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This study considers a simplified model of a liquid rocket engine in which uniform injection is
imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter
ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust
engines are known to experience severe tangential and radial oscillation modes more often than
longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed
onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the
chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in
the pressure wave amplitude and solved to the second order. The effects of the headwall Mach
number are leveraged as well. While the potential flow analysis does not predict any acoustic
streaming effects, the viscous solution carried out to the second order gives rise to steady secondary
flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and
radial traveling waves are induced by the convective flow motion through interactions with inertial
and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall
leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the
headwall, within the boundary layer, and then extends throughout the chamber. We find that
nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a
cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified
in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the
tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to
the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays
both an oscillating and a steady flow component. The steady part can be an important contributor to
wave steepening, a mechanism that is often observed during the onset of acoustic instability.
© 2010 American Institute of Physics. �doi:10.1063/1.3407663�

I. INTRODUCTION

Combustion instability in liquid rocket engines is char-
acterized by large amplitude pressure fluctuations, elevated
mean pressures, and frequencies that closely match linear
chamber acoustics.1,2 Owing to this fact, analytical method-
ologies put forward to describe flow oscillations lean heavily
on the assumption of small acoustic disturbances.3–17 Con-
trary to this assumption, however, a vast body of experimen-
tal evidence conveys a dissimilar picture, specifically, one
involving large amplitude oscillations with steep gradients in
flow variables. For example, in the extensive experimental
studies of Clayton, Sotter, and co-workers,18–21 a heavily in-
strumented, laboratory scale, 20 000 lbf thrust engine was
used to investigate high amplitude tangential oscillations.
Their measurements exhibited sustained, steep-fronted pres-
sure fluctuations with peak-to-peak amplitudes that were an
order of magnitude larger than the chamber’s operating pres-
sure. The pressure transducers available at the time could not
record data rapidly enough to determine if a true discontinu-
ity was present, but the acquired wave forms displayed large

amplitude spikes followed by long and shallow pressure
segments.

Theoretical work attributed to Maslen and Moore22 sug-
gested that tangential waves could not steepen as in the case
of plane waves. In their 1956 paper, these investigators stud-
ied the effects of secondary flows on tangential wave pat-
terns. A circular cylinder with a zero mean flow was utilized
to detail the interaction between tangential waves and the
chamber’s sidewall. Specifically, the secondary flow induced
by viscous forces at the sidewall was described. Their analy-
sis yielded a streaming profile that acted in the direction
opposite to the wave spinning motion. As a result, it was
speculated that steep fronted, shocklike waves could not be
produced due to sidewall scattering and viscous dissipation.
Later, a study by Flandro23 that incorporated a mean flow
along with mass transpiration from the sidewall predicted a
streaming flow in the same direction as the first-order wave.
This result was found to be dependent on the magnitude of
the injection Mach number. Given the dissimilar views in the
role of acoustic streaming on the production of transverse
traveling waves, its origination, manifestation, and influence
on wave steepening will be the chief focus of this study.

With extensive work already in place for the treatment
of radial boundary layers forming over an injecting
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sidewall,24–28 the present article also seeks to investigate the
structure of the unsteady axial boundary layers forming over
an injecting headwall in the presence of transverse waves.
The motivation to tackle the axial boundary layer analog is
inspired by experimental observations suggesting that the
highest pressure amplitudes and therefore most severe waves
often occur near the injector face.18–21

The mechanisms that cause a plane wave to steepen are
well understood. At the pressure peak the local speed of
sound is elevated, thus increasing the local wave propagation
rate. At the outset, the crest of the wave overtakes the de-
pressed pressure portion. The curled-up wave continues to
steepen until the solution becomes multivalued when nonlin-
ear forces act to reverse this trend. The present study will
demonstrate how secondary streaming flows induced at a
liquid engine’s injector face can stimulate a similar steepen-
ing process for tangentially traveling waves. In order to
model this behavior, tangential and radial waves will be su-
perimposed onto a simple mean-flow model. Considerable
effort will then be given to satisfy the no-slip condition at the
engine’s injector face. The representative geometry, dis-
played in Fig. 1, will correspond to that of a semi-infinite
cylinder of radius R with a suitable coordinate system an-
chored at the chamber’s headwall. The z-coordinate will be
located along the chamber’s centerline.

II. FORMULATION

For simplicity, we begin the analysis by normalizing all
standard variables bearing an asterisk according to

�p = p�/P0 u = u�/a0 r = r�/R T = T�/T0

� = ��/�0 t = t�/�R/a0� z = z�/R � = ��/�a0/R� � ,

�1�

where � and a0 denote the circular frequency and speed of
sound, respectively; as usual, the zero subscript is used to
denote a mean flow property. Using �=��u to denote the

vorticity, the dimensionless equations written for a viscous
compressible fluid consist of

��

�t
+ � · ��u� = 0 �continuity� , �2�

�� �u

�t
+

1

2
� u2 − u � ��

= −
1

�
� p − �2 � � �� � u� + �d

2 � �� · u�

+ F �momentum� , �3�

p = �T �state� , �4�

p = �� �isentropic relation� . �5�

Here F is the body force whereas the viscous and dilatational
parameters that appear in Eq. �3� are defined as

� = 	�/�a0R�; �d = �	��/� + 4
3 . �6�

The symbols �=� /�, ��, and � represent the kinematic vis-
cosity, the second coefficient of viscosity, and the ratio of
specific heats, respectively. The energy and species diffusion
equations are not listed due to the analysis being based on a
nonreactive, single-phase, homogeneous, calorically perfect
gas assumption.

A. Unsteady flow equations

Decomposing the flow variables into steady and un-
steady parts can be achieved by setting

u = U + u�; � = � + ��; p = P̄ + p�;

�7�
� = �̄ + p�; T = T̄ + T�,

where overbars denote mean flow properties and primes rep-
resent unsteady variables. Having normalized the velocity by
the speed of sound, the mean flow component may be related
to the headwall injection Mach number Mb=Vb /a0 using
U=MbU. Vorticity is similarly expressed as �=Mb�. Direct
substitution of Eq. �7� into the governing equations enables
us to isolate two sets of steady and unsteady equations. Sub-
sequently, a perturbation expansion may be implemented to
linearize the unsteady equations. This is accomplished by
expanding each fluctuation a� in terms of a sequence in the
pressure wave parameter,

a� = �a�1� + �2a�2� + �3a�3� + ¯ . �8�

Here a represents a generic flow variable, and � is the wave
parameter, the ratio of the unsteady pressure amplitude and
the mean pressure. Retaining terms to the second order in �
enables us to capture the acoustic streaming effect. As el-
egantly described by Schlichting29 �p. 431�, the secondary,
streaming flow “has its origin in the convective terms and is
due to the interaction between inertia and viscosity.”

r*

�

z*

Vb

R

FIG. 1. Chamber geometry and coordinate system.
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Furthermore, “simplifications in which the convective terms
have been omitted lead to solutions which are free from
streaming and may, therefore, give a misleading representa-
tion of the flow. Streaming does, in general, appear only

when the solution is carried out to at least the second-order
approximation.” Bearing this requirement in mind, we per-
form some algebra and collect the first and second-order sets
of equations, specifically,



