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On the Multiplicity of Planar Solutions for Axially Traveling 
Waves in Simulated SRMs 

Joseph Majdalani* 
University of Tennessee Space Institute, Tullahoma, TN 37388  

Traveling waves in confined enclosures, such as porous channels and rocket motors, 
develop boundary layers that evolve over varying spatial scales. The present analysis 
employs a technique that circumvents guessing of the inner coordinate transformations at 
the forefront of a multiple-scales expansion. The work extends a former study in which a 
two-dimensional, planar solution was derived for the rotational, traveling wave in a porous 
channel. This asymptotic solution was based on a free coordinate transformation that could 
be evaluated using Prandtl’s Principle of Matching with Supplementary Expansions. Its 
derivation required matching the dominant term in the multiple-scales expansion to an 
available WKB solution. Presently, the Principle of Least Singular Behavior is used. This 
approach leads to a multiple-scales approximation that can be obtained independently of 
supplementary expansions. At leading order, the previous transformations are recoverable 
from the present formulation. Furthermore, a procedure that yields distinct types of WKB 
solutions is described and extended to arbitrary order in the viscous perturbation 
parameter. Among those, the WKB expansion of type I is shown to exhibit an alternating 
singularity at odd orders in the perturbation parameter. This singularity is identified and 
suppressed using matched-asymptotic tools. For those studies that have retained odd-
powered corrections at the highest order, criteria that define their physical limitations are 
provided. In this context, we find the WKB expansion of type II to be uniformly valid at any 
order. Additionally, matched-asymptotic, WKB, and multiple-scales expansions are 
developed for several test cases.  These enable us to characterize the essential vorticoacoustic 
features of the axially traveling waves in a porous channel. In closing, all solutions are 
numerically verified, compared, and discussed. 

I. Introduction 
HE modeling of axially traveling oscillatory waves in injection-driven porous chambers emerges as a necessity 
in several physical contexts.  These include the analysis of acoustic instability, propellant gasification in slab 

rocket motors, surface ablation, filtration, water hammering, and biological transport.  The types of waves 
considered here may be induced externally, through the use of wave generators, or internally, due to the intrinsic 
coupling with the chamber’s natural frequencies.  Examples of the forced type are showcased in experimental 
investigations by Brown et al,1 Dunlap et al.,2 Ma et al.,3 and Barron, Majdalani and Van Moorhem.4  These are 
chiefly motivated by the need to capture the wave structure and potential instability during the burning of solid 
propellant grains.  In this vein, cold-flow facilities are built to permit flow visualization and data acquisition in a safe 
environment.  This is accomplished by allowing either the injection of an inert gas across sintered metal plates or the 
expulsion of carbon dioxide from sublimating blocks of dry ice.  The ensuing oscillatory motion is controlled 
through the use of rotating valves or four-bar linkages attached to a reciprocating piston.  Procedurally, Ma et al.3 
and Barron, Majdalani and Van Moorhem4 follow Richardson and Tyler5 in adjusting the speed of their electric 
motors to the extent of controlling the reciprocating frequency of a piston mounted at the end of a crank.   
 The investigation of intrinsic, self-induced oscillations is separately pursued and then summarized in two surveys 
by Ugurtas et al.6 and Fabignon et al.7  These discuss an innovative experimental facility known as VECLA (Veine 
d’Etude de la Couche Limite Acoustique).  Casalis, Avalon and Pineau8 describe VECLA as a long rectangular 
channel with counterfacing porous and impervious walls.   By injecting air uniformly along the porous side, 

                                                           
*H. H. Arnold Chair of Excellence in Advanced Propulsion, Mechanical, Aerospace and Biomedical Engineering Department. 
 Senior Member AIAA.  Fellow ASME. 

T 

45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
2 - 5 August 2009, Denver, Colorado

AIAA 2009-4978

Copyright © 2009 by J. Majdalani. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 
American Institute of Aeronautics and Astronautics 

 

2

inevitable fluctuations in the injection rate give rise to a well-defined acoustic environment that is accompanied by 
rich traveling wave structures.  These are further discussed in a unifying study by Griffond.9   
 For a porous channel driven by sidewall mass injection, the traveling wave motion, excluding hydrodynamic 
instability waves, is treated by Majdalani.10  For small-amplitude pressure oscillations, asymptotic formulations for 
the flow variables are obtained using three perturbation schemes. The undisturbed state is represented by an arbitrary 
mean flow satisfying Berman’s classic equation (Berman11-12), while symmetric time-dependent solutions are 
derived from the linearized vorticity and momentum transport equations.  In short, a time-dependent, laminar-flow 
approximation is extracted from the vorticity transport equation, and two other solutions are retrieved from the 
momentum equation using zeroth-order WKB and multiple-scales expansions.10  Despite their dissimilar 
expressions, the three asymptotic solutions are found to agree with one another, with experiments, and with 
numerical simulations of the nonlinear Navier-Stokes equations.  One of the resulting formulations is later employed 
by Griffond9 in his study of hydrodynamic instability and wave propagation in an injecting channel.   
 The aforementioned multiple-scales expansion relies on a space-reductive analysis founded on an undetermined 
scaling transformation (UST).  This method of analysis necessitates the introduction of an undetermined scaling 
variable s  that may be left unspecified during the derivation process.  At the conclusion of the asymptotic analysis, 
physical arguments are applied toward the determination of s.   The idea is anchored on Prandtl’s Principle of 
Matching with Supplementary Expansions (Van Dyke,13 p. 53).  Accordingly, the dominant term in the multiple-
scales solution is matched to its counterpart from a WKB expansion.  The outcome is helpful in disclosing the 
inherently nonlinear scaling structure of the problem. It also produces a uniformly valid UST solution that 
outperforms the basic WKB approximation over a range of physical parameters.  
 Despite the useful feature of retaining an undetermined scale during the derivation process, the UST scheme 
bears practical limitations. Its feasibility is contingent on the existence of an alternative approximation. To overcome 
this deficiency, the present study will extend the UST analysis by presenting a simpler approach which leads to the 
independent specification of the scaling transformation. This will be obtained by imposing the problem’s solvability 
condition to the extent of suppressing singularity in successive asymptotic orders. We refer to the resulting 
expansion as GST (generalized-scaling technique).  This approach is also applied by Majdalani and Rienstra14 to 
problems that involve overlapping dissipative and dispersive mechanisms.  In comparison to the UST expansion, the 
paradigm to be implemented precludes matching and guesswork.  
 In connection with the WKB expansions of this problem, our study will discuss the recurrence of an endpoint 
singularity that only appears at higher orders. To better understand the spurious nature of this anomaly, a WKB 
approximation is presented to an arbitrary order. In the process, two types of physical solutions are realized.  From 
the expression of type I, a singularity that appears at alternating orders of the perturbation parameter is identified. 
This singularity will be shown to affect a thin region near the core of the porous channel where the WKB 
approximation deteriorates, thus warranting the quest for a small-amplitude inner solution. The endpoint singularity 
eludes detection because the corresponding solution remains well-behaved and accurate outside the thin region of 
nonuniformity. By recognizing the source of singularity, the limitations of previous studies will be clearly 
established.  In revisiting this problem, a new solution of type II will be identified and shown to be unconditionally 
valid to any order. 
 The paper is subdivided into seven sections. In Sec. II, the problem is briefly defined using the momentum 
transport formulation. This is followed in Sec. III by the formal procedural steps leading to a multi-order WKB 
expansion. In the course of this effort, the presence of singularities at alternating orders is identified and discussed. 
In Sec. IV, illustrative examples are provided and the existence of an end-zone boundary layer is ascertained.  
Section V describes the construction of a multiple-scales solution based on a generalized coordinate. Imposition of 
the problem’s solvability condition is then used to deduce the scale. In this manner, a multiple-scales solution is 
obtained for an arbitrary mean-flow function. In Sec. VI, the traveling wave is completed and numerically verified.  
Its main characteristics are explored and discussed. Finally, our main ideas are recapitulated in Sec. VII. 

II. Mathematical Model 
 Our main focus is placed on the velocity of a damped traveling wave inside a long porous channel.  Based on 
two previous studies;10,15 the longitudinal component of the wave can be written as 
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where the eigenfunction 
n
Y  must be determined from the doubly perturbed problem connected with 
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For the reader interested in the steps leading to Eq. (2), a brief overview is provided in Appendix A.  Note that S  is 
the Strouhal number while e  represents the reciprocal of the kinetic Reynolds number.  For consistency, we adopt 
the same notation as before.10  We use t  to denote dimensionless time and x  and y  to represent the streamwise and 
transverse coordinates (normalized by the channel’s half-spacing h ).  With 

w
v  as the injection speed at the wall and 

n  as the kinematic viscosity, we denote the speed of sound by 
s
a  and use asterisks to designate dimensional 

variables.  Our normalization is based on 
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In the foregoing expressions, w  is the frequency of oscillations and m *Î   is the acoustic oscillation mode 
number of a pressure wave of amplitude A  inside a channel of length L  and mean pressure 

s
p  (see Fig. 1).  The 

dimensionless wave parameter in (4) is given by 
s

A p/ ( )e g=  and the injection Mach number by 
w w s
M v a/ .=   

With this nomenclature at hand, the instantaneous velocity in the channel becomes 
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At this juncture, it may be helpful to introduce the injection (or cross-flow) Reynolds number as 

w
R v h S 1/ ( ) 10n e -º = > .  Then, depending on the value of R , two mean-flow solutions have been made 
available by Berman11 and Yuan.16  These correspond to 
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At this point, it is expedient to define the small perturbation parameter R S1d e-º = .  In lieu of e , 0.1d <  is the 
principal perturbation parameter used in mean flow studies of porous channels (Berman11-12); d  is proportional to 
the viscosity independently of the oscillation frequency.  This viscous parameter is present implicitly in Eq. (2). It 
can be displayed by multiplying Eq. (2) by the Strouhal number to obtain 
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Figure 1.  Coordinate system and geometric parameters defining the porous channel with sidewall injection.
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III. WKB Analysis 

A. Exponential Corrections 
 A regular WKB expansion begins with 
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where 
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In order to distinguish terms of the same order, it is convenient to multiply through by Sb  so one can write 
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B. Main Distinguished Limits 
 Several distinguished limits are possible depending on the relative size of d  and S .  For S 1d -< , quantities 
between brackets will be balanced when 2 (1)db- =  and S (1)b = . These conditions are satisfied when 

S 1b d -   or S 2.d -   Since S 2 (1)x d= =  is indeed a physical characteristic of the problem, a 
distinguished limit can be established by choosing Sb e dº = .  The balanced series in Eq. (10) becomes 
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 For S 1d - , it can be seen from (9) that the distinguished limit must be b dº .  Recalling that S/e d= , one 
can multiply Eq. (9) by Sd  and write 
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A simple rearrangement yields the progressively diminishing series 
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C. WKB Solution of Type I 
 For b d= , S 2d - , terms of like power in d  can be collected.  The dominant part in Eq. (11), namely, 
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By substituting (14)–(16) back into Eq. (8) and using W for WKB, one obtains the complete zeroth-order solution in 
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Equation (17) defines the basic WKB solution. This expression constitutes an improvement over the S( )d  solution 
reported by Majdalani.10  The inclusion of W

n1
F  is necessary to complete the leading-order WKB expression.  

