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This study seeks to characterize the multiple flow reversals that may arise in the context of bidirectional

vortex motion. It constitutes an essential sequel to the analysis of the linear and nonlinear Beltramian

motions wherein the formation of only one mantle is considered. The mantle in cyclonic flows refers to the

non-translating interface separating the updraft from the downdraft. In this work, we show that an odd

number of mantles may develop and these are accompanied by endwall flow reversals that may be predicted by

sequentially higher eigenvalues derived directly from first principles. The multiplicity of mantle alignments is

corroborated by experimental measurements obtained in swirl-driven vortex chambers. The resulting flowfield

is characterized by multilayered coaxial vortex shells with sign-alternating axial velocity. In this article,

the multiple solutions associated with different modes of flow reversal are ascertained using as a baseline,

each of the linear and nonlinear Beltramian motions obtained by Majdalani (Majdalani, J., “Exact Eulerian

Solutions of the Cylindrical Bidirectional Vortex,” AIAA Paper 2009-5307, Denver, Colorado, Aug. 2009). Our

analytical approximations are shown to predict the positioning of internal mantles with substantial accuracy

when compared to computational fluid dynamics (CFD) and experimental particle-image velocimetry (PIV)

data. In addition, viscous layers that appear in the core and sidewall regions are quantified and appended to

the inviscid models as required.

Nomenclature

Ai = inlet area

B = tangential angular momentum, ruθ
H = total stagnation pressure head, p + 1

2
u2

Qi = nondimensional volumetric flow rate, Q̄i/(Ua2)

Re = injection Reynolds number, Ua/ν = 1/ε

S = swirl number, πab/Ai = πβσ

U = average inflow velocity in the tangential direction, ūθ(a, L)

V = vortex Reynolds number, QiRe(a/L) = (εσl)−1 = 2πκ/ε

Q̄i = inlet volumetric flow rate

u = nondimensional velocity, (ūr, ūθ, ūz)/U

a = chamber radius

b = chamber outlet radius

l = chamber aspect ratio, L/a

p = nondimensional pressure, p̄/(ρU2)

r, z = nondimensional radial and axial coordinates, (r̄, z̄)/a

s = scaled radial coordinate

Subscripts

0 = reference value at the chamber headwall

θ = tangential component

c = represents a solution in the core

i = inlet property

m = mode number

r, z = radial or axial component

w = represents a solution near the wall
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Symbols

α = constant,
λ0

2βJ1(λ0β)

(

1
8
λ2

0
− 1

)

β = normalized outlet radius, b/a

δ = characteristic boundary layer thickness

δp = location of maximum pressure gradient

ǫ = viscous parameter, 1/Re = ν/(Ua)

γ = constant,
λ0

4βJ1(λ0β)

κ = inflow parameter, Qi/(2πl) = (2πσl)−1

λ = eigenvalue

ν = kinematic viscosity

ω f = constant angular speed of the forced vortex

ω = vorticity vector

ψ = streamfunction

ρ = density

σ = modified swirl number, Q−1
i
= S/(πβ)

υ = separation constant

Superscripts

= overbars denote a dimensional variable

c = denotes a composite solution

ci = denotes a composite-inner solution

i = denotes an inner solution

o = denotes an outer solution

w = denotes a near-wall solution

I. Introduction

H
eat exchangers promote the transfer of energy between two mediums and are often designed in a variety of

geometric configurations and conceptual arrangements.1 These include widely used platforms such as the shell-

and-tube, plate-and-frame, crossflow, and counterflow patterns with either single or multiple passes.2 Depending on

the geometric scale and configuration at hand a finite number of passes, such as 3-4, is typically pursued for optimal

performance. The same may be said of the analogous problem arising in the vortex-fired rocket engine flowfield where

the onset of multiple passes can be helpful in promoting better mixing and combustion efficiency between the fuel and

oxidizer mediums, prolonged particle trajectory and fuel residence time,3,4 and in the case of the internally-cooled

liquid thrust chamber, more effective thermal shielding.5

Thus it may be seen that, in the propulsion community, a new category of vortex-fired engines is emerging

in which the unique properties of cyclones are leveraged. Examples encompass both the Vortex Injection Hybrid

Rocket Engine (VIHRE) and the Vortex Combustion Cold-Wall Chamber (VCCWC). These types of hybrid and liquid

thrust chambers have been undergoing development by Gloyer, Knuth and Goodman,3 Knuth et al.,4 and Chiaverini

et al.5 The corresponding vortex engines comprise swirl-dominated combustion chambers in which different types of

bidirectional vortex motions may be established. The simplest bidirectional vortex pattern allows the flow entering

upstream of the base, usually an oxidizer, to travel straight to the headwall, reverse polarity while turning inwardly,

and then traverse the chamber length a second time in the direction of the nozzle. A multidirectional flowfield such

as the one envisioned here repeats this process more than once while permitting the presence of secondary injection,

oxidizer or fuel, at either endwalls, fore or aft. The additional layering that accompanies such configuration leads to

a tight confinement of the heated combustion products in an inner vortex tube that, in turn, remains separated from

the chamber walls by virtue of concentric annular layers of fluid. Evidently, such an arrangement stands to provide

improved thermal protection and internal chamber cooling. A multidirectional flowfield, such as the one depicted in

Fig. 1, can further increase the residence time of combustion products and, in the process, induce higher combustion

efficiencies.

Chronologically, the inception of the VCCWC prototype prompted the investigation by Vyas and Majdalani6 that

led to the first three-dimensional, axisymmetric, complex-lamellar, Eulerian model to describe the motion of confined

cyclones. Majdalani7 later employed the Bragg-Hawthorne equation to derive two inviscid Beltramian solutions
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Figure 1. Here we show a) the VCCWC configuration including the coordinate system used and several mantle stations, and b) the injector

faceplate of an experimental end-burning hybrid grain with multiple grooves caused by multidirectional vortex motion.

comprising either linear or nonlinear spatial dependence. In the interim, experimental and numerical evidence gathered

by Anderson et al.,8 Rom, Anderson and Chiaverini,9 and others have corroborated the existence of interchanging flow

reversals. The presence of multi-layering was further substantiated by the higher eigensolutions stemming from Vyas

and Majdalani’s complex-lamellar model.10 Besides the VCCWC configuration, systems such as the Vortex Hybrid

Engine by Gloyer, Knuth and Goodman,3 the Vortex Injection Hybrid Rocket Engine by Knuth et al.,4 and the Reverse

Vortex Combustor (RVC) by Matveev et al.11 have been known to exhibit the basic configuration requirements for

multidirectional vortex flows. The present work will hence devote itself to the mathematical and physical arguments

associated with the formation of multiple mantles. Our point of departure will be the family of three-dimensional,

axisymmetric, Beltramian profiles with small viscosity at the core and sidewall boundary. The analysis will constitute a

sequel to the two studies by the authors12,13 in which the boundary layers of the linear and nonlinear Beltramian models

are separately treated. A similar asymptotic procedure will be employed here to overcome the essential singularities

connected with a purely inviscid, multidirectional, Beltramian vortex. In this vein, the centerline singularity will be

treated along with the three-dimensional boundary layers that develop at the sidewall. Unlike the complex-lamellar

vortex that has necessitated a separate asymptotic analysis to resolve its core and sidwall boundary layers, we find the

viscous corrections of the Beltramian model to mirror those constructed for the case of one mantle.

