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Exact Eulerian Solutions of the Cylindrical         
Bidirectional Vortex 

Joseph Majdalani* 
University of Tennessee Space Institute, Tullahoma, TN 37388  

In this work, new types of Eulerian motions are investigated as potential flow candidates 
for describing the bidirectional vortex field in a right-cylindrical chamber.  These basic 
solutions apply to industrial cyclone separators and to idealized representations of either 
liquid or hybrid rocket engines.  The latter correspond to a bidirectional vortex chamber 
with weak sidewall permeability.  As usual, we take the bulk motion to be isentropic along 
streamlines, with no concern for reactions, heat transfer, viscosity, compressibility, or 
unsteadiness.  Our mathematical approach is anchored on the cylindrical Bragg-Hawthorne 
equation which is concurrently applied in its spherical form to the treatment of the conical 
cyclone (Barber, T. A., and Majdalani, J., “Exact Eulerian Solution of the Conical 
Bidirectional Vortex,” AIAA Paper 2009-5306, August 2009). Among the unique 
characteristics of the new solutions, we cite the axial dependence of the swirl velocity, the 
Trkalian and Beltramian characters of the helical motions, the appreciable sensitivity to the 
outlet radius, the alternate location of the mantle, and the increased axial and radial velocity 
magnitudes, including the rate of mass transfer across the mantle, for which explicit 
approximations are obtained.  Our results are compared to one another and to an existing, 
complex lamellar solution in which the swirl velocity collapses into a free vortex. In this vein, 
we find the strictly Beltramian flows to share virtually identical pressure variations and 
radial pressure gradients with those associated with the complex lamellar motion. By the 
same token, both families necessitate an asymptotic treatment to overcome their endpoint 
deficiencies caused by their dismissal of viscous stresses.  From a broader perspective, the 
work delineates a logical framework through which self-similar, axisymmetric solutions to 
bidirectional and multidirectional vortex motions may be rigorously pursued. Furthermore, 
it illustrates the manner through which multiple configurations may be arrived at depending 
on the types of boundary conditions imposed. For example, both the slip condition at the 
sidewall and the inlet flow pattern at the headwall may be enforced or relaxed.  Our analysis 
is carried out in the context of a right-cylindrical chamber first without and then with 
allowance for sidewall injection.  The latter enables us to model the basic flow in the so-
called Vortex Injection Hybrid Rocket Engine (VIHRE). Finally, the alternate mantle 
location and swirl velocity are verified in the light of existing measurements and numerical 
simulations performed with the Reynolds Stress-transport Model (RSM). 

Nomenclature 
iA  = inlet area 

a  = outer radius of the cylindrical chamber 
b  = inner radius of the circular outlet section 

0  = constant, 1 3C C  
 = tangential angular momentum, ru  

c  = constant, 1 01/ [ ( )]J 3.069148( 0)  
 = stagnation pressure head 

L  = length of cylinder 
l  =  chamber aspect ratio, /L a  
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p  = pressure 
p  = normalized pressure, 2/ ( )p U  

iQ  = inlet volumetric flow rate, iUA  
,r z  = radial and axial coordinates 

S  = conventional swirl number, / iab A  
u  = velocity, ( ru , u , zu ) 
u  = normalized velocity, ( ru , u , zu )/U  
U  = mean tangential (inflow) velocity 

wU  = sidewall injection velocity 
 
Greek 

 = open outlet fraction, /b a  
*  = mantle location where 0zu  
 = sidewall injection ratio, /wU U  
 = tangential inflow parameter, 1(2 )l  

0  = first root of 1( )J x , 3.8317 01 ( )  
 = density 
 = swirl number, 2

ia A  
 = separation constant 
 = stream function 

 
Subscripts, Symbols & Acronyms 
i , o  = inner/inlet or outer/outlet property 
, ,r z  = radial, axial, or azimuthal component 

VCCWC = Vortex Combustion Cold-Wall Chamber 
VIHRE = Vortex Injection Hybrid Rocket Engine 

I. Introduction 
YCLONIC motions pertain to a number of vortex-fired engine technologies including such devices as the 
Vortex Hybrid Engine introduced by Gloyer, Knuth and Goodman,1 the Vortex Injection Hybrid Rocket Engine 

conceived by Knuth et al.,2 the Vortex Combustion Cold-Wall Chamber developed by Chiaverini et al.,3 and the 
Reverse Vortex Combustor spawned by Matveev et al.4  In addition to their propulsive function, these fascinating 
swirl-induced patterns are inherently connected to meteorological phenomena such as tornadoes, hurricanes, 
dustdevils, and typhoons;5 astrophysical activities of cosmic spirals, galactic pinwheels, and helical trajectories of 
celestial bodies;6-7 and industrial processes employing cyclonic separators, combustors, and furnaces.8   
 For the cylindrical cyclone, some of the earliest laboratory investigations point us to ter Linden9 whose efforts to 
characterize dust separation efficiency were swiftly succeeded by the classical experiments on hydraulic and gas 
cyclones reported by Kelsall10 and Smith.11-12 These fundamental experiments suggested the existence of forced, 
rather than free vortex behavior in the core region of a cyclone.  Other theoretical studies of hydraulic cyclones 
emerged but these were chiefly based on semi-empirical methods.13  Among them stood the Polhausen technique 
which was introduced in this context14 and later traded by Bloor and Ingham15 for an Eulerian approach to the 
treatment of a conical cyclone.  With the widespread use of computational alternatives, shortly after Bloor and 
Ingham’s work, mathematical modeling seems to have suddenly fallen out of favor in exchange for two- and three-
dimensional simulations of cyclonic devices.  Several experimental and numerical investigations have since been 
carried out including those by Hsieh and Rajamani,16 Hoekstra et al.,17 Hoekstra, Derksen and Van den Akker,18 
Derksen and Van den Akker,19 Fang, Majdalani and Chiaverini,20 Rom, Anderson and Chiaverini,21 Murray et al.,22 
Hu et al.,23 Zhiping, Yongjie and Qinggand,24 and Molina et al.25  In retrospect, an extensive survey on this subject 
by Cortes and Gil26 unequivocally affirms that most realistic mean flow models of cyclone separators remain 
empirical in nature and, in actuality, firmly reliant on least-squares and curve fitting techniques.  As for the 
numerical simulations carried out so far, most seem to be turbulence-model dependent and, in their own way, 
limited in their ability to furnish universal predictions.  More significantly perhaps, their results seem to falter in 
providing deeper physical insight than may be retrieved from a well-posed theoretical framework.  
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 Given the shortage of purely analytical models of axisymmetric cyclonic flows,27 an Eulerian based solution was 
developed by Vyas, Majdalani and Chiaverini28 for a right-cylindrical VCCWC chamber model.  Although their 
effort only produced a simple solution for the problem at hand,29 it set the pace for a laminar boundary layer 
treatment of the viscous core30 along with a cursory characterization of the multiple-mantle paradigm.31  Shortly 
thereafter, the extension to the hybrid vortex configuration was conceived and carried out by Majdalani and Vyas,32 
and later refined by Majdalani.33  As for the sidewall boundary layers, they were resolved under laminar conditions 
by Vyas and Majdalani34 and then, for the axial and radial orientations, by Batterson and Majdalani.35  Meanwhile, 
despite this incremental progress, the analytical treatment of the core region remained, effectively, incomplete.  This 
was especially true at high Reynolds numbers for which the aforementioned (laminar) profiles overpredicted the 
maximum swirl velocity.  To partly address this issue, Maicke and Majdalani36 applied a turbulence-based, constant 
shear stress model to the core region from which they extracted a piecewise, Rankine-like approximation for the 
swirl velocity.  In the same article, it was shown that the use of a higher effective turbulent eddy viscosity in the 
calculation of the vortex Reynolds number could lead to satisfactory alignment with experimental measurements.  
 In the interim, realizing the need to explore other potential candidates to this problem, Majdalani and Rienstra37 
turned their attention to the general vorticity equation in spherical coordinates.  This step, which was initiated in 
2004,38 allowed them to identify uniform, linear and nonlinear classes of exact Eulerian solutions for problems with 
constant angular momentum.  These were classified according to the relation established between their tangential 
mean flow vorticity  and their stream function .   Their type I representation displayed uniform vorticity and 
reproduced, in one case, the potential flow past a sphere (i.e., the external portion of Hill’s spherical vortex39).  Their 
type II solution assumed a linear relation  and reproduced, in one situation, the bidirectional vortex in a 
cylindrical chamber.29 Finally, their type III considered nonlinear relations of the form ; (0,1).q q   These 
representations gave rise to interesting flow patterns that could be computed numerically for ( 3,0,1)q  or 
extracted analytically for 3.q    