 Higher-order solutions may be generated recursively.  However, two successive corrections in 
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The corresponding corrections (i.e., W
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When substituted back into Eq. (8), Eq. (25) leads to  
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Finally, after some effort, we obtain the jth order WKB solution of type I, specifically 
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From the WKB solution of type I, it can be shown that for odd values of j , a singularity arises as y 1- , n" . The 
nonuniformity near the core can be attributed to the appearance of a shear layer that arises when small exponential 
corrections in even powers of d  are retained. The presence of a boundary layer near the core is consistent with the 
classic theory of laminar, injection-driven flows (see Terrill17-18). 

D. WKB Solution of Type II 
 For b d= , S 1d - , terms of integral powers in d  may be segregated.  The eikonal equation in Eq. (13), 
namely, z Fz S2

0 0
i 0d¢ ¢- + = , z

0
(0) 0= , yields two possible solutions.  These correspond to 



 
American Institute of Aeronautics and Astronautics 

 

6

   
y

z y F z F z S z21
0 2 0
( ) ( ) ( ) 4i ddé ù= -ê ú

ë ûò   (28) 
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Using 
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K  to denote the WKB solution of type II, the linearity of Eq. (2) enables us to put, at ( )d , 
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At this juncture, the two constants C
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1=  and C
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0=  are determined such that the two boundary conditions, 
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Recalling from (6) that F
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1=  and F(1) 0= , Eq. (32) may be evaluated at the core. One finds  
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Further corrections can be systematically unraveled. From z z z z Fz2
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Similarly, the 3( )d  equation z z z z z Fz
2 0 3 1 2 3

2 2 0¢¢ ¢ ¢ ¢ ¢ ¢+ + - =  gives 
y

z z z z F z z
3 2 1 2 00

( 2 )/( 2 )d¢¢ ¢ ¢ ¢= + -ò .  A 
recurrence formula is identified for k 0³  such that 

   
ky

k k k i k i
i

z z z z z z F z z
3 2 1 2 1 2 00

1

( 2 )/( 2 )d+ + + + + -
=

¢¢ ¢ ¢ ¢ ¢ ¢= + + -åò  (35) 

This expression enables us to write, for j 2³ , 
j

j k j
n k

k

K z z z z
2

( ) 1 2 1
0 1 2 3

0

exp ( )d d d d
-

- + +
+

=

æ ö÷ç ÷ç= + + + +÷ç ÷÷çè ø
å   

 
j ky

k j
n k k i k i

k i

K F z z z z z z z z z
2

(0) 1 2 2 1
0 1 1 2 1 2 1 20

0 1

exp ( 2 ) ( ) ( 2 ) d ( )d d d
-

- + +
+ + + + -

= =

ì üé ùï ïï ïï ïê ú¢ ¢¢ ¢¢ ¢ ¢ ¢ ¢= - + + + + +í ýê úï ïê úï ïë ûï ïî þ
å åò   (36) 

E. Other Possible Limits 
 For 1/3b d= , S 3d - , a type III expansion may also be conceived.  As usual, terms of equal powers in d  may 
be combined and the leading-order terms that emerge in Eq. (10), namely, z S F1/3 1

0
i 0d -¢ - = , z

0
(0) 0= , can be 

integrated.  One gets 

   
y

z y S F z z1/3 1
0 0
( ) i ( )dd -= ò  (37) 

In like fashion, one extracts, ( )z n F F1
1

2 1 -¢ ¢= + , z F z1 2
2 0

-¢ ¢= , z z
1 2
(0) (0) 0= = , and so on. These first order 

ODEs yield 
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 ( ) ( )z y n F F
1 0
( ) 2 1 ln /= + ;  

y
z y S F z z2 2/3 3

2 0
( ) ( )dd -= - ò  (38) 

   ( ) ( )( )y
z F z z z z S n F F1 1/3 2 23

3 0 1 0 020
2 d i 2d- - -¢ ¢ ¢¢= + = + -ò  (39) 

Starting at z
3
, the type III formulation is seen reproduce the type I solution obtained at a previous order.  As before, 

a recursive formula may be identified for k 0³ , specifically, 

   
k

y
k

k k i k ik
i

z F z z z z z k

1
2

1
2

1 21
3 1( 1)20

0

1 ( 1) 2 d ;-
+ - ++

=

ì üï ïï ïï ïé ù ¢ ¢¢ ¢ ¢= - - + + Îí ýê úë ûï ïï ïï ïî þ
åò   (40) 

Thus, for j 2³ , one is left with 

( ) ( )jy yn kj j
n k

k

B F F S F z z F z z z
1
3

2
2 2 2( ) 1 3 1

0 30 0
0

/ exp i ( )d ( )d ( )x d d
-+ +- - +

+
=

æ ö÷ç ÷ç= - + +÷ç ÷÷çè ø
åò ò   

 ( )
n kjy k k j

k i k ik
k i

F
F F S z z z z z

F

1
21

3
1
2

2 2
2

21 2 2 11
1( 1)20

0 00

exp +i 1 ( 1) 2 d ( )x d d
+

-
+- - +

- ++
= =

é ùæ öì üï ïæ ö ÷çê úï ï÷ ÷ç ç ï ïé ù÷ ÷¢ ¢¢ ¢ ¢ç ê ú= - + - - + + +ç í ý÷ ÷ç ê úç÷ ÷ë ûï ïê úç ÷ ç ÷è ø ï ï÷çè øê úï ïî þë û
å åò   (41) 

where j
n
B( )  refers to the WKB approximation of type III.  Interestingly, it may be shown that j

n
B( )  reproduces j

n
Y ( )  

when truncated at the same order in d .  This trend extends to other types of expansions that may be obtained using 
distinguished limits corresponding to S S S4 5 6, , , etc.d - - -   These appear to represent slower converging series of 
type I that share similar physical attributes. For this reason, only the Type I expansion will be considered in the 
remainder of this study.  

F. Total Velocity Field 
 To express the time-dependent axial velocity, one substitutes the eigenfunctions into Eq. (1).  Based on the WKB 
solution of type I, one obtains 

 ( ) ( )W W W
m m m m

u x y t x t F F xF F t
1 0 0

( , , ) i sin( )exp( i ) i( / )sin / exp i ( )w w w z w dé ù= - - - + F +ê úë û
  (42) 

The real part may be readily retrieved and written as 

 ( ) ( ) ( ) ( )W W W
m m m m

u x y t x t F F xF F t
1 0 0

( , , ) sin sin ( / )sin / exp sin ( )w w w z w d= - + F +  (43) 

As for the arguments in (43), they can be determined from the known functions 

 
y

W S F z z2 3

0
( )dz d -= - ò ,     ( )y y

W S F z z S F F S F z z1 2 2 2 53
020 0

( )d 2 ( )dd d- - - -é ù
ê úF = - - - -
ê úë û

ò ò  (44) 

Attempts to express Eq. (43) at orders higher than S 2d -  are needless because u
1

 is derived from the momentum 
equation at the order of S 2- . This constitutes another justification for dismissing asymptotic expansions that occur 
at kS k; 3.d - ³  
 Based on the WKB solution of type II, one can start with 

   
( ) ( )

( ) ( )
n n

mK
m m n m

n

x
u x y t x t K y t

n

2 1

1
0

1
( , , ) i sin( )exp( i ) i ( )exp i ( )

2 1 !

w
w w w d

+
¥

=

-
= - - - +

+
å   (45) 

and then insert Eq. (32).  One finds 

 ( )
y

K
m m m

u x y t x t t F z F z S z1 21
1 2 0

( , , ) i sin( )exp( i ) i exp i exp ( ) ( ) 4i dw w w d d-ì üé ùï ïï ï= - - - - -í ýê úï ïë ûï ïî þ
ò  

   
( ) ( )

( )

nn n

m

n

xF S F F S F F S

nF S F F S F F S

3
1 2
4

2 12 1
2 2 2
0

2 2 2
0

0 0 0 0

14i 4i 4i
( )

2 1 !4i 4i 4i

wd d d
d

d d d

++
¥

=

æ ö æ öæ ö ÷ ÷-ç ç- ÷ + - + -÷ ÷ç ç ç÷ ÷ ÷ç ç ç´ +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ç +-è ø + - + -ç ç÷ ÷è ø è ø
å   (46) 

At this juncture, the MacLaurin series expansion of the sine function can be identified in Eq. (46). This enables us to 
simplify Eq. (46) into 

 ( )
y

K
m m m

u x y t x t t F z F z S z1 21
1 2 0

( , , ) i sin( )exp( i ) i exp i exp ( ) ( ) 4i dw w w d d-ì üé ùï ïï ï= - - - - -í ýê úï ïë ûï ïî þ
ò  
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m

F S F F S
x F F S F F S

F S F F S

3
1 2
42 2

2 20
0 02 2

0 0

4i 4i
sin ( 4i ) / ( 4i ) ( )

4i 4i

d d
w d d d

d d

æ öæ ö ÷ç- ÷ + - ÷ç é ùç÷ ÷ç ç´ + - + - +÷ ÷ ê úç ç÷ ÷ç ç÷ ë û÷÷ç -è ø + -ç ÷è ø
  (47) 

A closed form type II solution depends on the tacit integration of the exponential argument in Eq. (47).  Despite its 
accuracy and well-behaved character, the radical in the integrand of Ku

1
 makes it less susceptible to integration.  

Hence, in cases for which numerical evaluation is unavoidable, the type I Wu
1

 becomes more practical.   

IV. Illustrative Examples 
 Two applications to porous channels may be considered for which F y y2 33 1

2 2
1= - +  when R10 100< <  

and ( )F y1
2

cos p=  when R . ¥  Moreover, the test case for ( )F y1a= -  will be investigated as it represents a 
generic function that can effectively mimic the asymptotic behavior of the solution near the core. 