II. Linear Beltramian Motion with Multiple Mantles

It may be recalled that the solution of the Beltramian model with linear spatial dependence leads to a streamfunction

of the form7

ψ = ψ0zrJ1 (λmr) (1)
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where λm is a placeholder for the roots of the Bessel function of the first kind. These are given by

λm = {3.83171, 7.01559, 10.1735, 13.3237, · · · }. (2)

Whereas the use of λ0 = 3.83171 may be associated with single mantle formation, each consecutive eigenvalue will

give rise to one additional flow reversal. For propulsive applications we require the flow to exit at the aft end of the

chamber. Only even eigenvalues with m = 0, 2, 4, . . . may therefore be considered lest an unphysical setting with

implausible inflow and outflow boundary conditions is engendered.

To determine the last constant ψ0 in Eq. (1), we apply the volume conservation principle by insisting that all

injected flow be evacuated through the exit port. This enables us to deduce the last constant and thereby achieve

closure through

Qi =

∫ βm,0

0

∫ 2π

0

u(r, l) · n r dr = 2π

∫ βm,0

0

uz(r, l)r dr = 2π

∫ βm,0

0

1

r

∂ψ(r, l)

∂r
r dr (3)

and so

ψ0 = Qi/[2πlβm,0J1(λmβm,0)]. (4)

The solution for multiple mantles may hence be reproduced from

ψ = κzr
J1 (λmr)

βm,0J1

(

λmβm,0

) (5)

where κ = Qi/(2πl).

For an ideal configuration in which no collisions occur during outflow, the exit port radius may be chosen in

such a way to match the position of the innermost mantle, for any given flow reversal mode number, m. The flow

configuration associated with each increasing eigenvalue may be linked to a progressively shorter mantle radius,

βm,0, {m = 0, 2, 4, · · · }. For a fixed reversal mode number m, the locations of all internal mantles βm,n, {n = 0, 1, · · · ,m}
may be extracted from the roots of J0(λmβm,n) = 0 and catalogued in Table 1. Results show both βm,n and λm from one

to eleven internal mantles. It can thus be seen that the radius of the innermost mantle decreases precipitously from

0.628 in a single mantle configuration to 0.236, 0.146, and 0.106 in the case of two, four, and six mantles. Obviously,

as in the case of heat exchangers, smaller outlet radii or larger flow reversal mode numbers may be impractical and

may lead to unphysical behavior.

With the advent of the streamfunction, the tangential velocity may be readily obtained using B =
√

λ2
mψ

2 + B1. The

axial and radial velocities may be similarly obtained directly from the streamfunction. The last remaining constant B1

may be deduced from the tangential velocity requirement at entry, uθ(1, l) = 1. This condition compels the tangential

velocity to match the injection velocity at the endwall. The ensuing representation for the inviscid velocity becomes

u = −κ J1 (λmr)

βm,0J1

(

λmβm,0

)er + r−1

√

1 +
λ2

mκ
2r2z2 J2

1
(λmr)

βm,0
2J2

1

(

λmβm,0

)
eθ + λmκz

J0 (λmr)

βm,0 J1

(

λmβm,0

)ez (6)

It should be noted that, in the absence of friction, no deceleration in the tangential velocity may occur. Instead,

slippage at the sidewall will permit the swirling speed to remain constant, i.e., uθ(1, z) = 1, along the entire length of

the chamber, 0 ≤ z ≤ l. To overcome this deficiency, a viscous boundary layer treatment is required.

Table 1. Eigenvalues and corresponding mantle locations for even flow reversal mode numbers and an odd number of internal mantles

m λm βm,0 βm,1 βm,2 βm,3 βm,4 βm,5 βm,6 βm,7 βm,8 βm,9 βm,10

0 3.832 0.628

2 10.174 0.236 0.543 0.851

4 16.471 0.146 0.335 0.525 0.716 0.907

6 22.760 0.106 0.243 0.380 0.518 0.656 0.794 0.932

8 29.047 0.083 0.190 0.298 0.406 0.514 0.622 0.730 0.838 0.947

10 35.332 0.068 0.156 0.245 0.334 0.423 0.511 0.600 0.689 0.778 0.867 0.956
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A. Viscous Corrections

The inviscid velocity is marred by two physical defects, both attributable to the absence of viscosity. Firstly,

an essential singularity in the tangential velocity is observed at the centerline. Secondly, viscous interactions of the

flow with the sidewall are discounted in all three vector directions. In Part 1 of this series,12 the necessary viscous

corrections are obtained for the linear, bidirectional model. After some effort, it may be realized that the same findings

and flow characteristics in the bidirectional case may be straightforwardly conveyed to the multidirectional solution.

This can be accomplished by replacing all instances of λ0 and β by λm and βm,0, respectively. The velocity for multiple

mantles becomes

u = − κJ1 (λmr)

βJ1

(

λmβm,0

)

[

1 − e−
V
2π
α(1−r)

]

er

+
1

r































1 +
λ2

mκ
2r2z2 J2

1
(λmr)

β2
m,0

J2
1

(

λmβm,0

)















1/2

− e−
V
2π
γr2 − e−

V
2π
α(1−r)

















eθ

+
λmκzJ0 (λmr)

βm,0J1

(

λmβm,0

)

[

1 − e−
V
2π
α(1−r)

]

ez (7)

where α = λm

(

1
8
λ2

m − 1
)

/[2βm,0J1(λmβm,0)] and γ = λm/[4βm,0J1(λmβm,0)].