���1�

�t
= − � · u�1� − Mb � · ���1�U�

�u�1�

�t
+ Mb��1��U

�t
− Mb

2��1�U � � = −
�p�1�

�
− Mb�u�1� · �U + U · �u�1�� + F�1� + Mbu�1� � � + MbU � ��1�

− �2 � � ��1� + �d
2 � �� · u�1��

p�1� = T�1� + ��1�
� , �9�

and



���2�

�t
= − � · u�2� − � · ���1�u�1�� − Mb � · ���2�U�

�u�2�

�t
+ Mb��2��U

�t
− Mb

2��2�U � � = −
�p�2�

�
− Mb�u�2� · �U + U · �u�2� + ��1��u�1� · �U + U · �u�1��

−
1

2
��2�Mb

2U · �U + ��1�MbU � ��1� + Mb��1�u�1� � � + MbU � ��2�

+ u�1� � ��1� − ��1��u�1�

�t
− u�1� · �u�1� + F�2� − �2 � � ��2� + �d

2 � �� · u�2��

p�2� = T�2� + T�1���1� + ��2�

� . �10�

To set the stage, our plan is to apply a procedure that will
require the construction of both a potential �outer� solution
and a corresponding viscous �inner� solution. The boundary
conditions that will be employed in each part of the analysis
are cataloged in Table I. Accordingly, the potential motion
will be subject to the rigid wall boundary condition through
which the flow velocity is required to vanish at the chamber
walls. The viscous flow solution, on the other hand, will
make use of the no-slip condition at the injector face, at
z=0, where acoustic streaming is triggered. In applying the
concepts of matched asymptotic theory, the potential flow
solution will be used as the outer, farfield boundary for the
viscous expansion. Finally, the thin boundary layer forming
along the lateral wall, at r=R, will be ignored, consistently
with the assumption of a proportionately large circular face-
plate relative to a thin viscous region.

B. Headwall injection flow field

It may be instructive to note that Eqs. �9� and �10� rep-
resent the interaction equations that prescribe the unsteady
wave motion in an idealized liquid rocket thrust engine. Both
expressions of mass conservation and momentum balance
are strongly influenced by the headwall injection Mach num-
ber Mb and the mean flow field velocity function U. In the
context of a liquid rocket chamber, we recognize that the
injection process at the headwall can be superbly complex.
However, we also realize that despite the inherent complex-
ity of the injection patterns, a streamtube motion is quickly
established. Bearing these factors in mind, we adopt a simple
representation of the mean flow field that consists of a uni-
form stream with constant velocity. This basic approximation
will be necessary to simplify the problem and, in the process,
help elucidate the underpinning physical mechanisms with

TABLE I. Boundary conditions for both potential and viscous flow analyses.

Boundary

r=R z=0 z=L

Potential flow n ·�p�=0→ur�=0 n ·�p�=0→uz�=0 n ·�p�=0→uz�=0

Viscous flow No condition imposed No slip: ur�=u	�=uz�=0 Potential flow �matching�
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minimal algebraic encumbrance. Further complexity in the
mean flow definition can be pursued at a later time. It should
be kept in mind, however, that the uniform flow assumption
is accompanied by certain limitations; these will be brought
to light later in the analysis. With the near injector faceplate
as the principal region of interest, we assume steady injec-
tion. We then introduce the nondimensional mean flow
U=MbU where

U = ez. �11�

This basic representation is illustrated in Fig. 1.

III. POTENTIAL FLOW SOLUTION

Away from the headwall region, viscous effects are con-
fined to a thin boundary layer along the lateral, noninjecting
sidewall. At the outset, a potential inviscid field may be as-
sumed in the downstream region that is sufficiently removed
from the injectors. Such a potential flow representation plays
the role of an outer solution with respect to the flow adjacent
to the headwall. By discounting viscosity, one is left with a
set of wavelike equations that are described next.

A. First-order potential solution

A combination of the first-order momentum and continu-
ity equations delivers an expression for the unsteady wave
motion to O���. Then, given the isentropic flow assumption,
linearization of the pressure and density relation given by
Eq. �5� yields

���1� = p�1�. �12�

As usual, constructing the wave equation requires taking the
time derivative of the continuity equation and subtracting
from it the divergence of the momentum equation. One
readily obtains

�2p�1� − ptt
�1� = −

�

�t
�Mb � · �p�1�U� + �Mb�

2�U · u�1�� .

�13�

Given that the right-hand side in the above is of O�Mb�, the
first-order pressure can be represented by a dual perturbation
expansion in Mb. Then to seek general solutions for p�1� and
u�1�, we first derive general expressions for the expanded
subcomponents, p�1,0� and u�1,0�. Thus using a� to denote a
generic fluctuating variable, each level in the pressure wave
parameter may be extended successively as


a� = ��a�1,0� + Mba�1,1� + Mb
2a�1,2� + ¯� + �2�a�2,0� + Mba�2,1� + Mb

2a�2,2� + ¯� + ¯

p� = ��p�1,0� + Mbp�1,1� + Mb
2p�1,2� + ¯� + �2�p�2,0� + Mbp�2,1� + Mb

2p�2,2� + ¯� + ¯

u� = ��u�1,0� + Mbu�1,1� + Mb
2u�1,2� + ¯� + �2�u�2,0� + Mbu�2,1� + Mb

2u�2,2� + ¯� + ¯

� �14�

or



p�1� = p�1,0� + Mbp�1,1� + Mb

2p�1,2� + ¯

p�2� = p�2,0� + Mbp�2,1� + Mb
2p�2,2� + ¯

u�1� = u�1,0� + Mbu�1,1� + Mb
2u�1,2� + ¯

u�2� = u�2,0� + Mbu�2,1� + Mb
2u�2,2� + ¯

� . �15�

Subsequent expansions of the first-order wave equation yield

��2p�1,0� − ptt
�1,0� = 0

n · �p�1,0��z=0 = 0; n · �p�1,0��r=1 = 0
� , �16�

��2p�1,1� − ptt
�1,1� = − U · �pt

�1,0� + ��2�U · u�1,0��
n · �p�1,1��z=0 = 0; n · �p�1,1��r=1 = 0

� , �17�

and

��2p�1,2� − ptt
�1,2� = − U · �pt

�1,1� + ��2�U · u�1,1��
n · �p�1,2��z=0 = 0; n · �p�1,2��r=1 = 0

� . �18�

Note that the appropriate boundary condition forces the nor-
mal projection of the pressure gradient to vanish at all cham-
ber surfaces. To solve Eq. �16�, separation of variables may
be used to derive the first-order pressure in the form of

p�1,0�=F�r�G�	�H�z�
�t�. At the outset, the wave equation
collapses into

d2F

dr2

1

F
+

1

r

dF

dr

1

F
+

1

r2

d2G

d	2

1

G
−

d2


dt2

1



= −

d2H

dz2

1

H
= kl

2.