A. Asymptotic Solutions for Small and Large R 
 For small and large R , the type I solution 

n
Y (0) may be determined directly from 

 
( )( )

( )
y y y y R
F z z

y R

221 1
1 3 2

0 2
4

ln 1 1 ,   small 
( )d

ln tan 1 ,   large p
p

-

ì é ùïï + - -ê úïï ê ú= ë ûíï é ùï +ï ê úë ûïî
ò  (48) 

 

( ) ( ) ( )

y
r r r

R
F z z r r r

y y y R

2 4 2

3 2 2 2 2

0
1 1 1 1

4 2 2

4 3 4 18 12 1
ln ,   small 

27 18( )d 2 9 (3 )

ln tan 1 sec tan ,   large 
p

p p p

-

ìï - - +ï + +ïï= -íïï é ù+ +ï ê úï ë ûî

ò  (49) 

where r y1º -  and 

 

{ (
{ }) }

( ) ( ){ }

y

r y y y y y y

F z z y y y y y y R

R

4
2 21474 1 3

729 16 2 2

5

0

41 1 1
16 4 2

20 ln( ) 3 2 ( 3) 49 ( 2) 326 5 ( 2)

( )d 31 2 ( 2) 2 ( 2) 7 2 ( 2) ,   small 

12 ln tan sec 3 sin 3 11sin ,   large 
p

p q q q q

-
-

-

ìï é ù éï + - + + + - - + - - + -ï ê ú êëë ûïï ùï é ù é ù= ´ + - - + - - + -í úê ú ê úë û ë ûï ûï
é ù+ + +ê úë ûî

ò
ïïïï

 (50) 

Note that for both small and large R , Eq. (17) gives Y (0)
0

(1) 0=  at the core.  For the type II solution, the leading-
order expansion Eq. (32) may be evaluated for large R  to arrive at 

 { }
n

n

SS
K S E S

S S

5
21

4

2
2

(0) 11
2

cos cos 4i1 4i
exp sin 1 4i | (1 4i )

cos 4i 1 1 4i

q q dd
q d q d

pdq d d

+

-

æ ö÷ç + -æ ö ÷- æ öç÷ç é ù÷ ÷ç ç÷= - - -÷ç ÷ç÷ ç ê ú ÷÷ çç ë ûè ø÷ çç ÷è ø- + -ç ÷÷çè ø
 (51) 

where E x x z z2

0
( | ) 1 sin d

q
q = -ò  is the elliptic integral of the second kind. At the core, one regains the 

complete elliptic integral ( )E x E x x x x x2 3 41751 1 1 3 5
2 2 8 128 512 32768

( ) ( | )p pº = - - - - + . Consequently, one may 
express 

 ( ) ( ) ( ) { }
nnn

n
K S S S S E S

1 5
2 2

21(0) 1 11(1) 4i 1 4i 1 1 4i exp 1 1 4i (1 4i )d d d d d
pd

- -++ -æ öé ù ÷ç= - - + - - - - ÷ç ê ú ÷ç ë ûè ø  (52) 

Higher-order approximations may be sequentially generated. For small R , however, only a quasi-analytical solution 
is possible due to the inability to integrate the eikonal equation except by computer. This issue is not present in the 
WKB solution of type I. 
 For large R , a comparison between numerics and asymptotics is provided in Table 1.  As usual, the agreement 
between asymptotics and numerics improves at higher orders.  For the type II approximations (second set of 
columns), it is clear that j

n
K ( )  remains uniformly valid j" .  Furthermore, j

n
K ( )  is seen to predict the n 1( )d +  value 

obtained numerically at y 1= .  This result is consistent with (52).  In contrast, the type I solution is shown to 
exhibit a region of nonuniformity in the vicinity of y 1= .  Whereas both 

n
Y (0)  and 

n
Y (2)  vanish at the endpoint, 

n
Y (1)  

becomes suddenly unbounded as y 1- .  This behavior signals the presence of a boundary layer that is not 
accounted for in the WKB representation of type I.  A solution that incorporates small changes inside this layer is 
therefore necessary. 
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B. Exact and Asymptotic Solutions Near the Core 
 Consider F ra=   where 3 1

2 2
( , )a p=  can mimic the small or large injection flow behavior near the core. As 

shown in Appendix B, Eq. (7) can be solved exactly and put in the form 

   ( )E
n

n S r
Y r

n S

1 1 23 1 1 1
1 2 2 2 2 21

2 1 13 1 1 1
2 2 2 2

( i , , )
exp 1

( i , , )

a ad
ad

a ad

- -
-

- -

F + -é ù= -ê úë û F + -
 (53) 

Using the WKB expansion of type I, one can obtain an approximation to any desired order such as 

{ }n S
n
Y r S r S r n S r(0) 2 2 i / 3 2 2 2 2 2 3 21 1

2 2
exp ( 1) i ( 1) 3 4 ( 1) ( )a a d a d d a d+ - - - - - - -é ù= - - - - + + + +ê úë û   (54) 

 

{ }(n n
Y Y n n r S r n S n n(1) (0) 1 2 4 2 41

4
exp (1 )(1 2 )( 1) ( 1) (7 12 ) i 7 4 (7 6 )a d a d a- - - - é ù= + + - + - + + + +ê úë û  

 )S r S n S r7 3 3 6 9 4 5 8 271 5
3 2 4

( 1) i (9 20 ) i ( 1) ( )a d a a d d- - - -é ù+ - + + + - +ê úë û   (55) 

 

{(n n
Y Y S n n n r S r n n S(2) (1) 2 2 4 4 5 3 61 1

2 3
exp (1 )(1 2 )(1 4 )( 1) ( 1) 2 5 3 (9 10 )a d a d- - - - é ù= - + + + - - - + +ê úë û  

 }n n n21
2
i (1 4 )(9 44 40 )a+ + + + { }S r n S n n8 4 3 81

8
( 1) (47 140 ) 2i [25 4 (47 70 )]a d a- -- - + + + +  

 )S r S n S r11 5 5 10 13 6 7 12 31
5

( 1) 21 i (59 252 ) 11i ( 1) ( )a d a a d d- - - -é ù- - + + - - +ê úë û   (56) 

 
The WKB approximation of type II can also be evaluated for the problem at hand.  One obtains the leading-order 
solution from Eq. (32).  At ( )d , one finds 

 

n S

n

r r SS S S
K r r r

r S S

151
24

2 i
2 22

(0) 2 2

2 2 2 22

4i4i
exp 1 4i 1 4i

44i 4i

a

a a da d a d d
da d a aa a d

-+ -æ öæ ö ì üé ù÷ ï ïç + -÷ç ÷- ï ïç÷ ê úï ïç ÷ç÷= - + - - -÷ç í ý÷ ç ê ú÷ç ÷ ç ï ï÷ç - ÷ ê úç ç ï ï÷+ - ÷è ø ç ë ûï ïî þè ø
 (57) 

In like fashion, one arrives at 

 n

n

n rK
n n S r r S

K S r S

3 3
2 2

3 2(1) 5
2 2 2 2 22 1

24(0) 2 2 2

( 2 ) (1 )
exp (138 240 96 ) ( 4i ) ( 4i )

( 4i )( 4i )

a
a a d a d

a d a d

- -
ìï - + -ï é ùï= + + + - - -í ê úï ë û- -ïïî

 

   }S n n S r r S
3 3
2 24 1 1 2 2 3 2 2 21

24
i (37 60 24 ) ( 4i ) ( 4i ) ( )a d a d a d d

- -- - é ù+ + + - - - +ê ú
ë û

  (58) 

Higher-order terms are preferably derived from Eq. (36) using symbolic programming.  

Table 1. Comparison between numerical and asymptotic solutions using the two WKB approximations, 
j
n
Y ( )  and j

n
K ( ) , given at j 1( )d + .  Here S 10= , R 310= , n 0= , and F y1

2
cos( )p=   

 

 

y  

WKB Type I WKB Type II Numerical 

Y (0)
0

  Y (1)
0

 Y (2)
0

 K (0)
0

  K (1)
0

 K (2)
0

 NY
0

 

0.00 1 1 1 1 1 1 1 
0.05 0.8676644 0.8674551 0.8674590 0.8676685 0.8674590 0.8674590 0.8674590 
0.10 0.5188763 0.5186301 0.5186429 0.5188833 0.5186428 0.5186429 0.5186429 
0.20 -0.3939219 -0.3935576 -0.3935347 -0.3939428 -0.3935340 -0.3935347 -0.3935347 
0.30 -0.7672007 -0.7662141 -0.7662170 -0.7672949 -0.7662147 -0.7662170 -0.7662171 
0.40 -0.2589166 -0.2585327 -0.2585659 -0.2589812 -0.2585645 -0.2585659 -0.2585659 
0.50 0.3586916 0.3582113 0.3582018 0.3589124 0.3581976 0.3582018 0.3582018 
0.60 0.2062112 0.2061807 0.2061778 0.2064960 0.2061744 0.2061778 0.2061778 
0.70 -0.1574955 -0.1582490 -0.1582805 -0.1582560 -0.1582757 -0.1582805 -0.1582805 
0.80 0.0345428 0.0357267 0.0360158 0.0356684 0.0360156 0.0360158 0.0360158 
0.90 -0.0049035 -0.0104253 -0.0091613 -0.0088040 -0.0091688 -0.0091612 -0.0091613 
0.95 -0.0000306 34513650. 0.0008021 0.0006995 0.0008034 0.0008017 0.0008015 
1.00 0 ¥  0 -0.0000111 -0.0000168 -0.0000170 -0.0000339 
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C. Comparing Exact and Asymptotic Solutions 
 The two WKB formulations of increasing orders are compared to the exact solution in Table 2 for a typical set of 
physical parameters.  The agreement between exact and asymptotics, often manifested in several decimal places, 
helps to confirm the accuracy of the foregoing analysis. As alluded to earlier, it can be seen that the WKB solution 
of type I yields, in an alternating fashion, either zero or infinity at the core. Being inconsistent with the finite value 
of E

n
Y , this behavior suggests investigating an inner solution to supplement j

n
Y ( )  near the core. To gain a clearer 

picture, differences between exact and asymptotic predictions are plotted in Fig. 2 for F y1
2

(1 )p= -
 
at n 0=  and 

n 10= . In Fig. 2a, it can be seen that the errors associated with j
n
Y ( )  and j

n
K ( )  conform to their reported truncation 

orders, with j
n
K ( )  being somewhat more accurate.  Figure 2b, on the other hand, shows that the error in each 

approximation diminishes as n  is increased. It also illustrates the improved agreement between j
n
Y ( )  and j

n
K ( )  at 

higher values of n . An exception arises in 
n
Y (1)  (odd) which is seen to diverge as y 1- .  The corresponding 

region of breakdown is visible in the range y0.96 1£ £ . The core-singularity that arises in the WKB solution of 
type I is difficult to detect because 

n
Y (1)  remains well-behaved and of 2( )d  outside the thin region of 

nonuniformity. This singularity does not affect the type II j
n
K ( ) , j" .  It will be later shown that the core singularity 

affects the WKB type I solution to any odd order.  Means to suppress it will also be investigated, including the 
construction of an inner correction that can be patched onto j

n
Y (2 1).+

 
 

Table 2.  Comparison between exact and asymptotic solutions using the two WKB approximations.  
Here S 50= , R 325 10= ´ , n 0= , and F y1

2
(1 )p= -  

 

 

y  

WKB Type I WKB Type II Exact 

Y (0)
0

  Y (1)
0

 Y (2)
0

 K (0)
0

  K (1)
0

 K (2)
0

 EY
0

  