B. Tangential Velocity

The tangential velocity corrections incorporate viscous effects near the centerline and along the sidewall. Friction

around the centerline leads to a forced core vortex, thus eliminating the unbounded behavior seen in the inviscid

model. In the core of the forced vortex, the velocity is directly proportional to the radial distance from the centerline.

Near the sidewall, a thin boundary layer is established that is highly dependent on the vortex Reynolds number,

V = QiRe(a/L) = (εσl)−1 = 2πκ/ε.

In Fig. 2 the tangential velocity corresponding to multiple internal mantles is characterized vis-à-vis variations

in z and V . Firstly in Fig. 2a, we show uθ versus r for the case of 3 internal mantles at z = (0.1, 0.5, 1) and V =

650. Interestingly, a small variation in the local swirl velocity is seen to accompany axial excursions. This behavior

is contrary to that displayed by the axially-invariant, complex-lamellar counterpart.6 However, consistent with our

original assumptions, the z-sensitivity does not extend into the viscous regions. Secondly, by shifting our attention to

Fig. 2b, it may be seen that when the vortex Reynolds number is increased from 200 to 800, a corresponding reduction

in the core layer is entailed. This behavior is consistent with Prandtl’s classic theory. Figure 2b clearly shows a

sequential decrement in the depth of penetration into the bulk fluid and a larger (uθ)max with increasing V . Thirdly,

increasing the flow reversal mode number from 0 to 4 is showcased in Fig. 2c where the behavior of uθ is illustrated

with one, three, and five internal mantles. Increasing the number of mantles has a similar effect to that of increasing V .

It naturally leads to a narrower forced vortex core, a wider inviscid segment, thinner boundary layers, and higher swirl

velocities. Given the scale on the graph, the appreciable reduction in wall layer thickness that accompanies successive

increases in m is not visible. A magnification of the sidewall region, which is furnished in Fig. 2d, clearly shows the

substantial depreciation in the boundary layer region while increasing the number of internal mantles. The relatively

sharp turning observed at higher modes is due to the thinning of the boundary layer which, for the complex-lamellar

case, scales with (m + 1)−3. This effect will be further elaborated in the upcoming discussion of the axial velocity.

C. Axial Velocity

Because the zeroes of uz define the mantle stations, an examination of the axial velocity clarifies the effects of

multiple flow reversals. In this vein, Figs. 3a and 3c illustrate the linear dependence of the solution on the axial

position. As usual, we keep V = 650 and plot uz at z = {0.1, 0.5, 1}. Because the outer solution remains linearly

dependent on the axial coordinate, we continue to observe proportionately higher axial speeds at progressively larger

axial distances with the maximum uz occurring in the exit plane. Multidirectional flow effects are described in Fig. 3b

where the axial velocity is plotted for the first three even mode numbers. Beyond incorporating multiple flow reversals,

the higher centerline velocities are also caused by an increased value of m. As in the case of the complex-lamellar

model, sequential increases in m lead to a smaller outlet radius and hence a higher axial velocity is required to permit

the same mass flow rate in exiting the chamber. Visually, Fig. 3b shows that the addition of viscosity is significantly
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Figure 2. Tangential velocity plots with 3 mantles (m = 2) showing the effects of a) axial variations and b) sequentially increasing V. In

Part c) and its magnified sidewall region in d) we show the effects of sequentially increasing the flow reversal mode number at fixed z = 1.

Unless stated otherwise, we use κ = 0.103 everywhere.

overshadowed by the effect of the mode number. As one may expect, the viscous corrections only impact the mantle

nearest to the wall with minimal influence on its maximum velocity. Higher mode numbers result in the development of

thinner vortex tubes near the sidewall, thus causing the boundary layers to shrink accordingly. This result is displayed

graphically in Fig. 3d and posted numerically in Table 3. Before leaving this section, we note that the limiting case of

V → 0 is connected with the inflow parameter κ → 0. So as one would expect, the absence of a mean inflow velocity

causes the solution to categorically vanish. Conversely, by setting V → ∞ in Eq. (7), the inviscid baseline model is

swiftly recovered.

D. Radial Velocity

The radial velocity alternates direction largely due to its strong connection with the axial flow profile through

continuity. The resulting distribution allows for both positive and negative, therefore inward and outward motions

across concentric mantles. From the standpoint of VCCWC performance, this type of recirculation and mass exchange

may further increase the residence time of reacting products and thus improve combustion efficiency. As for the

viscous corrections in the radial velocity, they are consistently found to be of second order. Despite our retention of

the mathematical form underlying both tangential and axial boundary layers, the asymptotic treatment of ur leads to

minor adjustments in the slope at the wall. This result may be viewed in Fig. 4 where ur is described for m = 0, 2, 4.

Unlike the visible effect of m on ur, variations in V are confined to the thin wall layer. The latter leads to smooth

viscous tempering whereby the velocity and its derivative gradually approach zero at the sidewall.12–14 This effect is

corroborated in the numerical work of Morgan,15,16 Blasius,17 and others. As it may be seen in Fig. 4b, the second

order effects are further diminished at higher mode numbers.

E. Boundary Layer Thickness

As is customary, the boundary layer thickness, δ, can be defined as the distance necessary to recover 99% of

the outer solution. This definition can be applied equally well to both the forced core and sidewall regions. To
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Figure 3. Axial velocity plots showing effects of a) axial variations and b) sequentially increasing V at z = 1. In Parts c) and d) the magnified

sidewall regions are shown.

determine the viscous core thickness, δi, we turn our attention to Eq. (7). It is not necessary to include the tangential

sidewall corrections because they do not interact with the forced core. We find that the forced core thickness must be

numerically obtained from the transcendental equation

− V

2π
γr2 = ln

















1

100















1 +
λ2

mκ
2r2z2 J2

1
(λmr)

β2
m,0

J2
1

(

λmβm,0

)















1/2
















(8)

By taking a one-term Taylor series expansion of the preceding equation and solving directly for the radial position, an

approximate analytic solution may be obtained. We find

δi ≈

√

βm,0J1

(

λmβm,0

)

2πz2κ2λ3
m

(

−V +

√

V2 + 64π2z2κ2λ2
m ln (10)

)

(9)

This solution retains a small dependence on the axial position, albeit diluted by the order of its κ2 multiplier. Here too,

the edge of the core boundary layer coincides with almost twice the radius of the forced core vortex that marks the

radial distance from the centerline to the point of maximum swirl velocity.