�19�

Equation �19� may be rearranged into



d2F

dr2

1

F
+

1

r

dF

dr

1

F
+

1

r2

d2G

d	2

1

G
−

d2


dt2

1



− kl

2 = 0

d2H

dz2 + kl
2H = 0 � . �20�

On this basis, a longitudinal wave solution of the form
H�z�=cos�klz� may be realized. In the present work, the lon-
gitudinal wave number kl is deliberately set to zero in order
to isolate the tangential and radial wave contributions. One is
left with the radial, azimuthal, and temporal ODEs,
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r2d2F

dr2

1

F
+ r

dF

dr

1

F
− r2d2


dt2

1



= −

d2G

d	2

1

G
= m2. �21�

So on the one hand, knowing that the 	-dependence cannot
be multivalued, G�	� becomes

G = A	eim	. �22�

On the other hand, the radial and temporal dependence may
be separated from

d2F

dr2

1

F
+

1

r

dF

dr

1

F
−

m2

r2 =
d2


dt2

1



= − K2, �23�

or



d2F

dr2

1

F
+

1

r

dF

dr

1

F
+ �K2 −

m2

r2 � = 0

d2


dt2 + K2
 = 0 � . �24�

The classical form of the solution to Eq. �24� gives

F = ArJm�kmnr� + BrYm�kmnr� , �25�

where kmn�K and �Jm ,Ym� represent the mth order Bessel
functions of the first and second kind, respectively. In the
time domain the solution to Eq. �24� can be represented by
complex variables as


 = e−ikmnt, �26�

with kmn=�0R /a0. For the assumed sinusoidal variation in
time, initial conditions are immaterial to the character of the
solution. Without loss of generality, the product of tangential,
radial, and temporal contributions may be expressed as

pc
�1,0� = �AJm�kmnr�eim	 + BYm�kmnr�eim	�e−ikmnt. �27�

Where the subscript c denotes a complex variable. Equation
�27� admits a finite pressure at the centerline �i.e., B=0� and
a vanishing pressure gradient at the impermeable wall,
Jm� �kmn�=0. Using unit normalization Eq. �27� becomes

pc
�1,0� = Jm�kmnr�ei�m	−kmnt�. �28�

Subsequently, care is exerted in extracting the real compo-
nent of a given variable before substitution back into the
governing equations that are constructed assuming real quan-
tities. For example, p�1,0�, the first order in � and zeroth order
in Mb approximation for the pressure becomes

p�1,0� = cos�m	 − kmnt�Jm�kmnr�;

�29�
m = 0,1,2, . . . ; n = 0,1,2, . . . ,

where kmn is determined by the roots of the first derivative of
the Bessel function of order m, Jm� �kmn�=0. One finds

k01 � 3.831 705 97, k10 � 1.841 183 78,

k11 � 5.331 442 77, k02 � 7.0155 866 7, �30�

k20 � 3.054 236 93, etc.

Being chiefly concerned with the effect of tangential wave
motion at the headwall, the first spinning mode of interest is
k10. Note that Eq. �29� captures both tangential and radial
oscillation modes. Using Eqs. �9� and �14� produces a set of
equations representing the first-order potential velocity


 �u�1,0�

�t
= −

�p�1,0�

�

n · u�1,0��z=0 = 0; n · u�1,0��r=1 = 0
� , �31�


 �u�1,1�

�t
= −

�p�1,1�

�
− u�1,0� · �U − U · �u�1,0�

n · u�1,1��z=0 = 0; n · u�1,1��r=1 = 0
� , �32�

and


 �u�1,2�

�t
= −

�p�1,2�

�
− u�1,1� · �U − U · �u�1,1�

n · u�1,2��z=0 = 0; n · u�1,2��r=1 = 0
� . �33�

The first order in � and zeroth order in Mb inviscid velocity
profile may be evaluated from Eq. �31�. It gives

uc
�1,0� = −

i

�K
Jm� �kmnr�ei�m	−Kt�er

+
1

�K
�m

r
�Jm�kmnr�ei�m	−Kt�e	, �34�

whence u�1,0� =
1

�K
sin�m	 − kmnt�Jm� �kmnr�er

+
1

�K
�m

r
�cos�m	 − kmnt�Jm�kmnr�e	.

�35�

To avoid the pitfalls of complex notation in the evaluation of
nonlinear terms, the real part of the solution featured in Eqs.
�29� and �35� will be used, as the solution is taken to second
order, to represent the product of two oscillatory quantities.
However, complex notation will be returned to in Sec. IV A,
in the treatment of the first order viscous solution. By carry-
ing the solution to higher orders in the injection Mach num-
ber, the same recursive formulation is obtained at every or-
der. This behavior may be attributed to the assumptions that
kl=0, and U=1, thus leading to vanishing spatial derivatives
of all unsteady flow variables in the z-direction. Then by
summing all terms, one deduces
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uc
�1� = ��

j=0

�

Mb
j�uc

�1,0� =
1

1 − Mb
uc

�1,0�

pc
�1� = ��

j=0

�

Mb
j�pc

�1,0� =
1

1 − Mb
pc

�1,0� =
Jm�kmnr�
1 − Mb

ei�m	−kmnt� � , �36�

and so, in the real domain,


u�1� = ��
j=0

�

Mb
j�u�1,0� =

1

1 − Mb
u�1,0�

p�1� = ��
j=0

�

Mb
j�p�1,0� =

1

1 − Mb
p�1,0� =

Jm�kmnr�
1 − Mb

cos�m	 − kmnt� � . �37�

Note that the infinite series are reducible by use of the
identity

�
j=0

�

xj =
1

1 − x
. �38�

By summing over an infinite series in the Mach number, the
solution is captured exactly in Mb, specifically with a trun-
cation error equal to

lim
j→�

Mb
j = 0. �39�

Therefore, for the remainder of the analysis, the highly ac-
curate solution will be represented through the use of u�1�

and p�1�.

B. Second-order potential solution

The second-order wave equation can be retrieved at
O��2�, with the outcome being

�2p�2� − ptt
�2� =

1 − �

2�
��p�1��2tt + � · �pt

�1�u�1��

−
1

2
��2�u�1� · u�1�� + Mb�� · p�2�U�t

− �Mb � · ��U · u�2�� . �40�

Parallel expansion in the Mach number can be performed
using

p�2� = p�2,0� + Mbp�2,1� + Mb
2p�2,2� + ¯ . �41�

This enables us to extract, at leading order in the Mach num-
ber and second order in the wave amplitude,


�2p�2,0� − ptt
�2,0� =

1 − �

2�
��p�1,0��2tt + � · �pt

�1,0�u�1,0�� −
�

2
�2�u�1,0� · u�1,0��

n · �p�2,0��z=0 = 0; n · �p�2,0��r=1 = 0
� . �42�

Inserting the first-order flow field on the right-hand gives

�2p�2,0� − ptt
�2,0� = F�r� + B�r�cos�2�m	 − kmnt�� , �43�

where

F�r� =
1

2�kmn
2 ��

3m2

r3 +
kmn

2

r
�Jm�kmnr�Jm� �kmnr� + �kmn

2 −
m2

r2 �Jm�
2�kmnr� + �kmn

2 −
m2

r2 �Jm�kmnr�Jm� �kmnr�

−
1

r
Jm� �kmnr�Jm� �kmnr� − Jm�

2�kmnr� − Jm� �kmnr�Jm��kmnr� −
2m2

r4 Jm
2 �kmnr� � , �44�

and
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B�r� =
1

2�kmn
2 


2�kmn
4 �� − 1� +

kmn
2 m2

r2 −
m2�1 − m2�

r4 �Jm
2 �kmnr� + Jm�

2�kmnr�

− � kmn
2

r
−

3m2

r3 �Jm�kmnr�Jm� �kmnr� − �kmn
2 +

3m2

r2 �Jm�
2�kmnr�

− �kmn
2 +

m2

r2 �Jm�kmnr�Jm� �kmnr� +
Jm� �kmnr�Jm� �kmnr�

r
+ Jm� �kmnr�Jm��kmnr�

� . �45�

As in the previous section, the wave equation is further ex-
panded in terms of the injection Mach number. The approxi-
mation to the set of second-order equations displays a pattern
that is of familiar type. We find