In seeking additional types of solutions that are recoverable from the spherical Bragg-Hawthorne equation 
(BHE),40 Barber and Majdalani41 revisited the conical cyclonic flow problem that was first considered by Bloor and 
Ingham.15  Their analysis led to a portable, self-similar, verifiable solution that is independent of the cone’s finite 
body length.  It also gave rise to explicit approximations of several flow attributes such as the mantle location, 
maximum chamber velocities and their loci, and both pressure and vorticity distributions.  Moreover, it permitted the 
identification of the basic forms of the angular momentum relation to the stream function and to the procedural steps 
required to (i) account for the spatial variance of the swirl velocity and (ii) capture the effects of a specific injection 
flow pattern.  In this companion article, a similar procedure is implemented in the context of axisymmetric cyclonic 
flow in a cylindrical chamber.  In this vein, both hard and permeable wall conditions will be considered, with the 
latter posing an idealized representation for the internal flowfield of a Vortex Injection Hybrid Rocket Engine.  

a)  b)   
 

Figure 1. Schematic of a cylindrical cyclonic chamber showing a) separate vortex regions and b) coordinate system used. 
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II. Formulation 

A. Cylindrical Bragg-Hawthorne Equation 
 The procedure used by Barber and Majdalani41 may be judiciously extended to the analogous problem arising in 
a confined cylinder (see Fig. 1a).  The corresponding study was previously explored via the vorticity-stream 
function approach by Vyas and Majdalani,29 Majdalani and Rienstra,37 and, most recently, by Maicke and 
Majdalani.36  Starting with the cylindrical BHE expression,42 one can put 

   
2 2

2
2 2

1 d d
d d

r
r rr z

 (1) 

where ru  and / / 2p u u  denote the tangential angular momentum and the total pressure head, 
respectively.40  Everywhere, the nomenclature and conditions used by Majdalani and Rienstra37 are adhered to as 
closely as possible (see Fig. 1b).   
 It may be instructive to note that Eq. (1) may be linearized by choosing conditions leading to a simple right-
hand-side that renders either a constant, as in the case of Bloor and Ingham,15 or a linear function of , as in the 
case of Vyas and Majdalani.29  Such conditions arise when  is either constant or 

   

d const
d
d ~
d

       
0 1

2
0 1

( )

( )

B B a

B B b
 (2) 

and  has to simultaneously be either constant or 

   

d const
d
d ~
d

       0
2

0 1

( )

( )

H a

H H b
 (3) 

 For example, in the development of the sinusoidal predecessor model, Vyas and Majdalani29 have implicitly used 
( ) 1,d / d 0  and 2d / d ,nH C  to the extent of producing a linear BHE.  Presently, this order will be 

reversed as we follow Bloor and Ingham15 and assume isentropic conditions that permit setting d / d 0.H    Moreover, we seek a slight generalization by granting the angular momentum dependence on the stream function, 

   2
0 1( )B ru B B    (4) 

For simplicity, we take 2
0 nB C  and put  

   2d
d nC  (5) 

where 2
nC  denotes some constant that needs to be determined from suitable boundary conditions.  Inserting Eq. (5) 

into the Bragg-Hawthorne equation, one obtains 

   
2 2

2
2 2

1 0nC
r rr z

 (6) 

which resembles the equation solved by Vyas and Majdalani29 except for the absence of an 2r  multiplying the last 
member of Eq. (6).  As usual, one may assume ( , ) ( ) ( )r z f r g z  and transform Eq. (6) into 

   2 2

2

0
( ) 1 1

n
g z

f f C f
g z f r

 (7) 

Three solutions arise and these depend on the choice of the separation constant:  
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For the bidirectional motion in a cylinder, an assortment of constraints may be imposed, specifically37 

   
0;   ( ,0) 0;    / 0 (a)
0;   (0, ) 0;    / 0 (b)

;   ( , ) 0;    / 0 (c)

z

r

r

z u r r
r u z z
r a u a z z

 (9) 

As for the sidewall condition on u , two conditions may be systematically considered.  The first enforces a zero 
tangential velocity at the wall, ( , ) 0u a z , whereas the second matches the outer circumferential velocity to the 
maximum swirl speed at entry, ( , ) .u a z U   The outcome of each of these assumptions will be discussed below.  
Furthermore, the 0  case will constitute our chief focus while the remaining two cases, which give rise to 
sinusoidal or exponential variations in z , will be evaluated separately.  Before concluding our analysis, the case of 
sidewall injection will be considered  and resolved, being a special case of the problem at hand.  

B. Similarity Conforming Solutions 
The first condition in Eq. (9) requires the vanishing of the axial velocity at the headwall or 2 0C .  Along 

similar lines, one must set 4 0C  to suppress the unbounded behavior of the radial velocity at the centerline.  This 
leaves us with 0 1 ( ),nz rJ C r  where 0 1 3.C C  The third condition yields  

   1( ) 0nJ C a    ; 0,1, 2n
nC n

a
 (10) 

where (3.83171,7.01559,10.1735,13.3237,...)n  denote the roots of the Bessel function of the first kind.  For a 
single turning point behavior, one takes 0 0 / 3.83171/ ,C a a  0 1 0( / ),z rJ r a  and puts 

   
1/22

2 2 2 2
0 1 0 0 0 1 0 1 0 0 0 0

1
r z

r z r z r
J r J B J

a r a a a a
u e e e  (11) 

 The constant 0  may be secured from a global mass balance.  At steady state, a volumetric rate of i iQ UA  
entering the chamber must exit through the downstream opening of radius b .  This enables us to write 

   
0 0

ˆ2  d 2 ( , ) d
b b

z ir r u r L r r Qu n  (12) 

and deduce  

   0
1 02
iQ

a LJ
 (13) 

where /b a  is the open fraction of the radius at .z L    
At this stage, one of two boundary conditions may be used for the tangential velocity.  By analogy with the 

Taylor-Culick inviscid profile that self-satisfies the no-slip at the wall, we first attempt to impose, ( , ) 0,u a z  or 
1 0.B   The problem simplifies considerably with the elimination of the leading 1r  term and the attendant 

singularity at the centerline.  We are left with  

   0 0 1 0
z r

u J
a a

 (14) 

C. Normalization 
Using the standard reference values introduced by Majdalani and Rienstra,37 we put 

   
1

2 2 2 2

, , , ,

, , ,

r z
r z

i i
i

uu ur z
r z u u u

a a U U U
Q Ap

p Q
aUU Ua Ua a

 (15) 

The normalized velocity becomes 

   0 0 0 0 0
1 0 1 0 0 0r zJ r zJ r zJ r

U U U
u e e e  (16) 

which, by way of Eq. (13), renders, 

  1 0 1 0 0 0
0 0

1 0 1 0 1 0

1 1 1
2 2 2r z

J r J r J r
z z

l J l J l J
u e e e  
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   1 0 1 0 0 0
0 0

1 0 1 0 1 0
r z

J r J r J r
z z

J J J
e e e  (17) 

and 

   
1 0

1 0

( )J r
z r

J
 (18) 

where 1(2 ) / (2 ) 0.35355 / ( ),il A aL a SL  and / 2 2.22S  is the standard swirl number.  
Equation (17) encapsulates one type of behavior that may be associated with the resulting stream function. However, 
the dependence of its swirl velocity, ,u  on the reciprocal of the swirl number, through 1 1~ ,l  is not expected.  
While we continue to study the behavior of Eq. (17), we are inclined to search for other possible forms that arise 
when using different inlet and wall boundary conditions.  Additionally, the axial variation of the stream function will 
be studied in view of the trigonometric types of solutions given by Eq. (8).  Some of these will be expounded below.   