Following similar footsteps, the sidewall boundary layer, δw, may be specified at the radial position where the

solution reaches 99% of its inviscid value. By limiting our attention to the sidewall corrections befalling uθ, the edge

of the boundary layer may be extracted from

− V

2π
α (1 − r) = ln

















1

100















1 +
λ2

mκ
2r2z2 J2

1
(λmr)

β2
m,0

J2
1

(

λmβm,0

)















1/2
















(10)

Taking the one-term Taylor series expansion of the above and solving directly for the boundary layer’s edge, one finds

δw = 1 − rw ≈
2π

Vα
ln (100) (11)
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Figure 4. Radial velocity profiles at z/l = 1
2

showing a) typical distribution across the chamber radius and b) magnification near the

sidewall. Results correspond to flow with 1, 3 and 5 mantles.

Table 2. Prandtl’s inner core and sidewall boundary layer thicknesses for the linear Beltramian model at different positions and vortex

Reynolds numbers. Here κ = 0.103 and m = 0

Inner boundary layer, δi Sidewall boundary layer, δw

z V = 200 V = 400 V = 600 V = 800 V = 1000 V = 200 V = 400 V = 600 V = 800 V = 1000

0.0 0.2218 0.1569 0.1281 0.1109 0.0992 0.0295 0.0147 0.0098 0.0074 0.0059

0.5 0.2218 0.1569 0.1281 0.1109 0.0992 0.0295 0.0147 0.0098 0.0074 0.0059

1.0 0.2217 0.1568 0.1281 0.1109 0.0992 0.0294 0.0147 0.0098 0.0074 0.0059

1.5 0.2215 0.1568 0.1281 0.1109 0.0992 0.0294 0.0147 0.0098 0.0074 0.0059

2.0 0.2213 0.1568 0.1280 0.1109 0.0992 0.0294 0.0147 0.0098 0.0074 0.0059

This step renders the boundary layer thickness axially invariant. The maximum difference between Eq. (10) and

Eq. (11) remains less than 0.2% for the range of physical parameters associated with this problem.

When this procedure is repeated for the purpose of capturing the sidewall boundary layers in either the axial or

radial directions, expressions that are identical to those given by Eq. (11) are found. For a truly conforming boundary

layer thickness we would expect to recover the result given in Eq. (10). This behavior is expected due to the dominance

of the swirl velocity and its corresponding boundary layer thickness. The latter remains nearly invariant along the

length of the chamber, thus causing both axial and radial layers to follow suit. This consistency may be seen in the

typical values of δi and δw that are given in Table 2.

F. Pressure Profile

Using Euler’s equations, one can easily calculate the radial and axial pressure gradients. The radial pressure

gradient may be closely approximated by

∂p

∂r
≈ r−3

(

1 + e−
V
π
γr2

+ e−
V
π
α(1−r) − 2e−

V
2π
γr2 − 2e−

V
2π
α(1−r)

)

+
z2κ2λ2

m J2
1

(λmr)

rβ2
m,0

J1

(

λmβm,0

)
(12)

A graphical rendering of the radial gradient of pressure is furnished in Fig. 5a. Therein, one may clearly see the

increasing axial sensitivity at higher flow reversal modes. The peaking radial pressure near the point of maximum

swirl velocity may be attributed to the strong centrifugal action in the core region.

The pressure distribution is also showcased on this graph. In this situation, we define p0 as the normalized pressure

at the corner of the headwall. This enables us to put ∆p = p − p0. Subsequently, straightforward integration in the
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Table 3. Boundary layer thickness for several mode numbers at V = 200 and z = 1

m 0 2 4

Number of internal mantles 1 3 5

Inner boundary layer thickness, δi 0.221701 0.083219 0.051108

Sidewall boundary layer thickness, δw 0.029448 0.000292 4.05E-05

radial direction renders

∆p (r, z) =
r2 − 1

2r2
+

1

2
e−

V
π
γ − e−

V
2π
γ +

1

r2

(

e−
V
2π
γr2 − 1

2
e−

V
π
γr2

)

+
V

2π
γ

[

Ei

(

−
V

π
γ

)

− Ei

(

−
V

π
γr2

)

+ Ei

(

−
V

2π
γr2

)

− Ei

(

−
V

2π
γ

)]

+
1

2
+

V

2π
α − V2

2π2
α2Ei

(

V

π
α

)

e−
V
π
α

+
1

2r2ε2

(

−e−
V
π
α(1−r)ε (ε + 2rακ) + 4r2α2κ2e−

V
π
αEi

(

V

π
αr

))

−
4π2κ2 + 2παVκ2 − α2κ2Ei

(

V
2π
α
)

e−
V
2π
α

4π2κ2

+

(

4π2κ2 + 2πVκ2αr
)

e−
V
2π
α(1−r) − r2V2α2κ2e−

V
2π
αEi

(

V
2π
αr

)

4π2κ2r2

+
z2κ2λ2

m

2β2
m,0

J1

(

λmβm,0

)

[

J2
0 (λm) − J2

0 (λmr) + J2
1 (λm) − J2

1 (λmr)
]

(13)

Along similar lines, the axial pressure gradient may be extracted from Euler’s momentum equation, namely,

∂p

∂z
= − zκ2λm

2πβ2
m,0

J2
1

(

λmβm,0

)

(

1 − e−
V
2π
α(1−r)

)

×
{

2πλm

[

J2
0 (λmr) + J2

1 (λmr)
]

− e−
V
2π
α(1−r)

[

2πλmJ2
0 (λmr) − VαJ0 (λmr) J1 (λmr) + 2πλmJ2

1 (λmr)
]}

(14)

Integrating this expression yields

∆p(r, z) = −
z2κ2λm

4πβ2
m,0

J2
1

(

λmβm,0

)

(

1 − e−
V
2π
α(1−r)

)

×
{

2πλm

[

J2
0 (λmr) + J2

1 (λmr)
]

− e−
V
2π
α(1−r)

[

2πλmJ2
0 (λmr) − VαJ0 (λmr) J1 (λmr) + 2πλmJ2

1 (λmr)
]}

(15)

While a unified total solution for the pressure may be obtained for the inviscid solution,7 the situation is different

here because of the approximations incurred during the viscous treatment. At the outset, the pressure differential is

no longer exact and so we are unable to meet Euler’s integrability criteria. These are discussed in recent work by

Saad and Majdalani.18 Instead, the pressure variation may only be captured along a fixed axis, such as the wall or the

centerline. In our case, due to the size of the simulated vortex chambers, the imperfection in the pressure calculation

may be deemed immaterial, especially that the contributions from the axial gradient happen to be several orders of

magnitude smaller than those from the radial gradient. At the outset, it is reasonable to consider the expression given

by Eq. (13) as being representative of the total pressure distribution. The latter is illustrated in Figs. 5c–5d where a

large pressure drop is captured near the core. This induced local suction contributes to a negative crossflow that, in

turn, assists the fluid traveling in the outer vortex shell to negotiate the 180 degree turn into the inner vortex.