p�2� = �
j=0

�

Mb
j ��j + 1�pp

�2,0� + cos�m	 − kmnt�Jm�kmnr��

=
p�2,0� + �1 − Mb�cos�m	 − kmnt�Jm�kmnr�

�1 − Mb�2 , �46�

where the particular solution pp
�2,0� is given by the juxtaposi-

tion of a steady and a time-dependent part,

pp
�2,0� = H�r� + G�r�cos�2�m	 − kmnt�� , �47�

with

H�r� = −
1

4�kmn
2 ���m

r
�2

− kmn
2 �Jm�kmnr�2 + Jm� �kmnr�2� ,

�48�

and


G�r� =
1

4�kmn
2 �− �m

r2
2 + 3kmn

2 �Jm�kmnr�2 + Jm� �kmnr�2 + 4kmn
4 �� − 1�f�r��;

f� +
1

r
f� − 4�m2

r2 − kmn
2 � f = Jm�kmnr�2. � �49�

The second-order momentum equation may be expanded along similar lines. One gets

u�2� = �
j=0

�

Mb
j ��j + 1�up

�2,0� + u�1,0�� =
�1 − Mb�u�1,0� + u�2,0�

�1 − Mb�2 , �50�

where

up
�2,0� = 
−

1

2�2kmn
�2Jm�kmn�Jm� �kmnr� + �1 − ��kmn

2 f��r��sin�2�m	 − kmnt��er

−
1

�2kmn
�m

r
��Jm

2 �kmnr� + kmn
2 �1 − ��f�r��cos�2�m	 − kmnt��e	

� . �51�

Unlike the second-order pressure p�2�, the velocity in Eq.
�51� does not comprise a steady, second-order streaming
component akin to the time-independent term H�r� that
arises in Eq. �47�. In other streaming studies,18 one may see
both steady and unsteady second-order contributions to the
velocity. In such models, the second order pressure gradient
is either assumed or ignored. In the present study, the use of
such an assumption is not required. Instead, we recall
Schlichting’s description29 �p. 430�, namely, that “a potential
flow which is periodic with respect to time induces a steady,
secondary �‘streaming’� motion… as a result of viscous

forces.” In brief, a viscous model is vitally needed to suitably
capture the second-order interactions, as attempted in similar
context by Maslen and Moore.22

IV. VISCOUS FLOW

Attention is now turned to the region directly above the
headwall, specifically to the viscous boundary layer that
must develop as a result of transverse shear parallel to the
injector faceplate. This boundary layer is necessary to bring
the transverse components of the velocity, both tangential
and radial, to vanish at the surface. Friction at the headwall
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permits the attainment of a more realistic representation of
the adjacent fluid motion. The ensuing flow field must, on the
one hand, satisfy the no-slip condition at the headwall and,
on the other hand, merge with the outer solution in the
farfield. In the present study, we ignore the sidewall bound-
ary layers and assume that all viscous effects are confined to
a small region near the headwall.

A. First-order viscous solution

In our attempt to unravel the acoustic streaming motion
induced by viscous effects at the injector faceplate, the
boundary layer equations at the headwall must be estab-
lished. Following standard perturbation practices, a coordi-
nate transformation is introduced such that the z-coordinate

is rescaled by the square root of the inverse acoustic
Reynolds number �=	� / �a0R�. The corresponding inner,
slow variable becomes

� =
z

�
. �52�

Starting with the first-order momentum equation,

ut
�1� = − Mb � �U · u�1�� + Mb�U � ��1� + u�1� � �0�

− �1/�� � p�1� − �2 � � ��1� + �d
2 � �� · u�1�� , �53�

an expansion in terms of � leads to a set of three linear
second-order partial differential equations �PDEs�. Expand-
ing the right-hand side of Eq. �53� gives, term-by-term,

�d
2 � �� · u�1�� =


�d
2� �2ur

�1�

�r2 +
1

r

�ur
�1�

�r
−

ur
�1�

r2 −
1

r2

�u	
�1�

�	
+

1

r

�2u	
�1�

�r � 	
+

1

�

�2uz
�1�

�r � �
�er

+ �d
2�1

r

�2ur
�1�

�	 � r
+

1

r2

�ur
�1�

�	
+

1

r2

�2u	
�1�

�	2 +
1

r�

�2uz
�1�

�	 � �
�e	

+ �d
2�1

�

�2ur
�1�

�� � r
+

1

r�

�ur
�1�

��
+

1

r�

�2u	
�1�

�� � 	
+

1

�2

�2uz
�1�

��2 �ez

� , �54�

− �2 � � ��1� =

− �2�1

r
� �2u	

�1�

�	 � r
+

1

r

�u	
�1�

�	
−

1

r

�2ur
�1�

�	2 � −
1

�
�1

�

�2ur
�1�

��2 −
�2uz

�1�

�� � r
��er

− �2�1

�
�1

r

�2uz
�1�

�� � 	
−

1

�

�2u	
�1�

��2 � − � �2u	
�1�

�r2 −
u	

�1�

r2 +
1

r

�u	
�1�

�r
−

1

r

�2ur
�1�

�r � 	
��e	

−
�2

r
��1

�

�ur
�1�

��
+

r

�

�2ur
�1�

�r � �
−

�uz
�1�

�r
−

�2uz
�1�

�r2 � − �1

r

�2uz
�1�

�	2 −
1

�

�2u	
�1�

�	 � �
��ez

� , �55�

MbU � ��1� = − Mb�1

�

�ur
�1�

��
−

�uz
�1�

�r
�er + Mb�1

r

�uz
�1�

�	
−

1

�

�u	
�1�

��
�e	, �56�

− Mb � �U · u�1�� = − Mb

�uz
�1�

�r
er −

Mb

r

�uz
�1�

�	
e	 −

Mb

�

�uz
�1�

��
ez, �57�

and

−
1

�
� p�1� = −

1

�

�p�1�

�r
er −

1

�r

�p�1�

�	
e	 −

1

��

�p�1�

�z
ez. �58�
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Equation �53� is hence transformed into a group of PDEs, namely,



�ur

�1��t =
− Mb

�

�ur
�1�

��
−

1

�

�p�1�

�r
− �2�

1

r
� �2u	

�1�

�	 � r
+

1

r

�u	
�1�

�	
−

1

r

�2ur
�1�

�	2 �
−

1

�
�1

�

�2ur
�1�

��2 −
�2uz

�1�

�� � r
� � + �d

2�
�2ur

�1�

�r2 +
1

r

�ur
�1�

�r
−

ur
�1�

r2 −
1

r2

�u	
�1�

�	

+
1

r

�2u	
�1�

�r � 	
+

1

�

�2uz
�1�

�r � �
�

�u	
�1��t =

− Mb

�

�u	
�1�

��
−

1

�r

�p�1�

�	
− �2�

1

�
�1

r

�2uz
�1�

�� � 	
−

1

�

�2u	
�1�

��2 �
− � �2u	

�1�

�r2 −
u	

�1�

r2 +
1

r

�u	
�1�

�r
−

1

r

�2ur
�1�

�r � 	
� � + �d

2�
1

r

�2ur
�1�

�	 � r
+

1

r2

�ur
�1�

�	
+

1

r2

�2u	
�1�

�	2 +
1

r�

�2uz
�1�

�	 � �
�

�uz
�1��t =

− Mb

�

�uz
�1�

��
−

1

��

�p�1�

�z
−

�2

r ��
1

�

�ur
�1�

��
+

r

�

�2ur
�1�

�r � �
−

�uz
�1�

�r
−

�2uz
�1�

�r2 �
− �1

r

�2uz
�1�

�	2 −
1

�

�2u	
�1�

�	 � �
� � + �d

2�
1

�

�2ur
�1�

�� � r
+

1

r�

�ur
�1�

��

+
1

r�

�2u	
�1�

�� � 	
+

1

�2

�2uz
�1�

��2
� � . �59�

In seeking a leading order inner approximation, only terms
that appear at the zeroth order in � are retained. This enables
us to simplify Eq. �59�, for the region near the wall, into



�ur

�1��t = −
Mb

�

�ur
�1�

��
−

1

�

�p�1�

�r
+

�2ur
�1�

��2

�u	
�1��t = −

Mb

�

�u	
�1�

��
−

1

�r

�p�1�

�	
+

�2u	
�1�

��2

�uz
�1��t = −

Mb

�

�uz
�1�

��
−

1

��

�p�1�

�z
+

�d
2

�2

�2uz
�1�

��2

� . �60�

According to classic acoustic boundary layer theory, the vis-
cous layer has a minimal bearing on the oscillatory pressure
distribution. Thus in seeking solutions within the acoustic
boundary layer region, pressure from the outer, potential
flow solution will be used.