D. Reynolds Stress-transport (RSM) Simulation 
 A simplistic simulation of the cylindrical chamber is carried out using the “vortex tank” shown in Fig. 2.  Using 
SI units everywhere, the tank is created with 0.2,L 0.15,a  and an outlet radius of 0.105.b  The tubular vortex 
finder that is attached at z L  extends an equal distance downstream.  This is performed to aid in flow 
development.  Air with density 1.225,  51.7894 10 ,  and a circumferential injection velocity of 260U  is 
applied as an inlet velocity condition along a segment of length 0.025.iL   The inlet velocity is slanted at 7 
degrees inward from the purely tangential direction, thus granting it an effective tangential component of 258 m/s 
and a small radial contribution of 31.7 m/s.  The total inlet area is hence 2 0.02356.i iA aL  The sidewall 
velocity is denoted by wU  and can be varied from zero to a value that is characteristic of hybrid propellant burning.  
Taking advantage of axisymmetry, a two-dimensional double precision simulation is initiated with the Realizable 
k  (RKE) model because of its convergence properties.  The model is later switched to RSM because of its 
enhanced suitability for the treatment of swirl-dominated flows.43  Our mesh consists of 90,580 quadrilateral cells 
organized into 7 partitions that are synchronously extruded along the chamber.  Grid refinement is carried out to 
ensure grid convergence.  Our physical properties correspond to an aspect ratio of 4

3 1.333,l  an open fraction of 
0.7,  a kinematic viscosity of 51.46 10 ,  a normalized volumetric flow rate 2/ 1.047,i iQ A a  and a 

tangential inflow parameter of 0.125.  
Regarding the choice of a solver, our code is based on the Finite Volume Method (FVM).  FVM pertains to the 

discretization scheme applied to the governing PDEs and is particularly suited to those arising in fluid and mass 
transport problems.44 Accordingly, the general PDE controlling the flux of a conserved passive scalar can be written 
as 
   

sourceunsteady convection diffusion

/ t Su  (19) 

a)   b) 

c)    d) 
 

Figure 2. Computational domain used in the axisymmetric RSM simulation of a vortex tank with detail on a)
quadrilateral mesh distribution, b) zone partitioning, c) vector plots, and d) streamlines. 
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where , ,t ,u ,  and  denote the density, time, 
velocity, diffusivity, and the unknown scalar for which we 
seek a solution.  FVM requires integrating over each of 
the domain control volumes; this operation yields an 
algebraic equation relating neighboring values of the 
dependent variables to the centroidal nodes of each 
control volume.45 The resulting algebraic expression, for a 
control volume P, takes the form 
               

i i

P

P P N N P
i N

a a b  (20) 

where 1,2, ,i PN N  represent the neighboring cells.  
The coefficients depend on the specific interpolation 
scheme used in the discretization process.  Upwind and 
QUICK schemes are used, for example, to relate face 
values to control volume values in the convective terms. 
In our simulations, we employ first order schemes for all terms and the SIMPLE algorithm to resolve the pressure 
and velocity coupling.44-45  

III. Fundamental Characteristics 

A. Theoretical Locations of the Mantle 
 The cylindrical mantle or spinning wheel refers to the axially rotating layer that separates the updraft (or inner 
vortex) from the downdraft (or outer vortex). Along this surface, one may set 0zu  and solve for the corresponding 
radial position *.r  One readily obtains 0 0 * 0J  or * 0.627612.   This result is quite intriguing as it 
differs from the 0.707 value obtained previously by Vyas and Majdalani.29  Nonetheless, it seems to fall closer to the 
recent CFD simulation carried out in house using a right-cylindrical chamber (see Fig. 3). It also stands more or less 
in line with the average value of * 0.675  predicted by Hoekstra, Derksen and Van Den Akker,18 although theirs 

Table 1. Experimental mantle location according to Smith11-12 
 

Site Position Case I (2” inlet) Case II (0.5” inlet) 
No. L z  [in] r  [in] * r  [in] * 
1 0.0 1.99 0.6633 2.13 0.7083 
2 1.5 1.89 0.6300 2.15 0.7166 
3 3.0 1.88 0.6266 2.15 0.7166 
4 4.5 1.85 0.6166 2.15 0.7166 
5 6.0 1.79 0.5966 2.17 0.7233 
6 7.5 1.79 0.5966 2.20 0.7333 
7 9.0 1.75 0.5833 2.20 0.7333 

Mean  1.85 0.6166 2.16 0.7211 
 

Table 2. Matrix of mantle locations 
 

m  1n  2n  3n  4n  5n   

1 1,1 0.6276       

2  2,1 0.342783  2,2 0.786831     

3  3,1 0.236382  3,2 0.542596 3,3 0.850617    

4  4,1 0.180492  4,2 0.414305 4,3 0.649499 4,4 0.885005   

5  5,1 0.146007  5,2 0.335147 5,3 0.525404 5,4 0.715913 5,5 0.906518   
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Figure 3. Mantle location according to the RSM 
simulation of the vortex tank shown in Fig. 2. 
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remains closer to 0.707 than 0.628. Note that these researchers’ experimental and numerical tests were carried out at 
a moderate Reynolds number of 45 10Re  and three decreasing swirl numbers of 3.1S , 2.2  and 1.8 .18  The 
small deviations from our predicted value may be attributed to their specific use of a Reynolds stress transport 
model and to inevitable differences that are germane to industrial gas cyclones.  In comparison to other 
investigations of cylindrical cyclones, the most notable may be the classical experiments by J. L. Smith who studied, 
with the aid of smoke, the formation of laminar vortex structures in a right-cylindrical cyclone that comprised a flat 
bottom and a vortex finder.11-12  Based on the two test cases reported in Smith’s work, the experimental mantle 
measurements are catalogued in Table 1 at several axial positions.  It is gratifying that not only do his values exhibit 
weak sensitivity to the distance from the headwall, but they also corroborate the duality of roots obtained so far with 
his averages falling around 0.62 and 0.72.  Concerning the weak sensitivity of mantle excursions to inlet flow 
conditions, confirmatory studies have been reported separately by Vatistas, Lin and Kwok46-47 and, by in-house 
studies including those by Fang, Majdalani and Chiaverini.20,48  As for the possibility of inception of multidirectional 
flow passes, the corresponding mantle locations stem from Eq. (10) and are summarized in Table 2. 

B. Characteristic Properties 
 To avoid corner collisions in the exit plane, the chamber opening may be taken such that the open fraction is set 
to coincide with the mantle location, * 0.627612.   By aligning the outflow diameter with the opening at 
z l , undesirable flow circulation and secondary flow formation may be mitigated.  The optimal solution 
simplifies into 
  1 0 1 0( ) 3.069 ( )c z rJ r z rJ r  
  1 0 0 1 0 0 0 0r zc J r c zJ r c zJ ru e e e  
   1 0 1 0 0 03.069 11.76 11.76r zJ r zJ r zJ re e e  (21) 
where 1 01/ [ ( )]c J  in general, and 3.069148c  for the particular case of *.   From this expression, the 
radial crossflow velocity along the mantle may be calculated to be:  

   
cross( ) 1.59334ru

  
 (22) 

which is 12.7% larger than the previously estimated value of cross( ) 1.41421 ,ru z  (cf. Vyas and Majdalani29).   
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Figure 4. Comparisons for a) axial, b) radial, and c) tangential velocity distributions.  We show in d) CFD data based on 
the RSM model.   
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Furthermore, a simple check of cross2 ( )r il u Q
 
confirms that the entire mass entering the chamber is transported 

from the annular region into the inner vortex, uniformly along the mantle, before exiting at z l .  Interestingly, 
both tangential and radial velocities reach their peak magnitudes at the same maxr  which, in turn, can be computed 
from 
   max0 2 0 x0 ma( ) ( ) 0J Jr r  (23) 
Thus for max 0.480513r  we find max 1.78583( )ru  to be comparable in size to the previously reported value29 
of 1.50879 .   As for the tangential velocity, its maximum is no longer infinite but rather prescribed by the 
location and inflow parameter: max 6.842( 8) 7 zu .  This result is interesting as it suggests that u , in its purely 
inviscid form, may be non-singular along the axis of rotation.  However, the inverse dependence of max( )u  on the 
swirl number, through 1 1~ ,l  leads to a fundamental paradox that we hope to resolve in later study.   