G. Vorticity Characteristics

The vorticity profile can be calculated from

ω = ∇ × u = −∂uθ

∂z
er +

(

∂ur

∂z
− ∂uz

∂r

)

eθ +

(

∂uθ

∂r
+

uθ

r

)

ez (16)
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Figure 5. Variation of the radial pressure gradient with respect to a) the vortex Reynolds number with m = 2 and b) the flow reversal mode

number with V = 200. The same variation in the total pressure distribution is showcased in c) and d).

Although this study is directed toward resolving the boundary layers of the Beltramian motion with multiple mantles,

it may be worthwhile to compare our findings to those associated with the complex-lamellar multidirectional vortex.6

As mentioned in Part 1 of this series,12 the uniqueness of the Beltramian profile lies in its vorticity character. While the

complex-lamellar solution engenders only one component of vorticity, namely,ωθ = 4(m+1)2π2κrz sin[(m+1)πr2], the

axially-dependent tangential velocity here gives rise to a three-dimensional, axisymmetric vorticity field. According

to Majdalani,7 our starting point can be the inviscid vorticity given by

ω = −
rzκ2λ2

mJ2
1

(λmr)

β2
m,0

J1

(

λmβm,0

)

√

1 +
r2z2κ2λ2

m J2
1
(λmr)

β2
m,0

J1(λmβm,0)

er

+
zκλ2

mJ1(λmr)

βm,0J1(λmβm,0)
eθ

+
rz2κ2λ3

mJ0 (λmr) J1 (λmr)

β2
m,0

J1

(

λmβm,0

)

√

1 +
r2z2κ2λ2

m J1
2(λmr)

β2
m,0

J1(λmβm,0)

ez (17)

It may be easily verified that the expression for ω leads to a vanishing Lamb vector, ω × u = 0, thus confirming

the onset of Beltramian motion with multiple flow reversals. Thus despite the presence of multiple mantles, we still

recover

ω

u
= λm















1 +
β2

m,0
J2

1
(λmβm,0)

κ2λ2
mr2z2 J2

1
(λmr)















−1/2

(18)

The scalar ratio in Eq. (18) confirms the parallelism between the vorticity and the velocity fields throughout the entire

chamber. Interestingly, however, this proportionality does not only vary with the spatial location, but also with the

flow reversal mode number. For higher modes, the ratio between vorticity and velocity increases substantially. When
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frictional forces are accounted for, the corrected form of Eq. (16) turns into

ω = −
rzκ2λ2

mJ2
1

(λmr)

β2
m,0

J1

(

λmβm,0

)

√

1 +
r2z2κ2λ2

m J2
1
(λmr)

β2
m,0

J1(λmβm,0)

er

+
zκλm

βm,0J1

(

λmβm,0

)

[

V

2π
αJ0 (λmr) e−

V
2π
α(1−r) + λmJ1 (λmr)

(

1 − e−
V
2π
α(1−r)

)

]

eθ

+
V

2π

(

2γe−
V
2π
γr2 − r−1e−

V
2π
α(1−r)

)

+
rz2κ2λ3

mJ0 (λmr) J1 (λmr)

β2
m,0

J1

(

λmβm,0

)

√

1 +
r2z2κ2λ2

m J2
1
(λmr)

β2
m,0

J1(λmβm,0)

ez (19)

Finally, by considering the Pythagorean sum of the vorticity vector, its magnitude may be specified. This effort leads

to

|ω| ≈



































r−2



































V

2π

(

2rγe−
V
2π
γr2 − αe−

V
2π
α(1−r)

)

+
r2z2κ2λ3

mJ0 (λmr) J1 (λmr)

β2
m,0

J1

(

λmβm,0

)

√

1 +
r2z2κ2λ2

m J2
1
(λmr)

β2
m,0

J1(λmβm,0)



































+
Vκz2λ2

m

4π2β2
m,0

J2
1

(

λmβm,0

)

[

2πλmJ1 (λmr) + e−
V
2π
α(1−r) (VαJ0 (λmr) − 2πλmJ1 (λmr))

]2



































1/2

(20)

where transcendental terms are discarded. The magnitude of vorticity is displayed in Fig. 6 where its sensitivity with

respect to a) z, b) V , and c) m is examined. First, we see in Fig. 6a that the effect of axial excursions is confined to
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Figure 6. Vorticity distribution with 3 internal mantles showing effects of a) axial variations and b) sequentially increasing V. Parts c) and

d) concentrate on the effect of increasing the flow reversal mode number while maintaining V = 200.
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the bulk, inviscid flow region. Conversely, changes in the vortex Reynolds number, as depicted in Fig. 2b, only seem

to influence the forced vortex core region. The most significant result is, perhaps, the strong sensitivity of ω with

respect to m. As it may be inferred from Fig. 6c, increasing the number of mantles is paramount to reducing the radius

of the outlet region. The ensuing contraction in cross-sectional area through which the flow may exit gives rise to

larger axial velocities in the core region. These in turn induce larger radial velocities by virtue of mass conservation.

Pursuant to the velocity amplification, the companion vorticity is forced to increase as well. The steeper vorticity

gradients that accompany successive increases in m can be seen to be most pronounced near the mantle locations and

fluid boundaries. As shown in Fig. 6d, these lead to progressively sharper curvatures in the boundary layer regions

where rapid changes in the velocity must occur.

III. The Nonlinear Beltramian Solution with Multiple Mantles

The analysis of the spatially nonlinear Beltramian solution follows precisely the steps delineated above. The

graphical representations of the results are also quite analogous to those just described. In the interest of brevity, only

the main expressions will be provided as the reader may reproduce them using, for instance, the corresponding sections

that are sufficiently detailed in the treatment of the linear model.