1. Solution for the first order tangential velocity

To illustrate the procedural steps needed to solve this set,
we start with the tangential equation,

�2u	
�1�

��2 −
Mb

�

�u	
�1�

��
− �u	

�1��t =
1

�r

�p
�1�

�	
. �61�

Owing to the fact that Mb /� is not small, all terms on the
left-hand side of Eq. �61� appear at the same order. At this
time the complex variable representation of the outer pres-
sure from the potential flow field is used to represent p�1�;
one collects

�2u	,c
�1�

��2 −
Mb

�

�u	,c
�1�

��
+ ikmnu	,c

�1� =
i

�
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt�.

�62�

The return to complex notation is done in the interest of
simplicity. The particular integral for Eq. �62� may be readily
evaluated such that a compact solution is deduced. One gets

�u	,c
�1��p =

1

�kmn
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt�. �63�

In turn, the homogenous solution takes the form

�u	,c
�1��h = A	�r,	,t�eX1� + B	�r,	,t�eX2�, �64�

with

�X1,X2� =
Mb

2�
�1  	1 − 4ikmn�2Mb

−2�

=
Vb

2
	 R

a0�
�1  	1 − 4ikmn�2Mb

−2� , �65�

or

X1 =
Mb

2�
�1 +	1 + 	1 + 16kmn

2 �4Mb
−4

2

− i	− 1 + 	1 + 16kmn
2 �4Mb

−4

2
� , �66�

X2 =
Mb

2�
�1 −	1 + 	1 + 16kmn

2 �4Mb
−4

2

+ i	− 1 + 	1 + 16kmn
2 �4Mb

−4

2
� . �67�

Note that the real parts X1
r �0 and X2

r �0. The total solution
for the first-order boundary layer approximation becomes

u	,c
�1� = A	�r,	,t�eX1� + B	�r,	,t�eX2�

+
1

�kmn
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt�. �68�

Knowing that the velocity cannot increase unboundedly as
�→�, one must set A	�r ,	 , t�=0 because X1

r �0. This leaves
the second constant in Eq. �68� to satisfy the no-slip condi-
tion at the headwall. Thereafter, one puts
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u	,c
�1��r,	,0,t� = B	�r,	,t� +

1

�kmn
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt�

= 0, �69�

whence

B	�r,	,t� = −
1

�kmn
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt�, �70�

and so

u	,c
�1��r,	,�,t� =

1

�kmn
�m

r
� Jm�kmnr�

�1 − Mb�
ei�m	−kmnt��1 − eX2�� .

�71�

It may be useful to remark that u	,c
�1��1,	 ,� , t��0. The radial

velocity fluctuation does not observe the velocity adherence
condition at the sidewall. As stated earlier, this outcome is
due to our deliberate dismissal of the sidewall boundary
layer.

2. Solution for the first order radial velocity

In the radial direction, Eq. �60� yields

�2ur
�1�

��2 −
Mb

�

�ur
�1�

��
− �ur

�1��t =
1

�

�p�1�

�r
. �72�

Substituting the complex notation pressure from the outer
potential flow solution, we get

�2ur,c
�1�

��2 −
Mb

�

�ur,c
�1�

��
+ ikmnur,c

�1� =
1

�

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt�. �73�

The particular integral delivers

�ur,c
�1��p = −

i

�kmn

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt�, �74�

with the homogenous solution being of the form

�ur,c
�1��h = Ar�r,	,t�eX1� + Br�r,	,t�eX2�. �75�

Here one must set Ar�r ,	 , t�=0 to prevent unboundedness in
the downstream direction. The complete solution for the
first-order radial velocity approximation is therefore

ur,c
�1� = Br�r,	,t�eX2� −

i

�kmn

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt�. �76�

The no-slip condition at the headwall permits extracting the
final unknown

ur,c
�1��r,	,0,t� = Br�r,	,t� −

i

�kmn

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt� = 0

�77�

or Br�r,	,t� =
i

�kmn

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt�.

Backward substitution yields, at length,

ur,c
�1��r,	,�,t� =

i

�kmn

Jm� �kmnr�
�1 − Mb�

ei�m	−kmnt��eX2� − 1� . �78�

3. Solution for the first order axial velocity

The continuity equation can be used to extract the
z-component of velocity to the first order. Inserting ���1�

= p�1� into the first-order continuity expression in Eq. �9�, one
obtains

���1�

�t
= − � · u�1� − Mb � · ���1�U� or

�79�
�p�1�

�t
= − � � · u�1� − �Mb � · �p�1�U/�� = − � � · u�1�.

In terms of the slow boundary layer coordinate, one can put

1

�
pt

�1� =
�ur

�1�

�r
+

ur
�1�

r
+

1

r

�u	
�1�

�	
+

1

�

�uz
�1�

��
. �80�

Substituting Eqs. �36�, �71�, and �78� into Eq. �80�, one can
rearrange and retrieve

�

�

�uz,c

��
= −

iei�m	−kmnt�

kmn�1 − Mb���Jm� �kmnr� +
1

r
Jm� �kmnr�

−
m2

r2 Jm�kmnr���eX2� − 1� − kmn
2 Jm�kmnr�� . �81�

However, Jm�kmnr� satisfies, by definition, the Bessel equa-
tion,

Jm� �kmnr� +
1

r
Jm� �kmnr� −

m2

r2 Jm�kmnr� + kmn
2 Jm�kmnr� = 0.

�82�

Equation �81� becomes

�uz,c

��
=

i�kmnei�m	−Kt�

��1 − Mb�
Jm�kmnr�eX2�. �83�

Subsequent integration yields

uz,c
�1��r,	,�,t� =

i�kmnei�m	−kmnt�

�X2�1 − Mb�
Jm�kmnr�eX2� + Az�r,	,t� .

�84�

Note that the axial velocity is not obtained from Eq. �60� but
rather deduced directly from the continuity equation. Based
on strictly steady axial injection at the headwall, the
z-component of velocity must not interfere with the uniform
injection at z=�=0, This condition translates into

uz,c
�1��r,	,0,t� =

i�kmnei�m	−kmnt�

�X2�1 − Mb�
Jm�kmnr� + Az�r,	,t� = 0

�85�

or Az�r,	,t� = −
i�kmnei�m	−kmnt�

�X2�1 − Mb�
Jm�kmnr� .