In the interest of clarity, normalized forms of the axial, radial, and tangential velocities are presented in Fig. 4 
where they are also compared to the trigonometric profile derived by Vyas and Majdalani,29 
   1 2 1 2sin( ) 2 cos( )r zr r r z ru e e e  (24) 
In hindsight, this solution belongs to the family of complex lamellar flows49 for which streamlines remain 
everywhere perpendicular to vorticity lines by virtue of their vanishing helicity density, 0.u   Furthermore, Eq. 
(24) can be directly retrieved from Eq. (1) by setting aU  and 2d / d .nH C   As before, the axial velocity 
shown in Fig. 4a varies linearly with ,z  from a vanishingly small value at the headwall to a maximum that occurs at 
the center of the exit plane.  In relative comparison to the sinusoidal solution, the centerline velocity amplification 
ascribed to the present model may be readily deduced from 011.76 0 / 2 cos(0) 1.872.J  
 Surely, the 87% amplification in the maximum axial velocity may be surmised from the graph.  As for the radial 
velocity magnitude, it vanishes at the sidewall and increases inwardly, thus peaking shortly after crossing the 
mantle, halfway along the radius ( max 0.480513r ).  Subsequently,  ru  decreases until it fully disappears along 

0r  (see Fig. 4b).  The comparison for the self-similar swirl velocity is showcased in Fig. 4c side-by-side with the 
free vortex expression.29  While the latter remains insensitive to ,z  the present model varies with the axial position 
and the tangential inflow parameter, thus peaking in the exit plane.  It also comprises two evenly balanced regions 
that are somewhat reminiscent of the forced and free vortex regions except for the relative size of the forced vortex 
which is traditionally the smaller of the two.  In relation to the RSM data shown in Fig. 4d, max( )u  seems to slightly 
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Figure 5. Pressure differential for a) slip resistant and b) slip permitting cases. Corresponding radial and axial pressure 
gradients are shown in c-d) at several axial positions. Both solutions share the same axial pressure gradient. 
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overpredict the maximum swirl detected at four axial positions.  This behavior can be attributed to the present model 
being purely inviscid and to viscous stresses constituting an important damping agent that cannot be captured here.  

Having briefly sketched the velocities, the pressure gradients that accompany them may be obtained directly 
from Euler’s equations viz. 

2 2
2 2 2 2 2 2 2 4 2 2 2 40 5 51 1 1

1 0 0 1 0 0 0 0 0 0 0 0 04 2 64 4
2

1
4

2
2 4

9
(1 )

( ) ( ) ( ) [1 (1 )]
z

c J r J r J r c r r r z r
p

r
rr

 

   

 (25) 
2 2 2 2 2 2 2 2 2 2 4 4 6 651 1

0 0 0 1 0 0 0 0 04 32 2304[ ( ) ( )] (1 )p
z

c z J r J r c z r r r  (26) 

Using 0p  to define the normalized pressure at the head-end center, we can write 0p p p  and integrate Eqs. 
(25)-(26) to arrive at 
  2 2 2 2 2 2 21

1 0 0 0 0 1 02 ( ) [{ ( ) ( )]}c J r z J rp J r

 

   

2 2 2 2 2 4 6 2 2 2 4 4 6 65 51 1 1
0 0 0 0 0 08 4 192 8 6

4
57(4 )c r r r z r r r  (27) 

Figure 5a illustrates the radial variation of 2/p  at several axial stations that are evenly distributed along the 
chamber length.  Being referenced to its value at 0,z  the pressure differential varies from a small value at the 
headwall to 269.2  at 1.z   Its prediction differs considerably from the 21

2 r  behavior shown in Fig. 5b and 
associated with free vortex motion.  The pressure gradients in the radial and axial directions are further shown in 
Figs. 5c-d.  Note that the locus of the peak radial pressure gradient is centralized, ranging between 0.722183r  
and 0.355474  for 0 2.92224.z   Despite the apparently large pressure gradients, actual magnitudes are 
reasonably tempered owing to the impending multiplication by 2 .  As we move downstream, the axial pressure 
gradient changes rapidly along the centerline and gradually along the sidewall.  This behavior may be viewed as an 
improvement over the 2 24p / z z  relation associated with the sinusoidal solution.  The latter remains 
radially invariant while changing linearly with the distance from the headwall. The increased pressure gradient in the 
core seems to suggest a faster moving core flow which, in turn, could be a performance enhancer. 

To capture the two related solutions side-by-side, their streamlines are plotted in Fig. 6 using two chamber aspect 
ratios.  It is interesting to note the strong similarities between the two motions despite the slight shift in their flow 
turning points.  In fact, the two families of streamlines shown in the r z  plane seem to mirror each other almost 
identically.  The superimposition of swirl causes fluid particles entering the chamber to spin around while scooping 
down the chamber bore.  Their motion is accompanied by uniform mass transport along the (chained) interface that 
separates the annular downdraft from the tubular updraft.  Although not shown, the swirling speed of the returning 
stream increases with the distance from the headwall because of the angular momentum that it carries inwardly and 
the merging with the radial mass crossing the mantle.  This behavior is corroborated by several reported experiments 
and numerical simulations including those by Smith,11-12 Hoekstra, Derksen and Van Den Akker,18 Anderson et al.,50 
and Hu et al.23  The vorticity and swirling intensity carried by the flow can also be examined.  The latter may be 
evaluated directly from51 

    2 23 3 51
2 3 1 024 2 2 2

2
3 21
0 04 0 0

, , 2,d d 1.2, 34 67, 0z zu u r r u r r F J  (28) 

The constancy of the swirling intensity stands in sharp contrast to the spatially varying value of 5.443 /l z  that 
accompanies the sinusoidal solution.  Instead of peaking near the headwall or increasing with the swirl number as 
before, the present model yields a uniformly distributed swirling intensity throughout the chamber volume, 
regardless of inlet conditions.  This could be interpreted as a condition conducive of spatial constancy in mixing 
efficacy.  Graphically, the pitch angle of a spiraling streamline will be uniform in comparison to its complex 
lamellar counterpart which varies from a small angle at the headwall to a large value over the body of the cylinder. 
 Another distinguishing attribute may be examined by evaluating the vorticity.  This may be readily expressed 
using u  or 
  1

2 2
0 00 1 0 00 0r zJ r Jc c z cr J rze e e  

   1 0 1 0 0 011.7601 45.0611 45.0611r zzJ r zJ r J re e e  (29) 
In the same vein, the vorticity magnitude may be estimated from 

   2 2
1 0 0 00 1 0

2 2
0 1 1 /J r J r J rc z  (30) 
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This result is substantially different from the swirl dominated complex lamellar solution which, in hindsight, was 
somewhat limited in that it could only engender one component of vorticity, namely, 2 24 sin( ).rz r   The 
two additional components of vorticity that arise here stem from the axial dependence of .u   At first glance, it may 
be surmised that Eq. (29) bears a striking resemblance to Eq. (21).  Upon further scrutiny, however, we find the 
vorticity to be directly proportional to the velocity through 0 .u   This vector parallelism is accompanied by a 
vanishing Lamb vector ( 0u ), a defining characteristic of the Beltramian family of fluid motions in which the 
main source of nonlinearity is eliminated.  The corresponding Helmholtz equation is linearized, thus giving rise to 
simple exact solutions of swirling motions.52  Note that the velocity in 0u u  plays the role of an eigenvector 
of the curl operator connected with the eigenvalue 0 .  Within this class of helical fields, our flow is specifically 
called Trkalian because of the constancy of 0 .53 Being a Trkalian profile, it forms a basis vector of helical wave 
decomposition and may be used to appropriately represent steady, incompressible, and chaotic motions in a 
frictionless environment. 
 Figure 7a illustrates the vorticity distribution along the chamber cross section at select axial positions.  Except 
for the region in the immediate vicinity of the headwall, it can be seen that vorticity is amplified near the centerline 
and continues to grow in the downstream direction.  This behavior is corroborated in Fig. 7b where contours of 
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Figure 6. Flow streamlines comparing the present model (solid lines) to the sinusoidal solution (broken lines). Results 
are shown for two chamber aspect ratios of a) l = 1 and b) l = 2. 
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isovorticity are presented in the r z  plane.  In relative proportion to the azimuthal vorticity of its sinusoidal 
predecessor, the most significant differences arise in the core region and the immediate vicinity of the wall. 