We begin with the multidirectional inviscid streamfunction and velocities that may be given by

ψ = κlr sin

(

πz

2l

)

J1 (λmr)

βm,0J1

(

λmβm,0

) (21)

and

u = −π
2
κr cos

(

πz

2l

)

J1 (λmr)

βm,0J1

(

λmβm,0

)er

+ r−1

√

1 +
κ2

β2
m,0

J2
1

(

λmβm,0

)

(

λ2
ml2 +

1

4
π2

)

r2sin2
(

πz

2l

)

J2
1

(λmr) eθ

+ κlλm sin

(

πz

2l

)

J0 (λmr)

βm,0J1

(

λmβm,0

)ez (22)

where, as usual, κ = Qi/(2πl) and λm = {3.83171, 7.01559, 10.1735, 13.3237, · · · }.
Next, by adapting the viscous treatment by Batterson and Majdalani13 for the bidirectional case, we can directly

extrapolate the multidirectional flow analog. We find

u = − πκ

2βm,0J1

(

λmβm,0

) cos

(

πz

2l

)

J1 (λmr)
(

1 − e−
V
2π
α(1−r)

)

er

+ r−1





























1 +
κ2

β2
m,0

J2
1

(

λmβm,0

)

(

λ2
ml2 + 1

4
π2

)

r2sin2
(

πz

2l

)

J2
1 (λmr)















1/2

− e−
V
2π
γr2 − e−

V
2π
α(1−r)















eθ

+
λmκl

βm,0J1

(

λmβm,0

) sin

(

πz

2l

)

J0 (λmr)
(

1 − e−
V
2π
α(1−r)

)

ez (23)

where, as before, α = λm

(

1
8
λ2

m − 1
)

/[2βm,0J1(λmβm,0)] and γ = λm/[4βm,0J1(λmβm,0)]. From the velocity, the boundary

layers may be ascertained. For the inner core layer, we obtain

δi ≈

√

2βm,0J1

(

λmβm,0

)

κ2λm

(

π2 + 4l2λ2
m

)csc2

(

πz

2l

) (

−V +

√

V2 + 4π2κ2
(

π2 + 4l2λ2
m

)

[1 − cos (πz/l)] ln (100)

)

(24)

and

δw = 1 − r ≈ 2π

Vα
ln (100) (25)

Only slight differences in the boundary layer thickness between the linear and nonlinear solutions may be reported

as one may infer from Table 4. The particular properties that accompany successive increases in the mode number,

previously illustrated in Table 3, apply equally well.
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Table 4. Prandtl’s inner core and sidewall boundary layer thicknesses for the nonlinear Beltramian model at different positions and vortex

Reynolds numbers. Here κ = 0.103, m = 0 and l = 1

Inner boundary layer, δi Sidewall boundary layer, δw

z V = 200 V = 400 V = 600 V = 800 V = 1000 V = 200 V = 400 V = 600 V = 800 V = 1000

0.0 0.2218 0.1569 0.1281 0.1109 0.0992 0.0295 0.0147 0.0098 0.0074 0.0059

0.25 0.2218 0.1569 0.1281 0.1109 0.0992 0.0295 0.0147 0.0098 0.0074 0.0059

0.5 0.2218 0.1568 0.1281 0.1109 0.0992 0.0295 0.0147 0.0098 0.0074 0.0059

0.75 0.2217 0.1568 0.1281 0.1109 0.0992 0.0294 0.0147 0.0098 0.0074 0.0059

1.0 0.2217 0.1568 0.1281 0.1109 0.0992 0.0294 0.0147 0.0098 0.0074 0.0059

The pressure distribution stems from Euler’s equation. For the radial pressure gradient, we get

∂p

∂r
≈

1

r3

(

e−
V
π
α(1−r)

+ e−
V
π
γr2 − 2e−

V
2π
α(1−r)

+ 2e−
V
2π
γr2

)

(26)

and, for the pressure differential ∆p = p − p0 referenced to the headwall corner, p0 = p(1, 0), we find

∆p (r, z) = −1

2
− V

2π
α − 1

2r2
+
π2 + παV − α2V2Ei

(

V
π
α
)

e−
V
π
α

2π2

−
π (π + Vαr) e−

V
π
α(1−r) − r2α2V2Ei

(

V
π
αr

)

e−
V
π
α

2π2r2

+
1

r2

(

e−
V
2π
γr2 − 1

2
e−

V
π
γr2

)

+
π

2π

(

e−
V
π
γ − 2e−

V
2π
γ
)

+
Vγ

2π

[

Ei

(

−V

π
γ

)

− Ei

(

−V

π
γr2

)]

+
Vγ

2π

[

Ei

(

− V

2π
γr2

)

− Ei

(

− V

2π
γ

)]

+
α2V2

4π2
Ei

(

V

2π
α

)

e−
V
2π
α

+
2π (2π + Vαr) e−

V
2π
α(1−r) − r2α2V2Ei

(

V
2π
αr

)

e−
V
2π
α

4r2π2
(27)

In the present case, the pressure and its radial gradient do not spatially undulate as noticeably as their linear Beltramian

counterparts at higher values of m. This may be due to the markedly diminished dependence of Eqs. (26–27) on z.

Finally, the vorticity field may be deduced from Eq. (23) which returns

ω = −
πrκ2

(

π2

4
+ l2λm

2
)

J1
2 (λmr)

4lβ2
m,0
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(
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2
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z
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z
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ez (28)
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with the net magnitude of

|ω| =


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IV. Results and Discussion

In this section, we compare our results to the multidirectional form of the sinusoidal profile discussed originally

by Vyas, Majdalani and Chiaverini.10 By augmenting its formulation with three-dimensional viscous corrections,14

we arrive at

u = −κ
r

sin[(m + 1)πr2]
[

1 − e−
V
4

(m+1)α(1−r2 )
]

er

+ r−1
[

1 − e−
V
4

(m+1)r2 − e−
V
4

(m+1)α(1−r2)
]

eθ

+ 2(m + 1)πκz cos[(m + 1)πr2]
[

1 − e−
V
4

(m+1)α(1−r2)
]

ez (30)

where α = 1
6
(m + 1)2π2 − 1 may be associated with the complex-lamellar solution.

In Fig. 7, vector diagrams of the Beltramian models are displayed along with the complex-lamellar analog. These

graphs show that a higher centerline velocity persists farther downstream in the nonlinear profile than in any other

a) Linear Beltramian b) Nonlinear Beltramian c) Complex Lamellar

Figure 7. Vector plots of a) linear Beltramian, b) nonlinear Beltramian, and c) complex-lamellar models. Here l = 2.
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model. The vector directions also suggest, in the nonlinear solution, a headwall-skewed crossflow along the mantle

surface. This leads to higher crossflow velocities near the headwall, and reduced spillage near the endwall. Such

behavior is quite advantageous as it is more desirable to limit, as much as possible, any mass transport near z = l

from the outer vortex into the inner core. In the VCCWC configuration, the outer vortex near z = l contains a freshly

injected oxidizer that has not yet reacted with the fuel. The nonlinear Beltramian motion seems to be optimal for fuel

injection near the headwall where crossing of the outer ‘oxidizer’ fluid is maximized, and leakage near the nozzle

attachment section is minimized. For the reader’s convenience, a comparison of the complex-lamellar and linear

Beltramian models is furnished in Table 5. Therein, it may be remarked that the viscous character in both linear and

nonlinear Beltramian approximations is identical. This marks the differences in the inviscid solutions as the delimiting

characteristics for each flowfield. These seem to infuse the boundary layer profile during matching, but not to a

significant degree.