In the end, one obtains

uz,c
�1� =

i�kmnei�m	−kmnt�

�X2�1 − Mb�
Jm�kmnr��eX2� − 1� . �86�
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4. Solution for the complete first order velocity

As was done during the potential flow derivation, the real part of the first order solution will be used in the derivation of
the second order flow field. The real parts of the solution can be summarized as

u�1��r,�,�,t� =
Jm�kmnr�

�kmn�1 − Mb�� Jm� �kmnr�
Jm�kmnr��sin�m� − kmnt�

inviscid outer field

irrotational part

− sin�m� + Xi � − kmnt� eXr �

decay
wave propagation

rotational part

�er

+ �m

r
��cos�m� − kmnt� − cos�m� + Xi � − kmnt�eXr �	e�

+
�kmn

2

X r
2 + X i

2
X r�sin�m� − kmnt� − eX r� sin�m� + X i� − kmnt�	
+ X i�cos�m� − kmnt� − eX r� cos�m� + X i� − kmnt�	 �ez� ,

�87�

where X2=X=Xr+ iXi may be synthesized from


Xr =
Mb

2�
�1 −	1 + 	1 + 16kmn

2 �4Mb
−4

2
� �

Mb

2�
�1 − 	1 + 4kmn

2 �4Mb
−4� � −

�3kmn
2

Mb
3 = −

�

Sp

Xi =
Mb

2�
		1 + 16kmn

2 �4Mb
−4 − 1

2
�

Mb

2�
	8kmn

2 �4Mb
−4

2
�

�kmn

Mb
= �S � . �88�

It may be useful to remark that the tangential component of
the velocity does not vanish at the sidewall. Its behavior in
the vicinity of r=1 deteriorates to the extent of overshooting
the expected value in the absence of fluid friction at the
sidewall. Our domain of analysis is therefore limited to a
large diameter chamber with the exclusion of the sidewall.
Such a model may be deemed acceptable considering that the
principal objective here lies in the treatment of the mean
flow interactions with the wave motion directly above the
headwall. To illustrate the solution that we obtain, Fig. 2 is

used to display the first-order boundary layer approximation
for the traveling wave at r=0.4, 	=� /3, and �=0.000 647.
The wave evolutions in the streamwise direction are shown
at three headwall injection Mach numbers and the first spin-
ning mode number k10�1.841 183 78. The axial velocity
fluctuation is not shown due to its small relative magnitude.
It is apparent that the viscous stresses have a more pro-
nounced effect as the injection Mach number is decreased.
Conversely, when the injection Mach number is increased,
the boundary layer is more effectively blown off the surface
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FIG. 2. First-order approximations for �a� radial and �b� tangential velocities. The scale on the left-hand side is for injection Mach numbers of 0.3 and 0.03.
The scale on the right-hand side is for Mb=0.003.
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�see Cole and Aroesty30 or Majdalani�.24,26 Furthermore, the
propagation wavelength measured by the peak-to-peak dis-
tance decreases as the Mach number is lowered. In this case,
the decay of the wave is also seen to be more rapid. Physi-
cally, this behavior may be attributed to the increased dimen-
sionless frequency, or Strouhal number, given by S
=kmn /Mb=�0R /Vb. As the dimensionless frequency is in-
creased �or the Mach number is decreased�, the transverse
fluctuations undergo a larger number of reversals per unit
time. In the presence of viscosity, the higher frequency at
which oscillations occur enhances the effects of fluid fric-
tion. Mathematically, the same behavior may be extrapolated
from the dependence of the exponential decay terms on Mb.
As one may infer from Eq. �88�, increasing the Mach number
leads to a smaller Xr and, consequently, to a slower viscous
damping in the axial direction. In actuality, the net damping
is strongly dominated by

exp�Xr�� � exp�−
�2kmn

2

Mb
3 z� = exp�−

z

Sp
� , �89�

where the effective penetration number Sp emerges in the
form

Sp =
Mb

3

�2kmn
2 =

Vb
3

a0
3

a0R

�

a0
2

�0
2R2 =

Vb
3

��0
2R

. �90�

This parameter was first discovered in work by Majdalani24

and then reaffirmed by Flandro,31 both in the context of an
oscillating longitudinal wave over an injecting surface in a
porous cylinder. The penetration number is further explored
in porous cylinders25–27 and channels32–35 with various injec-
tion patterns. In the present study, a similar dimensionless
group is found to control the depth of penetration of the
headwall boundary layer. This can be clearly seen by letting
�=m	−Kt and recasting Eq. �87� into

u�1� =
1

�kmn�1 − Mb��Jm� �kmnr��sin � − sin�� + Sz�e−z/Sp�er +
mJm�kmnr�

r
�cos � − cos�� + Sz�e−z/Sp�e	

+
kmn

2 Jm�kmnr�
S2 + Sp

2 �S cos � − Sp sin � + �Sp sin�� + Sz� − S cos�� + Sz��e−z/Spez� . �91�

Note that as Sp is increased, a larger depth of penetration is
realized. Conversely, for small penetration numbers, the ex-
ponential damping constant in Eq. �89� is increased, leading
to rapid spatial damping of the wave envelope and a shorter
penetration depth. Physically, the penetration number unrav-
eled here renders visible the balance between two coexisting
forces: unsteady inertia and viscous diffusion of the tangen-
tial �or radial� velocity in the axial direction. This dimension-
less parameter reflects the ratio of

unsteady inertial force

viscous force
�

�u	
�

�t�

�
�2u	

�

�z�2

�

ū	
�

t̄�

�
ū	

�

z̄�2

=
z̄�2

�t̄�

�
�Vb/�0�2

��R/Vb�
=

Vb
3

��0
2R

= Sp. �92�

In the above, we use z̄��Vb /�0 to represent the lengthscale
of a wave of frequency �0 being convected at an axial speed
that is proportional to Vb. We also take t̄��R /Vb to denote
the timescale of a particle crossing the radius of the chamber
at a characteristic speed equal to Vb. It is clear that the pen-
etration number not only accounts for the influence of inertia
and viscosity, but also embodies the effects of mean flow
convection in the axial direction. The analogy with the

former work on longitudinal waves is significant. While
Majdalani and Flandro27 considered an oscillating axial flow
with steady radial mass flux at the porous sidewall, the
present study addresses the motion of an oscillating trans-
verse flow with steady axial flux at the headwall. By com-
paring these two problems, the blowing velocity Vb that ap-
pears in Eq. �90� will refer to either the transverse or axial
mean flow values at the porous wall. The frequency of
oscillations for a given mode shape will also be distinctly
different, namely,

�0 = 

kmna0

R
transverse wave

m
�a0

L
axial wave � . �93�

Aside from the blowing velocity and dimensional frequency,
the remaining parameters in Eq. �90� are the same in both
models. At the outset, a full characterization of the headwall
boundary layer may be systematically carried out using the
steps delineated by Majdalani.26 While such analysis may be
useful in elucidating the structure of the transverse waves
under different oscillatory mode configurations, our attention
here remains focused on the streaming effects produced by
these waves. To this end, a higher approximation is in order.
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B. Second-order viscous solution

In what follows, we show that extending the boundary layer analysis to the second order in the wave parameter gives rise
to a steady flow component that has its origin in the interaction between viscosity and inertia. To this end, the second-order
momentum equation, defined in Eq. �10�, is recast using the stretched inner coordinate �:

�u�2�

�t
= −

�p�2�

�
− ��1��u�1�

�t
−

1

2
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1

�
p�1����U · u�1�� − u�1� � ��0� − U � ��1��� . �94�

Using a suitable boundary layer coordinate transformation, terms on the right-hand side of Eq. �94� become
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Equation �94� can be projected into three vector directions to obtain
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Retaining terms at the zeroth order in � leaves us with
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where terms involving the ratio Mb /� are kept, being non-negligible. Solving the second-order equations requires greater
algebraic detail. By scrutinizing the right-hand side of Eq. �106�, it may be seen that several quadratic combinations of
trigonometric functions appear. Such combinations give rise to both time-dependent and steady terms. An example would be
the 2 cos2�kmnt� term which can be recast as 1+cos�2kmnt�. To briefly sketch the procedure followed, the solution in the radial
direction will be outlined.