0.00 1 1 1 1 1 1 1 
0.05 -0.0556490 -0.0556491 -0.0556491 -0.0556490 -0.0556491 -0.0556491 -0.0556491 
0.10 -0.7894993 -0.7895045 -0.7895045 -0.7894998 -0.7895045 -0.7895045 -0.7895045 
0.20 0.4339311 0.4339380 0.4339380 0.4339318 0.4339380 0.4339380 0.4339380 
0.30 0.1687017 0.1687069 0.1687069 0.1687024 0.1687069 0.1687069 0.1687069 
0.40 -0.2999705 -0.2999864 -0.2999864 -0.2999728 -0.2999864 -0.2999864 -0.2999864 
0.50 -0.2399436 -0.2399662 -0.2399662 -0.2399479 -0.2399662 -0.2399662 -0.2399662 
0.60 -0.0946533 -0.0946702 -0.0946702 -0.0946577 -0.0946702 -0.0946702 -0.0946702 
0.70 0.0647037 0.0647305 0.0647305 0.0647140 0.0647305 0.0647305 0.0647305 
0.80 0.0175739 0.0175998 0.0175997 0.0175895 0.0175998 0.0175997 0.0175997 
0.90 -0.0019185 -0.0019641 -0.0019629 -0.0019589 -0.0019630 -0.0019630 -0.0019630 
0.95 0.0000072 0.0000413 0.0000180 0.0000259 0.0000307 0.0000307 0.0000261 
1.00 0 ¥  0 -3.10×10-15 -7.35×10-15 -7.36×10-15 -6.62×10-15 

 
 

0 0.2 0.4 0.6 0.8 1
10-30
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Figure 2. Error between exact and asymptotic entries given in Table 2 for a) n 0= , and b) n 10= .  Despite its 
consistent precision in the outer region, Y (1)  becomes singular as y 1- . 
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D. Endpoint Singularity at Even Orders of S 2d -  
 It should be noted that as y 1- , the WKB solution of type I becomes suddenly unbounded at even orders of 
d . This can be explained by considering, for example, the real part of the exponential argument in 

n
Y (1) . This 

argument controls the wave amplitude and is strongly dominated at the core by 
r

S r7 3 4 65
6 0
a d- -

+¾¾¾¾ ¥  for 
fixed S , d , and n .  Since the wave amplitude is dictated by ( )nr S r2 2 7 3 4 65

6
exp a d+ - -  as r 0+ , the exponential 

singularity cannot be suppressed by the vanishing polynomial. This unbounded character alternates between 
successive orders in j

n
Y ( ) .  In fact, as r 0+ , the amplitude of the WKB solution of type I can be seen to be 

   ( )n
n
Y r S r(0) 2 2 3 2 21

2
exp a d+ - -- , ( )n

n
Y r S r(2) 2 2 11 5 6 1021

5
exp a d+ - -- , etc. (59) 

At order j , one finds the key expression 

   
j j j

jj n
n j

a S
Y r

j r

1 2 1 2 2
2 1( ) 2 2

4 2

( 1)
exp

(4 2) ( )

d
a a

+ + +
++

+

é ù-ê ú
ê ú

+ê úë û
 ; r 0+ . (60) 

where a a
0 1

1= = , a
2

2= , a
3

5= , a
4

14= , a
5

42= , etc. These positive constants form a progressive 
sequence that can be recovered from 

   a
0

1= , 
j

j k j k j
k

a a a a
1

2
2 1 2

0

2
-

+ -
=

= +å ,  j 0³ ; 
j

j k j k
k

a a a
1

2 2 1
0

2
-

- -
=

= å ,  j 1³ .  (61) 

Equation (60) exposes an intrinsic singularity at even orders of d  as r 0+ .  For both small and large R , the 
same type of singularity is detected in the WKB solution of type I.  This is caused by the sign alternation of the most 
singular term following each successive correction to the exponential expansion. Since k

n
Y (2 1)(0)+  becomes 

unbounded for k 0,1,2,=  , the use of 
n
Y (1) , 

n
Y (3) , etc., leads to an incomplete representation. Such a representation 

lacks exponentially small quantities that arise at even powers of d .  Conversely, since k
n
Y (2 )  satisfies both boundary 

conditions, it represents an adequate approximation of the exact solution.  However, given that k
n
Y (2 )(0) 0= , a 

problem arises at higher orders because the exact solution does not completely vanish at r 0.=   To see this, one 
must evaluate Eq. (53) viz. 

   E
n
Y n S1 1 11 3 1 1 1

2 2 2 2 2
(0) exp( )/ ( i , , )ad a ad- - -= F + -  (62) 

Then, using the large x  identity (Abramowitz and Stegun,19 p. 504), 

   x a bb
a b x e x x

a
1( )

( , , ) 1 ( )
( )

- -G é ùF = +ê úë ûG
  (63) 

one can expand the Kummer function in Eq. (62) and write 

   
n S n SE

n
Y n S

1 11 1 1
2 2 2

1 i 1 i13 1
2 2

(0) (2 / ) ( i ) 1 ( )
a a

p a a d d
- -- + - + -- é ù= G + - +ê úë û  (64) 

Thus, the wave amplitude at the core is seen to be 

   E n
n
Y 1(0) ( )d +=   (65) 

The same can be extrapolated from the WKB solution of type II.  In fact, Eq. (57) gives 

( ) ( )
n S

n S

n

S
K S S

S

15
3 1 2

1 4 211
42

2 i
1

1 i(0) 2 1 1 21 1
4 42

2( 1)
(0) i exp 1 1 4i

1 1 4i

a

a a
d d a d a da

da

-

-

+ -
-

+ - - - -

-

é ù- é ùê ú= + - -ê úê ú ê úê ú ë û+ -ë û

n1( )d +=  (66)

 
Since the discrepancy between E

n
Y (0)  and 

n
Y (0)(0)  is of order n1d d+ £ , n 0" ³ , it is generally smaller than the 

truncation error in the leading-order approximation.  It can be safely absorbed by the truncation error. We conclude 
that 

n
Y (0)  is uniformly valid, n 0" ³ . This behavior is illustrated in Fig. 3 where both Y (0)

0
 and K (0)

0
 are shown to 

provide suitable approximations uniformly across the domain.  Figure 3 also illustrates the importance of the 
(viscous) parameter S 2x d= .  By fixing x , a constant depth of penetration is realized irrespective of the operating 
parameters. This convincing observation is consistent with the findings of Majdalani.10 Since the remaining 
oscillations in the inner region are of ( )d� , their contribution is negligible at leading order.  Nonetheless, the 
discrepancy at the core can become larger than the truncation error in higher-order representations.  For example, at 

3( )d , 
n
Y (2)  can become nonuniformly valid for n 0,1= . In general, the discrepancy at the core cannot be ignored 

in the assessment of k
n
Y (2 )  for n k k0,1, ,2 1; 1= - ³ . Under these auspices, one must insist on an inner 

correction for k
n
Y (2 ) .  The removal of the small endpoint discrepancy can be especially useful in applications that 

demand high precision in the core region. In the oscillatory channel flow problem, the physically meaningful 
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mechanisms occur near the wall where vorticity is generated. Near the core, the rotational coupling with the solid 
boundary is inconsequential.  Although a small exponential correction can be found in the core region, its inclusion 
is unwarranted at leading order. Beyond the leading order, the type I expansion cannot be continued without 
displaying a core singularity. When this occurs, an inner correction becomes a necessity. 

E. Near-core Solution 
 The inner equation that dominates near the core can be realized following the linear transformation 

r /c a d= . One finds 

   ( )
i i

in n
n

Y Y
S n Y

2
1

2

d d
i 2 2 0

dd
c a

cc
-é ù+ + - + =ë û  (67) 

where i
n
Y  constitutes an inner representation of the solution for r 0, 2 /d aé ùÎ ê úë û

. Equation (67) can be readily 
solved using the boundary condition at the core, i

n
Yd (0) / d 0c = ; one obtains 

   i
n
Y C e n S

21
2 1 23 1 1 1

0 2 2 2 2
( ) ( i , , )

c
c a c

- -= F + -  (68) 

According to Prandtl’s Matching Principle, the remaining constant may be evaluated by reconciliation with the inner 
limit of j

n
Y ( ) .  First, however, the outer expansion of i

n
Y  must be made available.  This can be realized by writing, 

for large c , 

   ( )
n S

i o
n
Y C r

n S

1 2 2 i /
2

0 13 1
2 2

( )
( ) / 2 /

( i )

a

d a
a

+ -

-

G
=

G + -
 (69) 

At this point, Eq. (69) can be matched with the inner limit of the outer solution, o n S
n
Y r 2 2 i /a+ -= . The result is 

   ( ) n S
C n S

11
22

1 i /13 1
0 2 2

( i ) 2 /
a

p a d a
+ -- -= G + -  (70) 

Substituting back into Eq. (68) and reverting to the unstretched variable, one finds 

  
n Si

n
Y r n S r n S r

1 1
2 2

1 i /1 1 1 2 1 1 23 1 1 3 1 1 1
2 2 2 2 2 2 2

( ) ( i )(2 ) exp( ) ( i , , )
a

p a da ad a ad
- + -- - - - -= G + - - F + -  (71) 

A composite solution can thus be formed by adding to j
n
Y ( )  the inner solution minus the common limit.  This 

combination yields 

 c i j i o
n n n n
Y Y Y Y( ) ( )= + - º j j j

n n n
Y Y Y( ) ( ) ( )+ =  

  
n S

n S r n S r
1 1
2 2

1 i /1 1 1 2 1 1 23 1 1 3 1 1 1
2 2 2 2 2 2 2

( i )(2 ) exp( ) ( i , , )
a

p a da ad a ad
- + -- - - - -+ G + - - F + - n Sr 2 2 i /a+ --  (72) 

where the net inner correction j
n
Y ( )  is seen to be very small, being of n1( )d + .  It may be shown that Eq. (72) 

mimics the exact solution in the neighborhood of r 0= .  However, j
n
Y ( )  is more elaborate due to the presence of 

special functions; it also reduces the accuracy of the solution in the outer domain, especially near the wall.  Because 
C

0
 is found by matching, it leads to an approximation that becomes increasingly more accurate as d  is decreased.  

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

                  
Y

0

  Y E

  Y W

  Y K

 
inner region

penetration depth

y

  a)  S = 200

        
0 0.2 0.4 0.6 0.8 1

 

Y E ~ Y K ~  n+1

Y W ~ 

y

  b)  S = 100

penetration depth

                 

 
 

Figure 3. WKB approximations showing consistent agreement by overlapping the exact solution for F y1
2

(1 )p= - , 
10x = , and a Strouhal number of a) S 200=  and b) S 100.=   By fixing S 2x dº , the penetration depth remains 

constant irrespective of the frequency of oscillations. 
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For this reason, c
n
Y  becomes less precise than j

n
Y ( )  in the outer region.  Nonetheless, as 0d  , c

n
Y  will stand to 

outperform j
n
Y ( )  in its ability to match both boundary conditions while yielding a value of n1( )d +  at the core.  In 

practice, since j
n
Y ( ) n1( )d += , one can express the basic solution as W

n n
Y Y (0) ( ),d= +  j

n
Y ( )

 notwithstanding.  