Table 5. Comparison between the complex-lamellar, 19 linear, and nonlinear Beltramian models 7

Complex Lamellar α = 1
6
(m + 1)2π2 − 1

ur = − κr sin
[

(m + 1)πr2
] [

1 − e−
V
4

(m+1)α(1−r2)
]

uθ =
1
r

[

1 − e−
V
4

(m+1)r2 − e−
V
4

(m+1)α(1−r2)
]

uz = 2(m + 1)πκz cos
[

(m + 1)πr2
] [

1 − e−
V
4

(m+1)α(1−r2)
]

δi =

√

4 ln 100
V(m+1)

; δw = 1 −
√

1 − 4 ln 100
V(m+1)α

Linear Beltramian α =
λm

2βm,0 J1(λmβm,0)

(

1
8
λ2

m − 1
)

γ =
λm

4βm,0 J1(λmβm,0)
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βm,0 J1(λmβm,0)

[
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]
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]
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Nonlinear Beltramian α = λm
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(

1
8
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Table 6. Comparison of experimental and computational mantle locations with the complex-lamellar (CL) and Beltramian (BT) models

Experimental Computational

n β
(CL)

2,n
β

(BT)

2,n
β

(EXP)

2,n

∣

∣

∣β
(CL)

2,n
− β(EXP)

2,n

∣

∣

∣

∣

∣

∣β
(BT)

2,n
− β(EXP)

2,n

∣

∣

∣ β
(CFD)

2,n

∣

∣

∣β
(CL)

2,n
− β(CFD)

2,n

∣

∣

∣

∣

∣

∣β
(BT)

2,n
− β(CFD)

2,n

∣

∣

∣

0 0.408 0.236 0.296 0.112 0.060 0.305 0.103 0.069

1 0.707 0.543 0.594 0.113 0.051 0.385 0.322 0.158

2 0.913 0.851 0.803 0.110 0.048 0.787 0.126 0.064

A. Experimental Validation

Table 6 compares the experimental and numerical findings of Anderson and co-workers8,9,20 to ours. This

comparison is carried out under the premise that 3 internal mantles are developed (i.e., m = 2). At this point in

time, it appears that the set of operating conditions that triggers the onset of multiple mantles remains a subject of

investigation.

Based on the available empirical measurements, it is clear that the Beltramian model outperforms other models,

including numerical simulations, in predicting the location of the internal mantles. The empirical results in Table 6 are

taken from Anderson, Rom and coworkers.8,9,20 These seem to suggest that, in the presence of 3 mantles, the original

complex-lamellar model is less precise than the Beltramian solution in capturing the flow reversal radial spacing.

Having no access to the 2009 Beltramian formulation, Rom, Anderson and Chiaverini9 note that the complex-lamellar

model with 4 mantles matches quite remarkably their experimental and computational predictions. However, based

on the present investigation, it does not appear that four mantles are likely to form without moving the primary

injection plane to the headwall. Realizing that Anderson’s injection of the outer fluid occurs near the endwall, the

comparison with 4 mantles is possibly amiss. The confusion may be attributed to inevitable bias in the experimental

measurements in the close vicinity of the sidewall. Instead, it is our belief that the 4-mantle case reported by Anderson

and coworkers actually corresponds to a 3-mantle configuration with m = 2. As it may be inferred from Table 6, the

Beltramian approximation seems to be the most trustworthy as it concurs reasonably well with both experimental and

computation results. It is therefore recommended for use in modeling multidirectional vortex behavior.

Turning our attention to the actual velocity and pressure distributions associated with the three analytical models,

it may be seen in Figure 8 that a substantial increase occurs in the axial and tangential Beltramian speeds over their

complex-lamellar counterparts in a 3-mantle configuration. This comparison is carried out using V = 200, m = 2,

and z = l = 1, except for the radial plot displayed in Fig. 8c where ur is taken halfway in the chamber at z/l = 1
2
.

Apart from the graph associated with ur, the linear and nonlinear Beltramian models seem to coincide. At the point of

comparison, their tangential, axial, and pressure distributions seem indiscernible.

In relation to the sinusoidal model, the larger tangential velocity associated with the Beltramian model near the

core translates into a much steeper vacuum pressure that can be observed in Fig. 8d. As for the mantle spacing depicted

in Fig. 8b, it can be seen that spacing between Beltramian mantles remains nearly constant at higher modes in contrast

to the r2 dependence displayed by the complex-lamellar solution. The latter leads to a decreased spacing near the

sidewall.

By comparison to the Beltramian solutions that are spatially influenced by increased values of m, the inviscid

character of the complex-lamellar uθ limits its sensitivity on m to the viscous regions. The reason may be attributed to

the mode number only affecting the relationship between the axial and radial velocities that remain linked through

continuity. As such, the axially independent uθ remains somewhat immune to variations in m. In contrast, the

Beltramian tangential velocity only recovers the complex-lamellar behavior at the zeroes of J1(λmr).

As showcased in Fig. 8, both linear and nonlinear Beltramian solutions become virtually identical in their tangential

and axial components when evaluated in the exit plane. Because the nonlinear Beltramian ur vanishes in the exit plane,

the results in Fig. 8c are quantified at the chamber midpoint. This characteristic feature of the nonlinear solution is,

perhaps, the most consistent with the ideal inlet condition that implies a purely tangential inflow.