C. Solution for a Non-vanishing Circumferential Velocity 
In the foregoing analysis, the swirl velocity was made to artificially vanish at the sidewall.  However, such a 

condition is expendable in a frictionless environment.  In mirroring the solution developed by Vyas and Majdalani,29 
we put ( , )u a L U  such that 2 2

1B U a  may be retrieved from Eq. (4).  This condition only affects the swirl 
component of the velocity which takes the form: 

   
1/22

2 2 2 2 2 2
0 0 1 0

1 z r
u r J U a

r a a
 (31) 

where Eq. (31) refers to a solution that permits slip at the sidewall and, for similar reasons, becomes infinitely large 
at the centerline.  Suppressing the inherent singularity at 0r  will have to be achieved using a suitable boundary 
layer treatment.  Note that u  bears a striking resemblance to the form obtained by Barber and Majdalani.41 It is 
strongly dominated by the free vortex behavior of its leading order part and displays only weak dependence on the 
spatially varying stream function.  In dimensionless form, Eq. (31) collapses into  
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Figure 7. Radial distribution of total vorticity along fixed a) axial positions and b) isolines. The same is repeated in c- d) 
for the slip permitting solution, and in e-f) for the sinusoidal model by Vyas and Majdalani.29 
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1/22 2 2 2 2
0 1 02 2 2 2

0 0 1 02 2
1 0

2 2 2 21 1 11 1 1
r z J r

u J r
r r r J

c r z
r

 (32) 

Before evaluating the induced pressure and vorticity, it may be useful to express the complete solution viz. 

   
1/22 2 2 2

1 0 1 0 0 0
13.069 1 138.3 11.76r zJ r r z J r zJ r
r

u e e e  (33)

 We mention in passing that the axisymmetric streamlines associated with Eq. (33) coincide with the solid curves 
shown in the r z  plane of Fig. 6. As for the corresponding radial and axial pressure gradients, these may be 
readily extracted from Euler’s momentum equation. We find, in relation to the just computed solution with no slip, 

3
2 2 2 2 2

nosl

1 0 0 1 0 0 0 0
3

ip

1 ( ) (1 ) ( ) ( )p p
r

c r J r z J r rJ

rr r

r

 

   

3 2 2 2 2 4 6 6 22 4 2 42 2 4 65 7 5 71 1 1
0 0 0 0 0 0 0 04 2 64 1152 4 192 4

6
6081 (1 )r c r r r r z r r r  (34)

 2 2 2 2 2 2 2 2 2 2 4 4 6 651 1
0 0 0 1 0 0

no
0 0 04 32 230

l
4

s ip

[ ( ) ( )] (1 )c z J r J r c z r
p p
z

r r
z

 (35) 

Then using 0p  to define the normalized pressure at the head-end center, partial integration toward the form 

0p p p  leads to 

  2 2 2 2 2 2 2 2 21 1 1
1 0 0 0 0 1 02os ip 2l 2n ( ) [ ( ){ ( )]}r r c J r zp p J r J r

 

   

2 2 2 2 2 2 4 6 2 2 2 4 4 6 65 51 1 1 1
0 0 0 0 0 02 8 4 192 8 576

4 (4 )r c r r r z r r r  (36) 

Unlike Fig. 5a in which the pressure variation remains finite, p  is largely dominated by the sharp sloping 21
2 r  

distribution depicted in Fig. 5b.  In the same vein, owing to the free vortex divergence near the axis of rotation, the 
radial pressure gradient is seen to be controlled by the 3r  behavior displayed in Fig. 5c.  This behavior is identical 
to that associated with the complex lamellar solution of Vyas and Majdalani.29  As for the axial pressure gradient, it 
remains independent of the swirl velocity contribution and is suitably described in Fig. 5d.   

Lastly for this case, the mean flow vorticity may be directly evaluated and expressed as 

  
2
1 0 0 0 1 0

1 02 2
1 0

2 2 2

2 2 2 2 2 2
1 0

138.3 529.92

1 138.3 1 1
4

38.3
5.06r z

J r J r J r
J r

J r

rz rz
z

r z r z J r
e e e  (37) 

As it may be expected, the spatial distribution of vorticity is dominated by its tangential component .   This, in 
turn, mirrors the tangential velocity given by Eq. (21) except for its magnitude being 3.832 larger.  Forthwith, the 
radial distribution of /  is illustrated in Fig. 7c at several axial stations.  It is clear that the vorticity vanishes at 
the headwall, sidewall, and centerline, where an irrotational vortex is established.  The onset of an irrotational core 
about the z axis is further corroborated by the contour plots of isovorticity rendered in Fig. 7d.  These confirm that 
vorticity increases in the positive downstream direction and reaches its peak value at max 0.480513.r   In fact, the 
maximum vorticity at any axial station may be readily calculated from 

   
11
22

m
2 2 2 2

ax 26.22 1 2.1749 (0.338567 6.43717 ) / 1 10.811 26.22z z z z  (38) 

It may be instructive to note that, despite its inclusion of an irrotational core, the vorticity distribution associated 
with Eq. (37) is spread over a relatively wide chamber interval.  This is especially true when compared to the 
vorticity generated by the complex lamellar profile of Vyas and Majdalani.29  The latter is described in Figs. 7e-f 
where a major vorticity concentration is located away from the centerline, thus leading to a substantially wider 
irrotational core region.  By comparing the various contours in Fig. 7, it appears that the solutions discussed above 
exhibit from top to bottom, increasingly wider irrotational segments.  While Eq. (31) corresponds to a Beltramian 
flow for which 0,u  it remains non-Trkalian because of its spatially varying ratio of vorticity and velocity, 
namely, 

   
1/2

0 2 2 2 2 2 2
1 00

11
J rc r zu

 (39) 

For the reader’s convenience, the principal equations associated with the 0  case are catalogued in Table 3.   
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IV. Other Similarity Conforming Solutions 
Pursuant to Eq. (8), two additional forms of solution may be worthwhile to investigate although they are less 

likely to arise in the context of cyclonic motion.  These are 

   
2 22 2
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( );sin( )
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( )( )
, n n

n

J r C C
r z

z

Jr C

r

rz
 (40) 

where we have set 2 0C  and 4 0C  to satisfy ( ,0) 0zu r  and (0, ) 0ru z  in Eq. (9), respectively.  We have also 
put 0 1 3C C  with no loss of generality.  The third boundary condition left to be applied consists of ( , ) 0.ru a z  
This implies: 
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These constraints will be satisfied, z , when  
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Table 3. Cases of  
 

Variable Equation 

 Common parts 
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Here n  and (3.83171,7.01559,...)n  denote, as before, the roots of the Bessel function of the first kind.  For 
a single head-end reversal, one takes 0 3.83171,  and so, for the harmonic axial variation, deduce 

2 2 1/2
0 0

2/ .( )C a   The separation constant  may be determined by imposing an additional physical constraint, 
such as ( , ) 0.ru r L   This condition forces the radial velocity to vanish at the endwall where the modeled flow is 
purely tangential.  At the outset, one collects, for the trigonometric approximation,  
   cos( ) 0j L       or       1

2( ) / ,j j L j  (43) 
To prevent the formation of undesirable recirculatory flows in the axial direction, we limit our attention to 

1
0 2 / .L   We recognize that other forms exist but these may find applications in physical settings that fall 

outside the scope of this investigation.  For the hypergeometric function representation, no plausible condition may 
be accommodated for the problem at hand.  For this reason, its analysis is relegated to later study.  In what follows, 
we focus our attention on 
   2 2

1 0
2 21 1

0 02 0 4sin( / )( , ) ( / ); // .r z L Lr z J r a C a  (44) 

The solution at this point may be expressed as 

2 0
1 0 1 0 1 0 0 0

2 2
2 2 20 0
0 2 2cos sin s1 in

2 2 2 24r z
z zr r r

J J B J
a r a a

z
r

L L aL L La
u e e e

 

   
 (45) 

where 0  may be obtained from global mass conservation.  One gets 
   

1
0 1 02iQ a J  (46) 

Concerning the last remaining constant, 1B , it will be either nil or 2 2U a  depending on whether we set ( , ) 0,u a z  
or ,U  respectively. 