F. Endpoint Corrections for Small and Large R 
 The example we have cited serves a dual purpose.  First, it illustrates the relationship between exact and 
asymptotic forms of the solution for a test function F ra= .  More importantly, perhaps, it provides the general 
form of the inner solution for Berman’s small and large mean-flow functions.  This is due to the suitability of 
F ra= , 3 1

2 2
( , )a p=  in representing the inner expansions for F r r r21 1

2 2
(3 ), sin( )pé ù= -ê úë û .  For example, in order 

to find j
n
Y ( )  for the large injection case, one must first realize that the outer solution is given by 

   ( ) ( ) ( ) ( )
nno j

n n
Y Y S r S r

2 22 2( ) 2 1 1 1 2 1
4 2 2 40

lim cos exp i ln tan sin exp i ln tan
p pd

q p q p p
++



é ù é ù é ù= = + = -ê ú ê ú ê úë û ë ûë û
 (73) 

with the inner limit 

   o i
n r
Y

0
( ) lim


= ( ) ( ) ( )

n n SS
r S r r

222 2 2 2 ii1 2 1 1
2 4 2

sin exp i ln tan 2 pp

p
p p p

+ + -é ù é ù- =ê ú ê úë û ë û  (74) 

Insofar as r r1 1
2 2

sin( )p p  in the near-core region, the general form of the inner solution becomes identical to Eq. 
(68) with 1

2
a p= .  The outer limit of i

n
Y  also coincides with Eq. (69).  The only difference here is that C

0
 must 

be found by matching Eq. (74) with Eq. (69). Thus, by setting i o o i
n n
Y Y( ) ( )= , one finds 

   
S n S n S

C n S
2 1 1 1

2
i i 1 i3 1

0 2
2 ( i )p p p

p
p d

+ - + -
= G + -  (75) 

The composite solution can be constructed from Eqs. (72) and (23).  One finally obtains 

 
c i i o j
n n n n
Y Y Y Y ( )( )= - +

S n S n S
n S r n S r

2 1 1 1
2

i i 1 i 1 2 1 23 1 1 3 1 1 1
2 4 2 2 4

2 ( i ) exp( ) ( i , , )p p p

p p
p d pd pd

+ - + - - -= G + - - F + -  

  ( ) n SS
r

22 2 2 ii 1
2

2 pp p
+ -

- ( ) ( ) ( )(n
S S

2 2 21 1 1 2 1 1
4 2 4 2

cos exp ln tan sec tan i ln tan
p p

q d p q q q p q
+ é ù+ - + + + +ê úë û  

   ( ) ( ) ( ){ })S S n4 21 1 1 3
8 4 2 2

i 12 ln tan sec 11sin 3sin 3 2 (sec 1)
p

d d p q q q q qé ù- + + + + + -ê úë û , j 0=  (76) 

The small correction gained by retaining the inner solution is illustrated in Table 3 using two test functions.  The 
composite solution has the advantage of better approximating the exact solution near the core.  Unlike Y (2)

0
, cY

0
 

approaches EY
0

 and NY
0

 at both ends of the interval.  However, inasmuch as the matching and subsequent 
determination of C

0
 is based on R ¥ , cY

0
 remains less accurate than Y (2)

0
 in the outer domain when R  is 

finite.  This is evident at y 0=  where cY
0

1  asymptotically in d . Thus, as 0d  , the precision of the 
composite solution is improved.  

Table 3.  Type I WKB approximation with and without the inner correction iY
0

.  Here S 50= , 
R 710= , and n 0= .  Note that the composite solution cY

0
 matches EY

0
 and NY

0
 at both extremities 

 

 

y  

F y1
2

(1 )p= -  F y1
2

cos( )p=  

EY
0

 Y (2)
0

  cY
0

 NY
0

 Y (2)
0

  iY
0

 i oY
0

( )  cY
0

 

0.00 1 1 0.9999678 1 1 0.4046515 0.4046571 0.9999944
0.05 -0.0558466 -0.0558466 -0.0558415 -0.7977303 -0.7977303 -2.2149878 -2.2150676 -0.7976505
0.10 -0.7918366 -0.7918366 -0.7918057 0.2960063 0.2960063 0.0946690 0.0946803 0.2959950
0.20 0.4367574 0.4367574 0.4367376 -0.6655363 -0.6655363 -0.9618275 -0.9618818 -0.6654820
0.30 0.1715711 0.1715711 0.1715570 -0.7881319 -0.7881319 1.1865032 1.1865797 -0.7882084
0.40 -0.3064925 -0.3064925 -0.3064666 -0.5652062 -0.5652062 0.3355138 0.3355507 -0.5652431
0.50 -0.2493209 -0.2493209 -0.2492890 -0.4879304 -0.4879304 -0.0568756 -0.0568754 -0.4879305
0.60 -0.1004289 -0.1004289 -0.1004110 -0.1167005 -0.1167005 0.2624337 0.2624921 -0.1167589
0.70 0.0729891 0.0729891 0.0729648 0.0281442 0.0281442 -0.0985015 -0.0985435 0.0281861
0.80 0.0227773 0.0227773 0.0227615 -0.0487533 -0.0487533 -0.0707224 -0.0707845 -0.0486912
0.90 -0.0050751 -0.0050751 -0.0050613 0.0176026 0.0176026 0.0188282 0.0188938 0.0175370
0.95 0.0011016 0.0011016 0.0010901 -0.0048594 -0.0048594 -0.0049298 -0.0049981 -0.0047911
1.00 -3.98×10-17 0 -3.98×10-17 -1.993×10-17 0 -1.994×10-17 0 -1.994×10-17
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V. Multiple Scales 

A. Strategy 
 Having presented two WKB approximations and one matched-asymptotic expansion for the problem at hand, 
attention is now turned to the method of multiple scales.  In previous work by Majdalani,10 the modified variable 
was left unspecified while carrying out the two-scale expansion. At the conclusion of the asymptotic analysis, 
physical arguments were called upon in evaluating the conceptual coordinate. These physical arguments were based 
on comparisons with an available WKB solution. The strategy here is different in that it precludes provisional 
comparisons with supplementary expansions. At present, the undetermined scaling transformation will be connected 
to the problem’s solvability condition. The latter will be based on the Principle of Least Singular Behavior.13  

B. Generalized Two-scale Expansion 
 To begin, we let our two fictitious coordinates be y y

0
= , and y s y

1
( )d= .  The difference here is that s y( )  will 

remain unspecified until the solvability condition is applied.  Forthwith, functions and derivatives are expanded into 

   
n
Y y y Y y y Y y y

s

y y y y y y

(0) (1) 2
0 1 0 1 0 1

2 2

2 2
0 0 1 0

( , ) ( , ) ( , ) ( )

d d d
; ( )

d d d

d d

d d

ìï = + +ïïï ¶ ¶ ¶íï = + = +ïï ¶ ¶ ¶ïî




 (77) 

When inserted into Eq. (7), these expressions give rise to a sequence of PDEs at different orders in d .  For the 
leading and first orders, one identifies 

  ( )Y F S
n Y

y F F

(0)
(0)

0

2 1 i 0
é ù¢¶ ê ú- + + =ê ú¶ ë û

,     Y (0)(0) 1= ,     Y (0)(1) 0¢ =  (78) 

  ( )Y F S s Y Y
n Y

y F F y y F y

(1) (0) 2 (0)
(1)

2
0 0 1 0

d 1
2 1 i

d

é ù¢¶ ¶ ¶ê ú- + + = - +ê ú¶ ¶ ¶ë û
 (79) 

Then, integration of Eq. (78) gives 

   ( )
y

Y y y K y n F y F S F z z
0(0) 1

0 1 1 1 0 0 0
( , ) ( )exp 2 1 ln ( ) / i ( )d-ì üï ïï ïé ù= + +í ýê úë ûï ïï ïî þ

ò  (80) 

where K
1
 awaits evaluation from the first-order equation.  This multiplier can be determined in a manner to 

promote the least singular behavior in 
n
Y .  To that end, we find it unnecessary to determine Y (1)  fully.  Rather, it is 

sufficient to introduce a solvability condition for which an asymptotic series expansion of the form 
Y Y(0) (1) ( )d d+ + �  may be realized.  This is accomplished by first introducing 

   
Y y y

Y y y

(1)
0 1

(0)
0 1

( , )

( , )
L =  (81) 

In order to determine L , one can multiply Eq. (78) by Y Y(1) (0) 2[ ]-  and subtract the result from the product of Eq. 
(79) and Y (0) 1[ ]- .  This operation yields 

   
Y Y Y s Y Y

y y yY Y Y FY y

(1) (1) (0) (0) 2 (0)

(0) (0) 2 (0) (0) 2
0 0 1 0

1 1

[ ]

¢¶ ¶ ¶ ¶
- = - +

¶ ¶ ¶ ¶
 (82) 

Noting that the left-hand-side is the partial derivative of L  with respect to y
0

, Eq. (82) can be integrated into 

   
yY s Y Y

z
yY Y FY y

0
(1) (0) 2 (0)

(0) (0) (0) 2
1 0

1
d

é ù¢ ¶ ¶ê úL = = - +ê ú¶ ¶ê úë û
ò  (83) 

At this point, Eq. (80) can be differentiated and substituted into Eq. (83); one finds 

 ( ) ( ){ }ys y K
S F n F F n F F S n F F z

K y

0 2 3 2 2 3 30 1

1 1

( ) d
2 1 (2 1) i 4 3 d

d
- - - -é ù¢¢ ¢ ¢L = - + - + + + + + +ê úë ûò  

   ( )
ys y K

S F S n F F S z
K y

02 3 1 3 20 1

1 1

( ) d
i 4 3 ( ) d

d
- - - -é ù¢= - - - + +ê úë ûò   (84) 

At this stage, an additional constraint is needed to achieve closure.  
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C. Solvability Condition 
 In order to promote a uniformly valid series, the ratio of Y (1)  and Y (0)  must be bounded y

1
" . This can be 

accomplished by posing (1)L = .  Equation (84) becomes 

   
ys y K

S F S n F S z
K y

02 3 1 2 20 1 3
2

1 1

( ) d
i (2 )( ) ( ) d (1)

d
- - - -é ù¢L = - - + + + =ê úë ûò    (85) 

For arbitrary F , L  will be bounded if and only if 

   
K y

y
K y y

1 1
1

1 1 1

d ( )1
( ) (1)

( ) d
k= =      or     ( ) ( )K y K y K s

1 1 0 1 0
( ) exp d exp dk d k= =ò ò  (86) 

On the one hand, K
0

 emerges as a constant that can be determined from Y (0)(0) 1= .  On the other hand, k  
appears as an auxiliary function that is self-cancelling.  Moreover, when Eq. (86) is substituted back into Eq. (85), 
s y

0
( )  may be deduced.  The result is 

   
y

s y S F S n F z S
01 2 3 1 2 23

0 2
( ) i (2 )( ) dk- - - - -ì üï ïï ïé ù¢= - + + + Lí ýê úë ûï ïï ïî þ

ò  (87) 

Subsequently, since (1)L = , one can put 

   { }s y S F S n F S1 2 3 1 2 23
0 2

/ i (2 )( ) ( )k- - - - -é ù¢¶ ¶ = - + + +ê úë û   (88) 

so that, by virtue of Eq. (77), 

 ( ) { }( )s s y s s y y S F S n F S y1 2 3 1 2 23
0 1 2

d / / d i (2 )( ) ( ) ( ) dd k d- - - - -é ù¢ ¢= ¶ ¶ + ¶ ¶ = - + + + +ê úë û    (89) 

This can be substituted into Eq. (86) to get 

   { }( )K y K S F S n F S y2 3 1 2 23
1 1 0 2
( ) exp i (2 )( ) ( ) ( ) dd d- - - -é ùé ù¢= - + + + +ê úê úë ûë ûò    (90) 

From Eq. (87), it becomes clear that the problem exhibits an underlying multiple-scales structure that cannot be 
captured by linear transformations. As such, it justifies the analyses in which the use of nonlinear coordinates is 
suggested.10,20  In fact, the use of a nonlinear scaling transformation is first reported by Van Dyke13 in his account of 
Munson’s treatment of the vortical layer over an inclined cone.21  Common to these problems is the coexistence of 
several mechanisms involving dispersive and dissipative mechanisms.  Under such circumstances, it is possible for 
the transitional variables to be nonlinear functions of space. In problems such as those described here, the freedom 
of a general transformation allows us to capture the nonlinear behavior. 