After substituting the first-order solution on the right-hand side of Eq. �106�, one recovers, for the steady part,
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and
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where Jm stands for Jm�kmnr� and its primes denote derivatives with respect to the radial coordinate. In this context, we have
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Equation �106� can now be rewritten as
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Note that the term involving the partial derivative with respect to time has been removed because of our focus being on the
steady flow. Equation �114� is a second-order linear PDE that is subject to
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A straightforward solution may be obtained using the method of undetermined coefficients. The steady part reads
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and

�r = �Xr
2 + Xi

2���2Xi
2 + �Mb − �Xr�2� . �118�

In like manner, the steady streaming velocity in the tangen-
tial direction may be extracted from Eq. �106�. Collecting the
steady terms from the right-hand side of Eq. �106�, one gets
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Equation �106� can now be rewritten as
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Equation �123� can be carefully solved to obtain
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For the sake of illustration, Fig. 3 displays the second-
order radial and tangential velocities at r=0.4, 	= �1 /3��,
and �=0.000 647 versus the axial coordinate at three head-
wall injection Mach numbers. The radial velocity exhibits an
interesting trend, displaying alternating spatial excursions
that shift outwardly toward increasingly more positive val-
ues. This behavior is most apparent in the case of Mb=0.03
�dashed line in Fig. 3�a�� where the radial velocity starts
vacillating around ur�0.25 and then ur�0.75 in the short
span of z= �0,1�. The same pattern is repeated in the cases of
Mb=0.3 and 0.003, but the positively shifting excursions are
masked in the corresponding graphs by the relative scales.
These particular trends suggest that when fluid particles con-
vect downstream, away from the injector face, the second-
order flow field becomes increasingly influenced by a steady
radial velocity that pushes the fluctuations outwardly toward
the sidewall.

In order to compare the first- and second-order boundary
layer flows, it may be useful to consider the entire wave
structure at one particular instant of time. Figures 4 and 5 are
snapshots of vector fields representing the first tangential
mode of oscillation for the first- and second-order solutions,
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FIG. 3. Steady second-order approximations for �a� radial and �b� tangential velocities. The scale on the left axis corresponds to an injection Mach number
of 0.3 while that on the right is set to display the Mb=0.03 and 0.003 cases.

063602-16 Fischbach, Flandro, and Majdalani Phys. Fluids 22, 063602 �2010�



respectively, taken at fixed z=0.01, t=1, and �=0.000 647.
In Fig. 5, only the steady portion of the second-order solu-
tion is shown. Note that the first-order solution in Fig. 4
spins in a counterclockwise fashion as a consequence of the
convention assumed in the exponential time dependence. The
vector traces shown here have comparable patterns that are
merely reoriented in the polar plane with successive de-
creases in the headwall injection Mach number. Velocity vec-
tors moving from one nodal point to the other are identified
in all three plots. These patterns stand in sharp contrast with
the second-order results shown in Fig. 5, where the velocity
vectors display distinctly dissimilar motions. In the cases of
Mb=0.3 and 0.03, the flow pattern is dominated by an in-
ward pointing radial velocity drawing mass toward the
chamber’s centerline with a slight clockwise swirl velocity
that is noticeable in the Mb=0.03 case. At first glance, this
pattern would appear to retard the first-order motion whose
wave structure rotates in a counterclockwise direction. Al-
though a similar conclusion is reported by Maslen and
Moore,22 a closer examination of the flow behavior seems to
suggest the contrary. Note that Fig. 5�c� displays a strong
outward pointing radial velocity with a similar counterclock-
wise swirl velocity. The disparity between Figs. 5�a�–5�c�
suggests a closer look at Fig. 3. In plotting the second-order

radial component, it is seen that the velocity near the head-
wall fluctuates between positive and negative quantities. At
z=0.01, deep within the boundary layer, the two larger injec-
tion Mach number cases fall in a negative ur swing, whereas
the smallest Mach number case falls in a positive swing. The
corresponding arrowheads are inward pointing in Figs. 5�a�
and 5�b� but outward in Fig. 5�c�. However, outside the
boundary layer, the arrowheads are always outward pointing
as corroborated by the outer limit of u�2�, namely, the induced
streaming solution.

It should be recalled that streaming flows and the focus
of this investigation are normally associated with a second-
order steady rotational flow that is independent of viscosity.
To extract these terms from the second-order flow solution,
the limit is taken as the boundary layer coordinate ap-
proaches infinity. One obtains
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FIG. 4. First-order traveling wave vector plot at z=0.01 and three headwall injection Mach numbers of �a� Mb=0.3, �b� 0.03, and �c� 0.003.

(a) (b) (c)

FIG. 5. Steady second-order velocity vector plot at z=0.01 and three headwall injection Mach numbers of �a� Mb=0.3, �b� 0.03, and �c� 0.003.
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ū	
�2� = lim

�→�
u	

�2�

=
− Jm

2

2�2�1 − Mb�2

m

r � �Mb − �Xr�
2kmn

2 �	

���Xi
2 + Xr

2�Mb − 2kmn�Xi� −
�Xi

�Xi
2 + Xr

2�� . �127�

Reflected in Eqs. �126� and �127� is a second-order steady
flow that is deprived of viscous damping terms. Streaming
flow investigators often refer to solutions similar to these
limiting expressions as second-order “potential” solutions,
although they are not totally independent of viscosity. Fig-
ures 6 and 7 display the radial dependent streaming terms as
a function of � and Mb. The plots in Fig. 6 correlate to the
streaming term in the radial direction for �=0.01, m=1,
n=0, and a Mach number of �a� Mb=0.003, �b� 0.03, and �c�
0.3. Recalling the expansion defined through Eq. �8�, the
order of magnitude of the first order potential solution is set
by �=0.01. With this in mind one identifies that the second
order terms would need to be of O�10−3� before having an
appreciable impact on the first order flow field. As displayed
in Fig. 6�b�, the necessary condition is met when Mb=0.03
and �=0.000 647. When Mb=0.3, a common condition in
liquid rocket engines, the magnitude of ūr

�2� is significant
enough to affect the first order potential solution for all �. Yet
contrary to what was seen in Fig. 6, the azimuthal compo-
nent of the streaming solution, ū	

�2�, does not reach a magni-
tude that can appreciably influence the potential motion. This
behavior is displayed in Fig. 7.