A. Axially Harmonic Solution with No Slip 
 The solution becomes, for the motion compelled to satisfy no slip at ,r a   
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For the slip permitting solution, the profile will share the same components except for  

   2
2 2
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2 20
12 2

2
0

1 0

sin
42 2
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or, in dimensionless form, 

   2 2 2 2
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2
1 02 2
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1
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1u J r
r

z
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lJ
 (49) 

These two models share the same stream function which is plotted in Fig. 8.  In compact notation, we therefore have 
1
2 1 0si ,n /c l J rr z l  and, starting with the velocity adhering solution, 2 2 2 1/21

0 4[ / ]l  so that 
1 1

1 0 1 0 0 0 02 2

1 0 1 0 0 0

2 2 21 1 1
02 2 2

21 1 1
2 2 2

cos / 1 4 / sin / sin /

4.821 cos / 4.821 1 5.95 sin / 11.76 sin /

r z

r z

c z l l z l z l

z l l

J r c J r c l J r

J r J rz l z ll J r

e e e
u

e e e  

   
 (50) 

The mantle here remains fixed at 0.6276.  Moreover, if we were to evaluate the axial velocity at the endwall, where 
z l , we recover 0 01.76 .1 lJ r   This local radial distribution is identical to that retrieved from Eq. (21) and 
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displayed in Fig. 4a.  In contrast, the radial velocity vanishes at the endwall and peaks at the headwall with a value 
of 1 04.821 .J r   This outcome corresponds to 1.57 times its counterpart, 1 03.069 J r , given by Eq. (21) 
(and shown in Fig. 4b).  These medians given at 1

2z l  reproduce 0 08.32z ru lJ  and 1 03.41 ,r ru J  
which, in turn, exceed their counterparts in Eq. (21).  We infer that both axial and radial velocities associated with 
this motion tend to exhibit larger magnitudes than those with 0,  although they remain self-similar in the radial 
direction. This behavior is clearly illustrated in Fig. 9 where the three velocity components are displayed.  The over-
estimation of the axial and radial velocities predicted by this model constitutes its chief weakness, unless 
reconciliation with experimental or numerical data may be achieved.  The models described heretofore already seem 
to overpredict available observations and in-house simulations.  It is hoped that viscous corrections could be 
incorporated to help achieve better agreement with physically observed behavior.    
 From Eq. (50), the radial crossflow velocity along the mantle may be calculated to be 

   
c

1
2ross 2.5028 cos) /( r z lu

  
 (51) 

Pursuant to this model, the mass transfer across the mantle starts from zero at the endwall and increases to a 
maximum value of cross max

2.5028( )ru  at the headwall.  In particular, given that 2(2.5028) / 1,  one can 
verify that 
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Figure 8. Streamlines for L1
2 /  (solid lines) and  (broken lines) using a) l = 1 and b) l = 2. 
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Figure 9. Comparisons for a) axial, b) radial, and c-d) tangential velocity distributions based on the c) slip resistant and 
d) slip permitting solutions.  When needed, we use  = 0.125 and l =1.  
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Figure 10. Pressure differential for a) slip resistant and b) slip permitting cases.  Corresponding radial and axial pressure 
gradients are shown in c-d) at several axial positions. Both solutions share the same axial pressure gradient. When 
needed, we use  = 0.125 and l =1.   
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   1
cross0

2 ( ) d
l

r iu z Q  (52) 

In some propulsion-related applications, such as the vortex-fired engine class, this particular variation is 
advantageous as it suggests a gradual increase in the inward spillage rate, namely, from the outer vortex into the 
inner vortex.  If such a motion could be established in the VCCWC prototype, it would lead to a substantial 
reduction in early oxidizer leakage, a transport mechanism that ordinarily takes place immediately after injection.  
As for the maximum radial velocity, it occurs at the same position defined by max 0.4805.r  Its calculation leads to: 
   a

1
2m x 2.8052 cos) /( r z lu  (53) 

which also varies along the length of the chamber.  The same may be said of the swirl velocity which peaks at maxr
with a value of  
   2 1 2

2max
1 1
22.8052 1 5.9504 sin / 0.4465 5.9504 si( ) n /l z l l lu z  (54) 

Through Eq. (54) it can be seen that max( )u  will peak at entry and vanish at the headwall.  While increasing the 
aspect ratio seems to have a secondary effect on the maximum swirl speed, it appears illogical for max( )u  to be 
inversely proportional to the swirl number.  Such a relation may be attributed to the boundary condition that 
artificially impedes the tangential velocity at the sidewall.   
 In mirroring the analysis of Sec. II, the pressure associated with this model can be determined from 

  2 2 2 1 2 2 2 2 21
1 0 0 0 0 1 0 0 04 ( ) ( ) ( ) 2 2 cos /c J r J r r J r

p
l z l

r
l  (55) 

  2 2 2 2 21
0 0 0 1 04 [ ( ) ( )]sin /p

z
c l J r J r z l  (56) 

and so 
   2 2 2 2 2 2 21

1 0 0 0 1 08
2
01 ( ) 2 [ ( ) ( )] 1 cos /c J r l J r J rp z l  (57)

 These expressions are evaluated and plotted in Fig. 10 where they appear to bear strong commonalities with the 
results of Fig. 5.  Compared to the 0  solution, we find the pressure excursion and its gradients to be slightly 
higher in this case, which is consistent with the accompanying increase in velocity magnitudes. The axial pressure 
gradient is particularly interesting due to its periodicity in .z   This is illustrated in Fig. 10d where the curves 
corresponding to the (0,1), (0.2,0.8), and (0.5,0.6) pairs of axial positions collapse into three individual lines that 
share identical values. 
 The swirling intensity may also be evaluated for the 0  case.  One gets  

    
2 2 23 3 5

2 3 2 2 2 2
2
1

2 2 2
0 0 0

0

4 , , 2, 2, ,
0.549604 1 5.9504

48

l F
l

lJ
 (58) 

It is interesting that  intensifies in elongated chambers for which the length-to-diameter aspect ratio is increased.  
Turning our attention to the vorticity distribution, we extract 
 2 2 2 21 1 1 1 1

0 02 4
2 2

1 20 21 04cos / ( )/ / sin /rl J r l Jc z l c l z lre e  

   22 21 1
0 0 4 20 0 sin/ / zl Jc zrl l e  (59) 

and so 

 1 0 1 0
2 21 1

2 218.473 1 0.16806 c 0.168os / 45.06 1 sin /06rl z l l l J z lJ r re e  
   2

20
1

018.47268 1 5.9504 sin / zl r lJ z e  (60) 

Here too, based on Eqs. (50) and (60), it may be straightforwardly shown that this flow is Trkalian with a 
configuration specific constant 2 2 2 1/2

0 0[1 / (4 ) ./ ]lu   This vorticity-to-velocity ratio remains globally fixed 
for a given chamber aspect ratio .l  

B. Axially Harmonic Solution with Slip 
As we move to consider the slip-permitting solution, we note that only the swirl velocity distribution becomes 

affected by the normalized (1, ) 1u z  constraint and, by association, the vorticity, radial pressure gradient, and 
total pressure drop.  The axial pressure gradient remains unaffected as it contains no contributions from u .  The 
dimensionless angular momentum reduces to 2 2 1/2 21

0 4
2[1 ( / ) ] .l   This enables us to write  
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(61) 

which coincides with Eq. (49).  While the crossflow and maximum radial speeds remain unchanged, the maximum 
swirl speed becomes unbounded in the absence of viscous damping (Fig. 9d).  For the same reason, a core 
singularity emerges in the radial pressure gradient that is analogous to that of Eq. (34).  This can be seen in 