D. Generalized Coordinate 
 Recalling that the type I distinguished limit is S 2d - , a solution may be arrived at by substituting Eq. (90) 
back into Eq. (80).  Using the superscript G to denote a multiple-scales solution based on a generalized coordinate, 
the multiple-scales result reduces to 

   

n
y y

G
n

F z z
Y S n S F F

F F zF z

2 2

2 23
0230 0

0

d d
exp i (2 ) ( )

( )( )
x d

+

- -
æ ö ì üé ùï ï÷ç ï ï÷ ê úç= - + + + -í ý÷ç ê ú÷ ï ïç ÷è ø ï ïë ûî þ

ò ò ( )d+  (91) 

This expression reproduces the dominant parts in W
n
Y .  Despite being of the same order as Eq. (21), it is simpler to 

evaluate because it does not contain the higher-order integral seen in Eq. (50).  Furthermore, it displays the 
coordinate transformation required in a standard multiple-scales analysis.  From Eq. (87), one realizes that 

   
y

G
nz

s
F SF


3
2

3 20

(2 )d
i

+
+ò  (92) 

Having determined G
n
Y , the velocity of the traveling wave may be deduced from Eq. (1). One obtains 

   ( ) ( ) ( )G G G
m m m m

F F
u x y t x t x t

F F1
0 0

( , , ) sin sin sin exp sinw w w z w
æ ö æ ö÷ ÷ç ç÷ ÷ç ç= - + F÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø

 (93) 

where 

   
y

G z

F z30

d

( )
z x= - ò ,  ( )y

G z
S S F F

F z
2 23

020

d

( )
d - -

é ù
ê úF = - + -ê ú
ë û

ò  (94) 
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E. Former UST Analysis 
 In former work by the author,10 the undetermined scaling technique (UST) is developed and explored.  
Accordingly, an undetermined scaling transformation is applied in concert with a two-variable expansion to solve 
Eq. (2). Using the two virtual coordinates y y

0
=  and y s

1
e= , the UST result consists of 

( ) ( ) ( ){ } ( )
ynU

n
Y F F F n n F F F S F z S n F F

2 2 3 2 1 3
0 0

/ exp 2 1 2 1 i d 4 3h x d d h
+ - - -æ öé ù÷é ùç ¢ ¢¢ ¢ê ú= - + + + + + + + ÷ç ê ú ÷ç ê ú÷ë û ë ûè øò  (95) 

Note that the original UST solution is presented at order S/e d= . The undetermined scaling functional y( )h  is 
obtained by matching leading-order terms with the corresponding WKB solution of type I. This requires setting 

   
y

y s y s y F y F z z3 3

0
( ) ( ) / ( ) ( ) ( )dh -¢= = ò  (96) 

Consequently, Eq. (1) collapses into 

   ( ) ( ) ( ) ( )U U U
m m m m

u x y t x t F F xF F t
1 0 0
( , , ) sin sin ( / )sin / exp sinw w w z w= - + F  (97) 

where 

   U F F F F F3 2 2 12 ( )z xh dh- - -¢¢ ¢= - + + ,    
y

U S F z z S F F1 3

0
( )d 3d h- -é ù

¢ê úF = - +ê úë ûò  (98) 

The advantage of the UST solution stands in its explicit formulation as a function of F  and its derivatives. The 
outcome requires minimal integration to determine h  and the leading-order term in F . For small and large R , 
these quantities may be readily retrieved from Eqs. (48) and (49).  

F. Limitation of Former Solution 
 For F

0
1= , the amplitude of U

n
Y  is controlled by n U

n
F 2 2 exp( )z+  where 

   ( ) ( ){ }U
n

S F S n n F F F2 3 2 21 2 1 2 1z d h - - é ù¢ ¢¢= - + + + +ê úë û  (99) 

Then given large R , the exponential damping function becomes 

 ( )U
n
A A2 1

1 2 2
sec sin ln tanz q q p q= + + ; A A S S n n2 2 2 2 1

1 2 2
( / )[ ( 1)( sin cos2 ) 1]d p p q q-= = + - -  (100) 

As y 1- , the amplitude of U
n
Y  becomes solely dictated by A

1
, the coefficient of the most singular term in the 

exponential.  To ensure boundedness at the extremity ( 1
2

q p= ), the condition S n n2 2 1
2

( )( 1) 1 0p - + + - £  must 
be secured.  For small R , it can be shown that boundedness at y 1=  is contingent upon satisfying 
S n n2 1

2
9 ( )( 1) 1 0- + + - £ . These criteria lead to the realization that the UST solution10 remains uniformly valid 
so long as 

   
S S R

n
S S R

21 9 3
3 16 4

2 21 1 3
16 4

1 ,   small 

1 ,   large 
p

p

-

-

ìï + -ïï£ íï + -ïïî

 (101) 

It is clear from Eq. (101) that singularity is delayed to n  ¥  as S  ¥  or 0d  .  This confirms that the 
former solution is not only legitimate, but also exhibits a non-singular asymptotic behavior.  In practice, however, 
the smallest value of n  for which the solution becomes unbounded corresponds to the lowest value of the Strouhal 
number.  Thus, for S 10= , the solution becomes suddenly unbounded at the core starting with n 3³ .  By holding 
S 10>  as a requirement for non-trivial oscillations, no endpoint singularity can arise in the n 0=  correction used 
in constructing the total velocity Uu

1
. The latter remains valid over the stated range of concern.  Conversely, for a 

fixed n , the approximation will remain uniformly valid provided that 

   
n n R

S
n n R

1
2

1
2

3 ( )( 1),   small 

( )( 1),   large p

ìï + +ïï³ íï + +ïïî

 (102) 

Since the construction of Uu
1

 necessitates the use of the n 0=  correction, the former solution will stay non-singular 
as long as S (2.1213,2.2214)³  for small and large R , respectively.  Another remedy lies in trading accuracy for 
broader validity.  By expressing U

n
Y  at the order of d  in lieu of e , the result becomes unconditionally valid, n S," . 

Furthermore, Uu
1

 becomes unrestricted. This extension is realized by writing U U
n

S F2 3 ( ).z z d h d-= = - +   The 
modified solution becomes 

   ( )
y

U n
n
Y F F S F z S n F F2 2 3 1 3

0
exp i d 4 3 ( )xh d h d+ - - -ì üé ùï ïï ï¢ê ú= - + + + +í ýê úï ïë ûï ïî þ

ò   (103) 
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G. Former CST solution 
 In another study concerned with small d  and large S , a hybrid, composite-scaling technique (CST) is 
introduced and discussed.20 This approach follows the conventional asymptotic paradigm of identifying the scales 
before seeking to expand. As given by Eq. (5.22) of Majdalani,20 the amplitude of the CST solution is prescribed by 

   ( )( ) ( )C C CS n n n3 2 2 2 21 1
2 2

sec 1 1 sin 1 secz xh q p q p m h q-é ù= - + + + - +ê úë û  (104) 

Here too, since C (1) 0h = , the coefficient of the dominant term C 3sech q  becomes positive for sufficiently small 

S . To prevent singularity, the upper cap that must be imposed on n  is identical to that given by Eq. (101). Here 
too, a modified CST solution that is unconditionally bounded can be arrived at, n S," , by expressing the previous 

solution at ( )d , which is the reciprocal of the crossflow Reynolds number. The broader applicability of resulting 

representations will be illustrated next. 

VI. Discussion 

A. Error Verification 
 In order to verify the truncation order associated with each approximation, the maximum error evolving from 
G
nY , W

nY , K
nY , U

nY , and C
nY  can be determined from 

   A N A
n n ny
E n S Y y n S Y y n S

0 1
( , , ) max ( , , , ) ( , , , )d d d

£ £
= -  (105) 

where N
n
Y  is the numerical solution of Eq. (2) and A

n
Y  is a given asymptotic solution for A GW K U C{ , , , , }= .  

Following the formal test proposed by Bosley,22 one may generate a log-log plot of A
n
E  versus d  at fixed S  and .n  

Assuming that A
n
E n S ( , , ) kd d , the order of the error k  is deducible from the graph.  For the first two eigenvalues, 

this procedure is illustrated in Figs. 4a-e where the error in each approximation is displayed versus S/d  at constant 
S .  This is done in the interest of clarity because error curves become too closely spaced when plotted versus d .  In 
all five cases, the error is seen to exhibit a clear asymptotic character.  Specifically, one notes that 1k   as 0d  , 
in compliance with a leading-order expansion. Overall, K

n
Y  displays the smallest absolute error S,d"  and n 0,1= . 

This can be attributed, in part, to the ability of K
n
Y  to outperform other asymptotic solutions at both ends of the 

domain. On the other hand, both G
n
Y  and K

n
Y  exhibit regions of accelerated convergence in which the error 

increases to order 2 in some range of the operating parameters. At higher eigenvalues, the error gradually diminishes 
for S 10³  except in K

n
Y . In fact, K

n
E  in Fig. 4a constitutes the only case for which the error increases with n , 

S" . Nonetheless, the corresponding solution remains considerably accurate, as showcased in Fig. 4f. Therein, all 
solutions are compared to one another, for n 1= , in descending order of precision. It is interesting to note that all 
errors diminish as the Strouhal number is reduced. Furthermore, all errors converge to the same value for S 10< . 
For this reason, the five error curves in Fig. 4f overlap at S 0.1= . 

