modified
laminar core model, the experimentally anchored constant shear solution
displays a broader velocity profile that is characteristic of high speed flows.
However, further extensions to this solution, such as compressible corrections,
have to be piecewise as well. The modified laminar core approach employs a
modified vortex Reynolds number, VZVt/[t, resting on the concept of an
enhanced eddy viscosity ratio [t£152. Being the by-product of matched-
asymptotic expansions and the Navier–Stokes equations, the modified laminar
core solution remains continuous and uniformly valid across the chamber cross-
section. At first glance, it may be surprising that a constant shear stress
condition in the core could nearly duplicate the behaviour of a laminar model
derived from the Navier–Stokes equations. Upon further scrutiny, however, it
may be realized that a large body of experimental evidence supports the notion
that vortices display an approximately constant angular velocity core with low
turbulence levels to the extent that they may be treated as laminar. Turbulent
Proc. R. Soc. A (2009)
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diffusion is therefore limited to a narrow area that surrounds the laminar zone.
Outside the turbulent zone, an inviscid flow approximation may be assumed as in
the case of a potential outer vortex. Thus, given that a laminar core with
constant angular velocity is accompanied by nearly constant shear, its ability to
reproduce similar features to those associated with the constant shear stress
approximation is confirmatory. Hence, in addition to the core modelling choices
debated here, the laminar model for the bidirectional vortex is substantially
improved through the use of an empirically based turbulent eddy viscosity. It is
hoped that future experiments and numerical simulations will be correlated
versus the vortex Reynolds number, thus helping to validate and refine the
present models.
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