To illustrate the impact of the streaming solution re-
stored in the outer limit, ūr

�2� and ū	
�2�, on the total potential

flow solution, Fig. 8 is used to display vector plots of the
second-order approximation first without streaming �a�,
and then with streaming and either �b� �=0.006 47 or �c�
�=0.0647. All results are shown at �=0.01, Mb=0.3, t=1,
m=1, and n=0 �first order tangential and zeroth order ra-
dial�. In Fig. 8�a�, only the total potential flow is depicted to
second order. The results are found to be nearly identical to
the first-order potential solution and to the patterns in Fig. 4
where the first-order viscous solution is shown. This agree-
ment reflects the diminutive nature of the second-order po-
tential flow contribution. When streaming effects are ac-

(a) (b) (c)
FIG. 6. Total vector plot in the outer region illustrating the behavior of �a� the purely inviscid potential approximation up to the second order and ��b� and �c��
the same total potential solution augmented by the streaming contribution. Results are shown for t=1, n=1, �=0.1, Mb=0.3, and �= �a� 0, �b� 0.006 47, and
�c� 0.0647.
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FIG. 7. Streaming velocity in the radial direction shown at several injection
Mach and acoustic Reynolds numbers. Results correspond to m=1,
�=0.01, �=1.4, and an injection Mach number of �a� 0.003, �b� 0.03, and �c�
0.3. The scale on the left axis is specified for the �=0.000 647 case while
that on the right corresponds to the �=0.006 47 and 0.0647 cases.
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counted for, Figs. 8�b� and 8�c� bring into perspective the
behavior of the total potential flow �to second order� com-
bined with the streaming velocities, ūr

�2� and ū	
�2�. It is quite

evident in Fig. 6�b� that, when we use a typical value of
�=0.006 47, the streaming motion can markedly alter the
fundamental flow structure observed in Figs. 4 and 8�a�. The
velocity vectors are pushed outwardly in all directions with
the effect being most pronounced in the area around the
nodal line where the potential flow vectors are mostly radial.
The flow patterns in Figs. 4 and 8�a� comprise two regions
with respect to the axis of rotation, an upstream region where
the flow is directed toward the core, and a downstream re-
gion where the flow is outward. With the superposition of the
streaming correction in Fig. 8�b�, a reversal in the direction
of flow upstream of the centerline may be noted. This flow
reversal may be attributed to the large streaming amplitude
resulting from the use of a relatively sizable �=0.01. In stark
contrast with Fig. 8�b�, no streaming consequences may be
linked to Fig. 8�c�, where the viscous parameter is increased
to �=0.0647. At first glance, the diminishment in streaming
intensity with successive increases in � appears to be para-
doxical, or perhaps counterintuitive, because secondary
flows are rooted deep within the viscous boundary layer.
Upon further scrutiny, however, one realizes that increasing
� leads to a smaller penetration number as expressed through
Eq. �90�. Decreasing the penetration number Sp reduces the
boundary layer thickness and, thereby, the depth of penetra-
tion of the rotational segment through which streaming is
generated.

In Fig. 9, three diagrams are provided to help visualize
the key regions of interest. In Fig. 9�a�, we seek to isolate the
coupling between streaming and radial waves. Being radially
outward in all directions, streaming opposes the radial veloc-
ity waves in the right-hand side sector of the domain, thus
leading to a decreased local wave speed. By the same token,
it enhances the radial wave in the left-hand side sector, where
it promotes further growth in the radial velocity. In Fig. 9�b�,
the coupling with the tangential wave is examined. Given
that streaming in the outer region is accompanied by small
clockwise rotation �see Fig. 5�c��, its superposition on the
counterclockwise motion of the tangential waves gives rise
to regions with tangential velocity defect or excess, in the top
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FIG. 8. Streaming velocity in the tangential direction shown at several
injection Mach and acoustic Reynolds numbers. Results correspond to m=1,
�=0.01, �=1.4, and an injection Mach number of �a� 0.003, �b� 0.03, and
�c� 0.3.

(a) (b) (c)
FIG. 9. �Color online� Sectors in which oscillatory waves are enhanced or weakened by virtue of streaming. These illustrate the outcome of interactions
between �a� radial and �b� tangential velocities with the streaming motion. For example, in part �a� the radially outward streaming contributions act to
decelerate the radial wave in the right half while accelerating it in the left half. In part �c� the main regions of interest are delineated along with their pertinent
equations.
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and bottom halves of the domain, respectively. In practice,
the coupling configurations shown in Figs. 9�a� and 9�b� oc-
cur simultaneously, thus leading to the patterns shown in Fig.
8�b�. Finally, to summarize the results obtained heretofore,
Fig. 9�c� is used to delineate the main regions of interest and
their pertinent solutions. For example, within the boundary
layer region, the viscous treatment is most relevant. Appli-
cable solutions include Eq. �87� for the first-order traveling
wave solution and Eqs. �116�–�125� for the steady, second-
order transverse velocities. In the outer region, the complete
potential flow solution is depicted as the sum of the inviscid,
irrotational, time-dependent field, given by Eqs. �37� and
�50�, and the viscous, rotational, steady streaming field given
by Eqs. �126� and �127�.

V. CONCLUSIONS

In this study, closed-form analytical solutions are de-
rived to describe the behavior of secondary flows generated
by parallel wave incidence over a uniformly injecting head-
wall. Of particular interest is how the streaming motion af-
fects the oscillating field, especially in the tangential and
radial directions. From the flow patterns depicted in Figs. 8
and 9, some interesting results may be inferred. Along the
nodal pressure line �equator line in Fig. 8�a��, the flow field
is heavily dominated by radial velocities. Specifically, it is
shown that along the nodal lines the flow is directed toward
the center of the chamber on one side and out from the center
on the other. Assuming that the velocity is proportional to the
gradient of the pressure, a conclusion about the correspond-
ing wave form may be inferred. In Fig. 8, the region where
the velocity vectors are counterclockwise corresponds to a
positive pressure region with the peak amplitude occurring
along the outer circumference. Conversely, in the region
where the flow is clockwise �down below the nodal line�, a
negative pressure region is formed with the troughs occur-
ring along the outer circumference as well. Along the nodal
line, where the velocity vectors converge or diverge, a tran-
sition from a positive to a negative pressure region is real-
ized. We note that the second-order streaming flow for a
traveling wave is axisymmetric, with a strong outward point-
ing radial component. Therefore, in the case where the sec-
ondary flow is large enough to influence the first-order oscil-
lations, the radial coupling along the nodal line is affected
the most. In the absence of streaming, an observer situated at
the north or south poles �Fig. 8�a�� will witness the largest
tangential velocities sweeping by. In the presence of stream-
ing, the flow will no longer be tangential as it gains an out-
ward pointing radial component near the poles �Fig. 8�b��.
Along the equator line, the potential flow that is originally
radial will be either enhanced or weakened downstream and
upstream of the core, respectively. The result is a steepened
wave form similar to that described by Pierce36 in the case of
a plane wave. It should be noted that as per Fig. 3, the sec-
ondary flow is one order of magnitude smaller than u�1�.
Recalling that the problem is linearized by the ratio of the
pressure fluctuations to the mean pressure, �, terms at the
second order in � are small. This will remain true until the
peak-to-peak amplitudes of the pressure oscillations become

comparable to the chamber pressure, as reported in Clayton’s
data18 and other experimental measurements taken in liquid
rockets.

Our work clearly demonstrates the origination of stream-
ing flows induced by tangential oscillations near a liquid
rocket engine faceplate. Solutions to the first and second-
order boundary layers are presented and discussed. The sec-
ondary flow patterns are found to increase the first-order
pressure gradient in some areas and to decrease it in others.
This process is associated with a steepening of the wave
profile. Experimental evidence in the above discussion sup-
ports the development of a traveling wave form that displays
a sharp pressure spike followed by a long shallow trough.
Our study calls for further investigations to relax some of the
limiting assumptions used here. Since tangential wave struc-
tures can steepen when interacting with an injector faceplate,
a more elaborate model may be required to obtain a complete
solution for the fully steepened waves. A theoretical model
that mirrors the analysis provided here can also be pursued to
capture the motion of standing transverse waves in chambers
with headwall mass addition. These models as well as others
involving nonuniform injection are hoped to be discussed in
forthcoming work.
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