B. Characteristic Length Scales 
 In previous work, a hybrid multiple-scale procedure was followed in the treatment of the large injection case.20 
The corresponding composite-scaling technique (CST) was consistent with the traditional multiple-scale practice of 
identifying the transitional variables before expanding the derivatives.  Subsequently, the space-reductive character 
was achieved by constructing a composite scale ‘ se ’ that could reproduce the problem’s dissimilar scales in their 
respective regions. In the process, reducing the number of scales to two was determined to be essential lest an 
intractable problem is obtained. The ensuing formulation was found to depend on a scaling functional, Ch , wherein 

  ( )C bs y s r
y ay yr b r

s y s r

1
1( ) ( )

1 ln
( ) d / d

h
-

-é ù= = - = + -ê úë û¢
;   { }a b R R3 3 3

2 2 2
( , ) ( ,2) for small ,   ( , ) for large =  (106) 

 In hindsight, this characteristic length scale reminds us of the characteristic time constant s s/t = -  that is 
frequently used to measure the amount of dissipation in first-order dynamic systems.  These are typically described 
by s s 1 0t-+ = , thereby evolving according to s t t( ) exp( / )t- .  
 In a subsequent generalization of the oscillatory porous channel flow,10 the UST approximation was used. Its 
analysis followed the CST scheme by reducing the scales before expanding. In the UST application, however, the 
space-reductive variable was left unspecified. At the conclusion of the effort, the undetermined variable was 
deduced by matching the leading UST term with its WKB counterpart. This rationalization was based on the 
physical argument that exponential damping of the oscillatory wave ought to occur at the same rate regardless of the 
technique used. In essence, it conformed to Prandtl’s Principle of Matching by Supplementary Expansions.13 As a 
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windfall, a general form for the length scale Uh  could be arrived at.  This relationship produced Uh  explicitly for an 
arbitrary mean-flow function F . For example, one could write  

   
( ) ( ) ( ) ( )

y
U r r r r r r r R

F F z
y y y y R

2 2 4 2 2 2 2
3 3

0 31 1 1 1 1
2 4 2 2

1
( 3) 18 27 6 2 ( 3) ln(3 1) ,   small 

d 108
cos ln tan 1 sec tan ,   large 

p

h
p p p p

-
-

ìï é ùï - - + + - -ï ê úï ë û= = íï é ùï + +ï ê úë ûïî

ò  (107) 

This result could be directly used to explain and guide the selection of inner variables in similar studies of 
oscillatory flows in porous channels.  Despite their entirely different expressions, Eqs. (107) and (106) were shown 
to possess a similar spatial content.10  This confirmed the validity of the effort undertaken by Majdalani20 where the 
CST approximation was obtained without help from the WKB expansion.  By comparison, the UST approach led to 
a more accurate two-variable solution. Its main shortcoming, however, could be attributed to its fundamental need 
for matching with an available solution.  
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Figure 4. In descending level of precision, we present the errors evolving from the unconditionally valid expansions of a)
KY , b) WY , c) GY , d) UY , and e) CY  for 1

2cos( )F yp=  and 0,1.n =  Errors are compared in f) for 1n =  and two 
values of the Strouhal number spanning three orders of magnitude in S . 
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 The shortcoming of the UST and CST paradigms are eliminated in the GST approximation. At present, neither 
guesswork nor rationalization is required. In fact, specification of the scale in Eq. (87) is independently realized by 
imposing the Principle of Minimum Singularity. From Eq. (87), the need for a nonlinear variable transformation is 
formally established. Based on Eq. (92), the problem’s scaling functional can be determined from 

   

y

G
F F z S n F

S n F

3 3 1 3
20

1

d i (2 )

1 i (4 3)
h

- -

-

+ +
=

¢- +

ò
 (108) 

It may be instructive to note that Uh  can be restored from Gh  since G Uh h  as S  ¥  at constant n . Thus Uh  
represents the leading-order, parameter-free component of Gh . This explains the ability of the UST expansion to 
yield a rational approximation.  
 All three formulations, Uh , Ch , and Gh  are shown in Figs. 5a-b for small and large R .  Note that, for S 20³ , 
insignificant variations in Gh  can be observed. In addition, Uh  and Gh  stand in good agreement, especially when 
S  is increased. This may be surmised by observing the convergence of the chained lines (representing Gh ) on top 
of Uh  for S 20> .  

C. Simple Test Case 
 The usefulness of Eq. (92) may be illustrated by considering F y(1 ); 0a a= - > . Accordingly, 

   ( )n n
n

Y Y
y S n Y

yy

2

2

d d
(1 ) i 2 1 0

dd
d a aé ù- - + - + =ê úë û  (109) 

Apart from the benefit of obtaining a multiple-scales solution directly from Eq. (91) or (93), the use of Eq. (92) 
enables us to identify the type of transformation needed in a standard two-variable expansion. As shown by 
Majdalani,23 the corresponding Eq. (109) cannot be solved asymptotically using linear transformations.  One may 
verify the futility of using y y

0
=  and any linear distortion of the form y y

1
(1 ) / (2 )a d= - , y / (2 )a d , 

y(1 )ld- - , y,ld- l" .  Instead, one must resort to Eq. (92) and determine that the second coordinate transformation 
must follow  

   
y

Gs z z S y S3 3 1 3 2 11
20

(1 ) d ( ) (1 ) 1 ( )a a- - - - - -é ù- + = - - +ê úë ûò    (110) 

Considering that constants do not affect the scaling order, the nonlinear coordinate Gs y3 21
2

(1 )a- -= -  is realized. 
Subsequently, it can be shown that a conventional application of multiple-scales analysis with y y

0
=  and 

Gy s y3 21
1 2

(1 )d a d- -= = -  yields a uniformly valid solution that is identical to the GST result.  The use of Eq. (92) 
or (108) can be especially helpful in treating more elaborate forms of F .  Such are those leading to the expressions 
in Eq. (107) that are virtually impossible to guess.   
 Before leaving this subject, it may be instructive to note that an extended form of the GST approach may be 
employed in which the strained coordinate, y

1
, is granted more freedom through the WKB-like expansion 

   k
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Figure 5. Characteristic length scales s s/h ¢=  obtained using GST, UST, and CST analyses.  For a range of Strouhal
numbers, current GST predictions are compared to former approximations corresponding to a) small and b) large R . 
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The resulting work will reproduce, after considerable effort, the WKB approximations obtained in Sec. III.  The 
detail of such analysis will be the topic of a future investigation with J. W. Batterson. 

D. Behavior and Confirmation 
 We have seen in Fig. 4, K

n
Y , W

n
Y  and G

n
Y  lead to more precise representations than those given by U

n
Y  and C

n
Y  

at ( )d .  Along similar lines, one expects the corresponding velocities Ku
1

, Wu
1

 and Gu
1

 to be more accurate than 
Uu
1

, Cu
1

, and Flandro’s vorticity transport solution Vu
1

.  This can be indeed demonstrated by examining the 
maximum error E

m
 between Au

1
 given asymptotically and Nu

1
 obtained numerically.  Using 

   A N A

x l
y

E u u
m 1 10

0 1

max
£ £
£ £

= - , AE 
m

kd  (112) 

the order of the error may be calculated numerically and ascertained graphically from Fig. 6. In this vein, 
comparisons between GE

m
, WE

m
 and UE

m
 are performed and shown in Figs. 6a-b for small and large injection levels. 

Since a non-numeric WKB solution of type II is only available for large injection, KE
m

 is displayed in Fig. 6b along 
with CE

m
 and VE

m
.  The last two correspond to the CST and vorticity transport solutions.  Everywhere, we find that 

1k   consistently as 0d   at fixed S . According to Bosley,22 the resulting asymptotic behavior confirms that 
the solutions are legitimate, error-free approximations.  Overall, we find that the smallest error evolves from KE

m
 

and is followed by WE
m

 and GE
m

. Since AE
m

 diminishes as S  is reduced, these approximations remain 
unconditionally valid as the Strouhal number is lowered at constant d . 

E. Axially Traveling Wave Motion 
 The behavior of Ku

1
 (or Nu

1
) is illustrated in Fig. 7 at constant R 44 10= ´ , F y1

2
cos( )p= , and a typical 

Strouhal number of S m25= .  The relatively large value of the Strouhal number may be attributed to our reference 
velocity being based on the wall injection speed 

w
v , which is a small quantity when compared to the mainstream 

velocity used in classical acoustics.  The precision at this Reynolds number causes the numerical and asymptotic 
solutions to become indiscernible for the given graphical resolution. As the oscillation mode number is increased, 
the modulus of Ku

1
 is seen to follow the spatial mode shape of the irrotational plane wave represented by the first 

member of Eq. (1).  For the fundamental oscillation mode (S 25= ), the modulus reaches its maximum halfway 
along the channel where the sinusoidal plane wave amplitude is largest.  The penetration depth of the wave 
continues to increase in the downstream direction due to the convection of unsteady vorticity that accompanies the 

10-8 10-7 10-5 10-410-6

10-5

10-4

10-2

10-1

  G
  W
  U

S =
 0

.1

0.2

0.512

5

20
0

10
0

50 10
20

  

a) small R

 

E
m

 /S

 

10-8 10-7 10-5 10-4

  G
  W
  U

0.1
0.2

0.5

1

2
5

20
0

10
0 50

10

20

b) large R

 

 /S 10-8 10-7 10-5 10-4

  K
  C
  V

0.1
0.2

0.5

1

2
5

20
0

10
0

50

10

20

c) large R

 

 
 /S

 

 
 

Figure 6. Errors in the axially traveling wave velocities Gu
1

, Wu
1

 and Uu
1

 presented here for either a) small or b) large 
R . Also for large R , we compare in c) the high precision approximation Ku

1
 to the unconditionally valid Cu

1
 and Vu

1
. 

The latter and least accurate among the group corresponds to Flandro’s vorticity transport solution (correctly 
reconstructed).10 
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mean flow for F y1
2

cos( )p= .  For the first harmonic (S 50= ), a sinusoidal velocity node appears at x l1
2

= ; this 
local deficit in the parallel flow component eliminates the local coupling between acoustic and rotational waves.  
Nonetheless, the rotational wave amplitude remains nonzero above the wall due to the downstream convection of 
unsteady vorticity.  

F. Unsteady Vorticity 
 The spatial evolution of the unsteady vorticity is captured in Fig. 8 for the first three harmonic oscillation modes, 
m 2, 3,=  and 4 . This is effectuated by displaying equally distributed isovorticity contours, starting with the 

 0 0.2 0.4 0.6 0.8 1x/l
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Figure 7. Modulus of the axially traveling wave velocity u x y t
1
( , , )  for the first three oscillation modes.  Results are 

shown at equal intervals along the porous chamber.  Here F y1
2

cos( )p= , R 44 10= ´  and 25 ; 1,2, 3S m m= = .    
 

 

 
Figure 8. Iso-contours of time-dependent vorticity for the first three harmonic oscillation modes and one instant of time.
Full and broken lines denote alternating signs of vorticity that will trade back and forth with the passage of time.  Here 
F y1

2
cos( )p= , R 44 10= ´  and 25 ; 2,3,4S m m= = .  
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maximum absolute values that originate at the channel wall.  Using 100  percent to denote the vorticity extrema 
that occur at the acoustic velocity antinodes, where x l n m n m n/ (2 1) / 2 ; 0 ;= - < £ Î  , contours of constant 
vorticity are shown in decrements of 20 percent.  Their thumbprints illustrate the downstream convection and 
depreciation of unsteady vorticity due to the combined effects of mean-flow motion, acoustic driving at the wall, and 
viscous damping.  They are shown in Fig. 8 for typical values of the control parameters.  Given the alternating 
directions of particle rotation at different oscillation modes, some interesting features may be observed including the 
emergence of m( 1)-  lines of zero unsteady vorticity.  These ‘irrotational’ streaklines originate at the acoustic 
velocity nodes where surface coupling is absent.  Thus, starting at x l n m n m/ / ;= < , these demarcation lines 
partition the channel into m  regions of counter-rotating vorticity.  In the interest of clarity, we switch from full lines 
to broken lines as unsteady vorticity switches direction.   
 The effect of decreasing the wall injection velocity is examined in Fig. 9 where the wave modulus is displayed 
for the first oscillation mode shape.  By fixing the wave frequency and fluid viscosity, reducing the injection 
velocity by one order of magnitude is seen to shorten the spatial wavelength in the wall-normal direction.  The 
penetration depth is also reduced.  These trends are typical of those reported in the literature. 
 In Fig. 10, the axially traveling wave u

1  
is compared to the numerical solution for the first fundamental 

oscillation mode, F y1
2

cos( ),p=  and x l1
2

=  (midway along the channel). Interestingly, by holding 5,x =
 
the 

Strouhal number may be varied over a wide range of frequencies without affecting the thickness of the rotational 
region. It is clear that the agreement between numerics and asymptotics improves with successive increases in the 
Strouhal number despite the highly oscillatory nature of the solution and the marked reduction in spatial wavelength.  
The observed agreement reflects the precision entailed in the perturbative approximations and their usefulness in 
disclosing keystone parameters such as .x  This parameter plays a significant role in controlling the wave’s depth of 
penetration and could not have been identified except through the proper use of asymptotics. 