 3 2 2 2 1 2 2 2 2 21
1 0 0 0 0 1 0 0 04

no l
3

s ip

1 ( ) ( ) ( ) 2 2 cos /r c J r J r
p

r J
p

rr
l

r
r l z l

 

   

3 2 2 2 2 2 2 2 4 2 2 2 2 21 1 1
0 0 0 0 02 2 4

2 2 2 21
16 1 2 2 1 cos /r c r l r l r l r z l  (62) 

 2 2 2 2 21
0 0 0

noslip
1 04 [ ( ) ( )]sin /p p

r z
c l J r J r z l

 

   

2 2 2 2 2 4 41 1 1
0 0 04 4 321 sin /c r r zl l  (63) 

 2 2 2 2 2 2 2 2 21 1 1
1 0 0 0 1 0

2
0no 2s 2p 8li 1 ( ) 2 [ ( ) ( )] 1 cos /r r c J r l J r J lp r zp  

   
2 2 2 2 2 2 2 41 1 1

4 2 162 2 21 1
2 8 2 4 2 2 41 1 1

16

2 2 4 4
0 0 0 0

6 2 2 4
0 0 0 3 04 2

2

2 1 cos /

l r l r r
r c

l r l r r z l
 (64)

 where the recurring 3r  and 21
2 r  terms that arise in the radial pressure gradient and pressure drop are 

characteristic of free vortex behavior. They coincide with their predecessors obtained by Vyas and Majdalani.29  
 Finally, the vorticity for this profile begets 
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Figure 11. Radial distribution of total vorticity along fixed a) axial positions and b) isolines. The same is repeated in c- d) 
for the slip permitting solution. 
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The vorticity and velocity components stemming from Eqs. (61) and (65) may be readily manipulated to verify the 
vanishing of the Lamb vector which, in effect, is caused by the Beltramian parallelism ascribed to 

   
1/2

2

0 2 2 2 2 2 2 2 2 1
0 2 1 00

2
11

4 sin / J rl c l r z lu
 (66) 

So while  and u  retain a fixed relative alignment throughout the chamber, the ratio of relative magnitudes / u
 varies locally from one point to the other.  This feature is, of course, characteristic of a Beltrami flowfield.  Note that 

all of the new models exhibit the property / / .u   Accordingly, the vorticity-to-velocity ratio is identical to 
the ratio of the tangential angular momentum and the stream function. 
 In the interest of clarity, a summary of the main equations associated with the case at hand is offered in Table 4.  
The character of the vorticity is illustrated in Fig. 11 for the two models at hand, using both radial vorticity lines at 
fixed z  (in a,c) and isovorticity contours in the r z  plane (in b,d).  These plots may also be compared to those 
given in Fig. 7 for the 0  cases.   
 Consistently with the velocity and pressure attributes, we find these profiles to produce higher levels of vorticity 
and distributions that are commensurate with their core vortex evolution.  In Figs. 11a,b, it is clear that  
approaches a constant value as 0.r   The constant angular rotation of the fluid near the centerline is gratifying, 
being characteristic of forced vortex motion.  It can be seen not only Figs. 11a,b but also, Figs. 7a,b, where the 
corresponding swirl velocity vanishes at the radial endpoints.  In contrast, the trends in Figs. 11c,d appear to be 
analogous, despite having slightly higher magnitudes than those depicted in Figs. 7c,d.  These slip permitting 
profiles give rise to an irrotational region near the chamber axis where viscous stresses become prevalent.  A similar 
irrotational region appears near the wall where the velocity adherence condition is relaxed.   
 Despite these deficiencies, the vorticity contours induced here may, at some point, be reconciled with those 
obtained numerically, with two examples shown in Fig. 12.  The main departure from the CFD results appears near 
the wall where a region of concentrated vorticity is expected to form.  Based on these preliminary RSM simulations, 
it seems possible for the inviscid profiles to provide suitable approximations to the swirl induced bidirectional 
motions, especially after properly accounting for wall boundary layers.  

    

 
 

Figure 12. Contours of isovorticity using RSM simulations in a bidirectional vortex tank. 
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V. Solutions with Sidewall Injection 

A. Extended Boundary Conditions 
 The solutions presented heretofore can be modified to the extent of accounting for sidewall mass injection.  Such 
a problem arises in the modeling of hybrid rocket internal gas dynamics.  The Vortex Injection Hybrid Rocket 
Engine represents one such case in which wall blowing is induced by the inward ejection of gases into a 
bidirectional vortex flowfield.  The original problem was conceived and resolved by Majdalani and Vyas,32 and later 

Table 4. Cases of L1
2 /  
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restructured to incorporate multidirectional boundary layer corrections by Majdalani.33 The main departure from the 
hardwall problem lies in prescribing a surface boundary condition that captures the effects of sidewall injection. This 
is achieved by replacing Eq. (9)c by ( , ) ,r wu a z U  where wU  denotes the effective blowing speed at the wall.  
Moreover, the expression for mass conservation may be expanded to account for the secondary wall influx.  This 
can be accomplished by setting 

   
2

0 0 0
 ( , )  d d 2 ( , ) d +2  

b b

z in i w i wr L r r u r L r r Q Q Q UA aLUu n  (67) 

The first two boundary conditions in Eqs. (9)a-b act to suppress axial flow at the headwall and radial speed at the 
centerline.  These conditions can be utilized to transform Eq. (8) into 

   0 1

2 2
0 1

2 2sin

( ); 0 ( )
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n

n n

zrJ rC a
r z

r J r C bz C
 (68) 

where the hypergeometric form is deliberately ignored while the remaining solutions are denoted by (a) and (b), 
sequentially.  At this point, global conservation through Eq. (67) may be carried out to retrieve 
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To satisfy the spatially uniform constraint ( , ) ,r wu a z U  it is required that 
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Note that the second member of Eq. (70) cannot be secured unless the blowing velocity is cosine-harmonic, namely 
of the form cos( ).( , )r wu a z U z   Then given the endwall restraint ( , ) 0,ru r L  one deduces the necessity of 
selecting 1

2 / .L   A solution for a wall injection distribution of 1
2cos( , () / )r wu a z U z L  can therefore be 

accommodated by the axially harmonic profile.  The contiguous pair of wall boundary conditions that seem 
appropriate of this problem become  
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Evidently, other forms of wall injection patterns may be prescribed but these are not considered here.   

B. Stream Function Formulation 
 Imposing Eq. (71) leads to 
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These could be expanded using 
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where group parameters leading to  and  have been collected.  The emergence of the characteristic velocities in 
the right-hand-side expressions prompts us to divide through by U  and rearrange.  Then using / ,wU U  we are 
left with 
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This expression enables us to obtain multiple solutions for n  at fixed open fraction , sidewall injection ratio , 
and tangential inflow parameter .   Using 0  to define the lowest root of Eq. (74) that is associated with the 
development of a single mantle, it is possible to numerically obtain the universe of solutions 0 0 ( , , )  
directly from 
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where  depends on the relative size of the geometric outlet.  The resulting stream function becomes 
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and so, in dimensionless form,  
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where       and     1 01/ [ ]c J  (78) 
In view of the perfect similarity that stands between Eq. (77) and the stream functions with no sidewall injection, the 
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Figure 13. Variation of the mantle location * and corresponding eigenvalue 0 as function of the chamber’s open 
fraction .  Results are shown for several values of the sidewall injection ratio  and two fixed values of the tangential 
inflow parameter . 
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key formulations for the various cases that may be explored need not be re-derived.  Their final outcome may be 
arrived at directly by replacing the impermeable  by .   The other difference consists of allowing 0  and *  to 
vary as per Eq. (75). 