B. Crossflow Velocity

The vector plots displayed in Fig. 7 show that the multidirectional solutions exhibit both positive and negative

crossflow velocities along alternating mantle locations. For physically viable solutions to exist, the overall crossflow

velocity must be negative. This requirement is essential to ensure that the overall movement of the fluid is directed
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Figure 8. Side-by-side comparison for the three components of velocity a) uθ , b) uz, c) ur and d) the pressure difference from the head-end

corner using various helical models. We take m = 2, z = l = 1 and V = 200 except for the radial velocity which we evaluate at z =
1
2

l.

toward the core and, subsequently, toward the open section at the endwall. The orientation of the crossflow can be

ascertained by averaging the radial velocity over the domain to the extent of getting

Beltramian (both linear and nonlinear):

u
avg
r =

1

V

$
V

ur r dr dz dθ = −
κλmΦ

[

(

3
2

)

,
(

2, 5
2

)

,− λ
2
m

4

]

3βm,0J1

(

λmβm,0

) (31)

Complex Lamellar:

u
avg
r = −κ

√

2

m + 1
S
(√

2(m + 1)
)

(32)

where Φ is the general hypergeometric function and S is the Fresnel sine integral.

In Fig. 9, the average crossflow velocity is calculated and posted at increasing flow reversal mode numbers, m =

0, 1, 2, . . . , 11. In this effort, it can be seen that the complex lamellar crossflow maintains a negative average for all

mode numbers while the Beltramian average returns a negative outcome for even modes only. This behavior confirms

that our solution is only valid for an odd number of mantles and therefore consistent with aft end injection. The non-

alternating sign of the average crossflow velocity associated with the complex-lamellar solution may also explain the

confusion that can befall its users, specifically those who may inadvertently consider spurious configurations with an

even number of mantles. Interestingly, the crossflow velocities in all cases approach a very small value asymptotically

with m. Then as the Beltramian odd modes approach from the top, the corresponding even modes approach from the

bottom. This alternating nature and rate of convergence is consistent with the behavior of the hypergeometric function

that appears in the numerator of Eq. (31). As an aside, the asymptotic convergence to zero can be easily verified

for the complex-lamellar solution by taking the limit of Eq. (32) as m → ∞. However, the same limit appears to be

analytically intractable for the Beltramian crossflow equation.

17

American Institute of Aeronautics and Astronautics

Final_Figures/Comparison_Tangential.eps
Final_Figures/Comparison_Axial.eps
Final_Figures/Comparison_Radial.eps
Final_Figures/Comparison_Pressure.eps


0 2 4 6 8 10 12

-1.5

-1.0

-0.5

0.5

-1u
r
avg

m

,  Beltramian
,  Complex Lamellar

B
el
tra

m
ia
n

Figure 9. Average crossflow velocities at several successive mode numbers. Even and odd mode numbers are designated by full and hollow

symbols, respectively.

C. Maximum Velocity and Forced Vortex Character

It may be useful to recall that the forced vortex thickness, δc, is defined as the radial distance from the centerline

to the point of (uθ)max. In reviewing both linear and nonlinear Beltramian solutions, a common approximation may be

realized for the case of multiple mantles. In fact, both models seem to exhibit a forced vortex thickness that may be

estimated from

δc ≈ 2

√

πβm,0J1

(

βm,0λm

)

λmV

[

−1 − 2 pln

(

−1,− 1

2
√

e

)]

(33)

In like manner, the peak tangential velocity may be expressed as

(uθ)max ≈
1 − e

1
2
+pln

(

−1,− 1

2
√

e

)

2

√

πβm,0J1(βm,0λm)

[

−1 − 2 pln

(

−1,− 1

2
√

e

)]

√

λmV (34)

D. Vorticity Magnitudes

Figure 10 compares constant vorticity lines associated with the three models under discussion. Only the magnitude

of vorticity is displayed in these graphs to the extent that no negative values appear. In reality, vorticity can alternate

signs inversely with the radial velocity. As it may be anticipated, the Beltramian flows are generally accompanied by

steeper velocities and, as such, larger vorticity magnitudes, with the most intense of which being found in the nonlinear

case. Overall, we find vorticity amplification as we approach the centerline in both Beltramian solutions. In contrast,

the complex-lamellar vorticity is seen to increase near the sidewall. In the same vein, higher vorticity may be detected

deep in the core region of the Beltramian model, unlike its counterpart. When all three vorticity fields are compared,

the nonlinear solution may be seen to induce the most intense and widespread vorticity distribution. We speculate that

multiple alternating vorticity fields, such as those associated with the nonlinear Beltramian motion, are more likely to

trigger turbulence and flow instability than any uni- or bi-directional flow motion.

V. Conclusions

This study constitutes the third and final installment of a paper series that is focused on the Beltramian vortex

motion that arises in the context of confined cyclonic chambers. In Parts 1 and 2,12,13 we have described the asymptotic

analysis leading to viscous approximations for the spatially linear and nonlinear formulations. In the process, we have

improved the existing inviscid solutions by removing their centerline singularities and permitting them to satisfy the

no-slip condition at the sidewall.

Part 3 has focused on the multidirectional motion of a fluid that undergoes two or more flow reversals before exiting

the chamber. This multilayered flow configuration is predicted mathematically and confirmed both experimentally and

numerically. In the case of the Beltramian motions, their multidirectional character is found to be strongly dependent
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Figure 10. Isovorticity lines corresponding to a) linear, b) nonlinear Beltramian, and c) complex-lamellar vortex models. 19

on the mode number, m, both in their inviscid and viscous flow segments. The effect of the mode number on the bulk

fluid translates into multiple vortex tubes of alternating axial velocity. The companion crossflow alternates directions

to keep up with the axial motion by way of continuity. For physically plausible flow scenarios, an odd number of

mantles is required, and the corresponding average crossflow is confirmed to remain indeed negative, and therefore

inward pointing, for all even mode numbers. The behavior of the nonlinear Beltramian solution is found to be most

intriguing as it is accompanied by intense velocity and vorticity, increased mixing at the headwall, and reduced leakage

at the endwall. This decrease in spillage near the outlet section is highly desirable in propulsive applications where

it is essential to inhibit oxidizer leakage. Conversely, the increased crossflow near the headwall is advantageous as

it leads to improved mixing with the injected fuel. A larger crossflow velocity near the headwall also translates into

increased residence time.

In what concerns the boundary layers, we find the sidewall layer of the complex-lamellar model to embody an

(m + 1)−3 dependence on the number of mantles. A similar dependence is seen to underlie both Beltramian models.

This behavior results in very thin sidewall layers for m ≥ 2. On the one hand, such minuscule regions can in fact be

discounted in the majority of flow calculations. On the other hand, the forced vortex that forms at the centerline is

seen to exhibit a depreciation in core thickness but a magnification in the maximum velocity as the flow reversal mode

number is increased. As to be expected, the ensuing velocity amplification propagates into other flow properties such

as the pressure and vorticity, thus pushing them to higher peak values with successive increases in m.
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