VII. Conclusions 
 The search for a multiple-scales solution of the oscillatory channel flow problem was initiated in 1998 due to its 
relevance to instability analysis.  The failure of linear coordinate transformations prompted the quest for a nonlinear 
composite scale.  By devising a space-reductive transformation in the form of a composite variable, one could 
reproduce the modified scales in their regions of validity. This required conjecture and careful identification of the 
transitional variables before constructing a composite scale. By implementing a two-variable expansion that made 
use of this composite scale, a uniformly valid approximation was obtained.  Later, Majdalani (10) attempted a reverse 
methodology. This time, the coordinate transformation was kept unspecified during the expansion.  In the process, 
the leading-order term based on the undetermined functional was compared to a WKB solution of type I. Then, 
matching leading-order terms yielded the undetermined transformation. The resulting UST approximation served 
four objectives: (a) it confirmed the nonlinearity of the scales; (b) it provided a more formal alternative that is 
separately arrived at; (c) it reduced the amount of guesswork and subjectivity involved in the selection of inner 
scales; and (d) it illustrated Prandtl’s principle that proposes matching with supplementary expansions. However, by 
relying on the existence of a supplementary approximation, the UST expansion became limited to problems for 
which a procedural substitution could be entertained. This issue is circumvented in the present study where the 
transformation is obtained directly from the problem’s solvability condition and the Principle of Minimum 
Singularity. By ensuring boundedness between successive perturbation orders, an improved expression is derived 
from which the UST form is restored at leading order.  
 Apart from being independently formulated, the GST approximation exhibits four interesting features: (1) it is 
compact and straightforward to express in closed form; (2) it clearly displays the physical characteristics that control 
the solution; (3) it unravels the necessary coordinate transformation without resorting to guesswork or 
supplementary functions; and (4) it stems from the problem’s mathematical stipulation for least singular behavior. 
Furthermore, the GST approximation follows the fundamental procedural step of multiple-scales theory, namely, 
that of transforming the governing ODE into pairs of PDEs.  Its uniqueness stands in (i) retaining a nonspecific scale 
until the basic solution is obtained; (ii) applying a fundamental principle to ensure boundedness between successive 
expansion terms; and (iii) disclosing the key transformation at the conclusion of the analysis. It may be useful to add 
the GST’s ability to provide the unique scales that, when used in a standard multiple-scales expansion, produce a 
result similar to that of the WKB of type I.  
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Figure 9. Modulus of the axially traveling wave velocity u x y t
1
( , , )  for the first oscillation mode assuming constant 

frequency and viscosity.  By holding h 2 6/ ( ) 10e n w -= = , the wall injection velocity is reduced, from top to bottom, by 
one order of magnitude. Here F y1
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Figure 10. Analytical GST (full lines) and numerical (broken) solutions of the axially traveling wave for F y1

2
cos( ),p=

5,x =  m 1,=  
m
t / 2,w p=  x l/ 0.5,=  and a Strouhal number of a) S 50,=  b) 100,  c) 200,  and d) 400.   By fixing ,x

the penetration depth of the traveling wave remains constant at any axial location regardless of the wall injection velocity,
viscosity, or frequency of oscillations. The agreement between numerics and asymptotics continues to improve with 
successive increases in the Strouhal number despite the highly oscillatory nature of the solution and the radical reduction
in spatial wavelength. 
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 Particular to this investigation, two essential forms of the WKB solution are derived and presented to arbitrary 
order. The new type II solution is especially useful in being unconditionally valid at all orders.  However, the 
increased algebraic complexity that accompanies type II can, in some applications, require numerical evaluation.  
The type I solution is simpler but requires a small-amplitude correction in higher-order representations. Incidentally, 
the appearance of a near-core boundary layer is consistent with conventional theory of laminar, injection-driven 
flows.  Yet having a size that is smaller than the leading-order truncation error, its inclusion is not entirely necessary 
unless higher order expansions are sought.  
 By exploring the behavior of the type I WKB solution near the core, we have identified a spurious singularity 
that appears at alternating powers of the perturbation parameter. We have also realized the parametric limitations of 
previously reported solutions, specifically, those expressed in terms of 1 1 1

k
Re S R- - -= , the reciprocal of the kinetic 

Reynolds number.  By recasting all solutions to the same order in 1Rd -= , uniformly valid representations of the 
CST, UST, and GST solutions are shown to be possible, irrespective of the size of the Strouhal number.   
 By way of verification, several examples are offered through which the newly developed asymptotic expansions 
are extensively tested.  Having established the accuracy of the individual eigensolutions in the wall-normal 
direction, the complete expression for the axially traveling wave is deduced, characterized, and compared to its 
numerical solution.  This crucial extension advances our asymptotic analysis of the vorticoacoustic field in a 
uniformly porous channel, a problem that has often been used to simulate the internal gas dynamics of a slab rocket 
motor. In forthcoming work, we plan on exploring the multiple solutions that arise in the context of an axisymmetric 
porous chamber. 

Appendix A. Vorticoacoustic Wave Equation in a Porous Channel  
The Helmholtz vector decomposition theorem enables us to synthesize the time-dependent disturbances in a porous 
channel from two parts: a curl-free, irrotational vector and a divergence-free, vortical component.  Using the 
circumflex and tilde to denote either acoustic or solenoidal fields, the traveling wave in a channel may be written as 
u u u

1
ˆ= +  .  This subdivision of roles may be substituted into the linearized Navier-Stokes equations at the first 

order in the perturbed pressure wave amplitude.  Forthwith, two sets of responses may be extracted for the acoustic 
and rotational motions.  On the one hand, the irrotational set collapses into 

   
w

p t p M2 2 2ˆ ˆ/ ( );¶ ¶ -  =    w w s
M v a/º  (A1) 

or 

   ( ) ( ) ( )m m w
p x t x t Mˆ , cos exp i ( )w w= - +  (A2) 

   ( ) ( ) ( )m m w
u x t x t Mˆ , i sin exp i ( )w w= - +  (A3) 

where p̂  is the acoustic pressure and
 m s

h a m l/ /w w p= =  is the dimensionless wave number assuming rigid 
wall boundary conditions and axial oscillations in a channel with l 1>> .  On the other hand, the rotational response 
yields  
   u 0 ⋅ =  (A4) 

   ( )w s
t M R R a hu u u u u u u u1

0 0 0
/ ; / n-é ù¶ ¶ = -  ⋅ - ´´ - ´´ - ´´ ºê úë û

      (A5) 

Being interested in longitudinal wave motions, the no-slip condition may be invoked to impose a vanishing velocity 
parallel to the porous wall.  Furthermore, assuming symmetry about the midsection plane, one can put 

   u x u x u x
1

ˆ( , 0) ( , 0) ( , 0) 0= + =  (A6) 

   u x y
1
( , 1) / 0¶ ¶ =  (A7) 

Letting ( )m
x y t x y tu u( , , ) ( , )exp iw= - , Eqs. (A4)-(A5) may be expressed as 

   u 0 ⋅ =  (A8) 

   ( )u u u u u u u u
0 0 0

i s eé ù=  ⋅ - ´´ - ´´ + ´´ê úë û  (A9) 

Subsequently, with 
w

v u M/ ( )= , the axial component of Eq. (A9) reduces to 

   ( ) w

u u
u uu v M

x y y

2

0 0 2
i ( )s e

é ù¶ ¶ ¶ê ú= + - +ê ú¶ ¶ ¶ë û
  (A10) 
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At the porous wall, the dynamic coupling with the acoustic wave requires setting ( )m
u x x( , 0) i sin w= - . Then 

taking Berman’s similarity form u v xF F
0 0

( , ) ( , )¢= -  for the mean flow and n

n n
u x y c x Y y( , ) ( )l= å  as a linear 

solution to Eq. (A10), one finds
 n

n n2 1, .l = + Î    The rotational wave contribution becomes 

   
( ) ( )

( ) ( )
n n

m

n m
n

x
u x y Y y t

n

2 1

0

1
( , ) i ( )exp i

2 1 !

w
w

+
¥

=

-
= - -

+
å  (A11) 

where each 
n
Y  is left to be determined from  

   ( )n n
n

Y Y
F n F Y
yy

2

2

d d
i 2 1 0

dd
e s sé ù¢- + + + =ê úë û ,   y0 1£ £ , (A12) 

with 

   ( )n
Y 0 1=  (no-slip at the wall), and 

n
Y (1) 0¢ =  (core symmetry). (A13) 

This completes our cursory derivation of Eqs. (1) and (2). 

Appendix B. Exact Kummer Solution 
Using F y(1 )a= -  and 3 1

2 2
( , )a p= , Eq. (7) becomes 

   ( )n n
n

Y Y
y S n Y

yy

2

2

d d
(1 ) i 2 1 0

dd
d a aé ù- - + - + =ê úë û  (B1) 

At this point, a double transformation of the type 

   y(1 ) /c a d= - , 
n
Y f21

4
exp( ) ( )c c= -  (B2) 

leads to 

   ( )f p f21 1
2 4

0cc c+ + - = , p n S12 3 ia-= - - +  (B3) 

The general solution is a linear sum of parabolic cylinder functions, namely, 

   
n p p
Y c D c D21

1 24
( ) exp( ) ( ) ( )c c c cé ù= - + -ê úë û  (B4) 

Due to p( ) 0Â < , application of the symmetry condition at the core yields c c
1 2

= .  Hence, one can put 

   
n
Y C n S2 1 21 3 1 1 1

1 2 2 2 2 2
( ) exp( ) i , ,c c a c-é ù= - F + -ê úë û  (B5) 

where F  denotes a Kummer function.  The remaining constant may be determined by applying the condition at the 
outer wall. One finds C n S1 1 1 11 3 1 1 1

1 2 2 2 2 2
exp( ) ( i , , )ad a ad- - - -= F + - .  It follows that 

   ( )E
n

n S y
Y y y

n S

1 1 23 1 1 1
2 2 2 211

2 1 13 1 1 1
2 2 2 2

i , , (1 )
exp 2

( i , , )

a ad
ad

a ad

- -

-
- -

é ùF + - -ê úë ûé ù= -ê úë û F + -
 (B6) 
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