C. Mantle Sensitivity to Sidewall Injection, Open Outlet Fraction, and Inflow Parameter 
 The mantle with sidewall blowing may be located, just as usual,33 by setting ( *, ) 0.zu z   This translates into 

   0 0 * 0J      or     
0 0

0 2.4048255* 6j
 (79) 

where 0j  is the appropriate root of 0 0 0.J j   In general, given a chamber design specific , 0  can be 
computed from Eq. (75) (at fixed  and ), and then inserted into Eq. (79) to retrieve the mantle location.  For 
example, when conditions correspond to 0.7,  0.01 and 0.125 , one calculates, for 0,  

0 3.77302,  and * 0.637375;  the same analysis for 1
2 / L  yields a slightly higher value of 0 3.79461,  

and a lower value of * 0.633748.  
 The mantle’s dependence on ,  ,  0 ,  ,  and ,  is illustrated in Fig. 13 where the variation of both *  (left 
scale) and 0  (right scale) versus  are displayed on one graph.  Results are shown along 5 constant sidewall 
injection lines corresponding to 3 3 2 210 , 5 10 , 10 , 5 10 ,  and 110  using a) 0.01, 0,  b) 

0.1, 0,  c) 1
20.01, / ,L  and d) 1

20.1, / .L   At the outset, it may be inferred that increasing 
 relative to  reduces the variability of the mantle location.  This can be attributed to the asymptotic nature of the 

right-hand-side of Eq. (75).  Conversely, increasing  leads to a heightened sensitivity of *  to small variations in 
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Figure 14. Iso-parametric variation of the mantle position * with  and  given a-b)  c-d)  and *  
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.   Common to all four cases shown, *  first increases with , reaches a peak value at * , and then declines 
with further increases in the open outlet fraction.  For 410  (not shown) a flattening of the  and 0  curves 
occurs as the solution levels off to the constant mantle location associated with the hardwall configuration.  We 
hence recover flat lines at * 0.627612  and 0 3.8317.    
 To further elucidate the mantle’s variability with the tangential inflow and sidewall injection parameters, contour 
plots of constant *  are provided in Fig. 14 for the two cases at hand.  This parametric study is carried out over a 
wide range of  and ,  albeit at fixed values of the open outlet fraction, 0.6  (a,b), 0.3  (c,d), and *  
(e,f).  Nonetheless, the results for the (a-d) cases are characteristic of a typical geometric opening .   They clearly 
show that: (i) increasing either  at constant  leads to an outward shift in the mantle; (ii) decreasing  (i.e. 
increasing swirl) at constant  leads to an outward shift in the mantle; (iii) at any fixed  or ,  1

2 /0
* * ;L  

(iv) constricting the geometric opening  plays an appreciable role in reducing the sensitivity of the mantle to inlet 
and sidewall injection levels.   
 Graphically, it may be easily surmised that the excursion range of *  is considerably diminished when  is 
decreased.  The converse is true in that the variability of *  is expanded, at least in theory, when the outlet opening 
is progressively enlarged.  On this note, it may be instructive to recall that several other investigators have reported 
similar shifting in mantle positioning due to geometric modifications influencing their outlets.  In the context of 
cyclone separators, the experimental bias caused by changing the diameter of the vortex finder is well known and 
has been widely reported in the literature.16-19  These include the work of Smith11-12 cited earlier in this study.  
 For the purpose of simplification, one may set *,  thus envisioning a geometric outlet radius that tracks and 
matches the mantle’s radius.33  This idea was introduced by Majdalani and Vyas32 with the intent of eliminating 
irregularities that may arise at ,z L  such as collisions and recirculatory cells. The same idealization also leads to a 
fluid dynamically consistent model in which the axial annular flow that spirals toward the headwall from positive 
infinity (i.e., the axial source at ,z L  ) is permitted to naturally reverse direction and return unencumbered, 
through the inner vortex region, to positive infinity.  By setting *,  we are effectively ensuring that the 
diameter of the inner vortex matches the diameter of the open boundary at .z L   We are also capturing the peak 
values reported on Fig. 13.  For this hypothetical setting, Eq. (75) simplified into:  
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Figure 15. Variation of the crossflow velocity with  and .  While the case of 0  is featured in a), parts c-d) 
correspond to the L1

2 /  solution. The latter requires additional analysis due to its spatial dependence.   
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 Figures 14e,f display the contours of *  over a full range of  and .   In comparison to the previously 
featured cases of Figs. 14a-d, the mantle offset is not only the largest of the group but also the most widespread. 
Here too, we confirm that 1

2 /0
* * .L  

 In addition to the *  configuration, a practical scenario that is worth investigating consists of fixing the 
outlet radius to a design-specific value.  In the absence of user input, the logical choice would be to set 0.6276,  
being the lowest *  that the mantle can tolerate in the limit of 0.   In either configurations, solutions may be 
obtained straightforwardly from Eq. (77).   

D. Other characteristic Properties 
 Despite the mantle’s elusive parametric sensitivity, the crossflow velocity can be readily obtained from 
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Due to the axial invariance of Eq. (81)a, its behavior is fully captured in Fig. 15a, albeit at a single value of  
Interestingly, the crossflow is considerably increased when the outlet fraction is reduced.  In fact, it becomes very 
weakly dependent on for approximately 0.55.   The axially harmonic solution is featured in Figs. 15b-d 
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where its axial variation is illustrated.  Here too, reducing the outlet fraction seems to induce an increase in the 
absolute magnitude of the crossflow along the mantle.  For the ideal case of *,  Eq. (81) reduces to: 
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Equation (82) reminds us of the expressions posted in Tables 3 and 4 in which the crossflow velocity for the no-wall 
injection case are listed.  Those entries can be recovered from Eq. (82) by replacing  by  and  by 0.627612.   
The converse is also true of other characteristic flow attributes by virtue of the parental role that the stream function 
plays in Eq. (77). In avoidance of a lengthy derivation that is duplicative of steps that have been thoroughly outlined 
in Secs. II-IV, a summary of the key features of the bidirectional vortex with sidewall injection are catalogued and 
listed in Tables 5 and 6.  In forthcoming work, most of these features will be thoroughly explored in the context of a 
boundary layer treatment that seeks to overcome the intransigent singularities and deficiencies of inviscid motions.  
Additionally, an asymptotic approach will be presented as an alternate avenue for capturing the secondary effects of 
sidewall mass injection. 
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VI. Conclusions 
 In this study, the Bragg-Hawthorne equation in cylindrical coordinates is used to derive new inviscid models of 
the bidirectional vortex with and without sidewall injection.  The analysis complements a companion study by 
Barber and Majdalani41 in which the spherical BHE was solved in the context of cyclonic motion in a conical 
chamber.  By granting the tangential angular momentum the freedom to vary with the stream function, several 
solutions are derived under steady, inviscid, rotational and incompressible fluid conditions that warrant the 
invariance of the total pressure along streamlines.  In such an isentropic environment, our results are compared to 
one another and to a previous model obtained via the vorticity-stream function approach.  Despite common features 
that these solutions share, they seem to exhibit slightly different characteristics.  These affect their minima and 
maxima, mantle location, crossflow velocity, pressure distributions, pressure gradients, vorticity, and swirl intensity.  
The main advantage of the new solutions may be connected with their swirl velocity exhibiting a physically 
realizable axial dependence, on their non-zero vorticity in all three directions, and on their alternate mantle location 
which seems to agree with an existing set of reported simulations and experimental measurements.  Some of these 
reports suggest that mantle positioning can also be influenced by the shape, size, and placement of the outlet section 
or vortex finder.  For this reason, an effort to characterize the impact of the chamber’s exit opening on the flow 
behavior has been carried out, for the first time, based on the extended solution with sidewall injection. For each 
family of solutions developed here, we have attempted to either impose or relax the no-slip requirement at the 
sidewall.  This has led to two classes of self-similar solutions that exhibit dissimilar behavior.  The first, no-slip 
preserving motions, were found to not only vanish at the sidewall, but also along the centerline where a virtual 
forced vortex region is formed.  This somewhat perplexing result led to Trkalian profiles that exhibited swirling 
speeds that qualitatively agreed with numerical simulations.  The second, slip permitting profiles, were substantially 
dominated by the free vortex motion that emerged from their analysis.  These led to Beltramian profiles with 
identical radial pressure gradients and pressure variations when compared to each other and to the former, complex 
lamellar profile obtained by Vyas and Majdalani.29  These will require a separate asymptotic treatment along with a 
systematic boundary layer analysis that is hoped to be pursued in order to suppress their core and wall singularities.  
Moreover, any further exploration of this problem will substantially benefit from the production of additional 
experimental and numerical data. These should be derived from physical models that correspond, as closely as 
possible, to the idealized configuration considered here.   
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