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Axially Traveling Waves in Porous Tubes with 

Arbitrary Crossflow Velocity 

Todd A. Jankowski* and Joseph Majdalani† 

University of Tennessee Space Institute, Tullahoma, TN 37388  

This paper devotes itself to the development of an asymptotic representation of the 

axially traveling wave in porous tubes with arbitrary levels of wall suction or injection.  The 

analysis starts by splitting the viscous Navier-Stokes equations into both a steady and a time-

dependent part.  The steady part can be solved using Berman’s similarity solution, thus 

giving rise to a Hart-McClure or Taylor-Culick type models.  The unsteady part is 

decomposed using the Helmholtz vector theorem into a compressible irrotational component 

and a solenoidal rotational part.  Each set is solved separately and then coupled through the 

wall boundary condition.  The ensuing rotational field consists of a doubly-perturbed 

problem that can be treated using multiple-scales and WKB techniques.  The perturbations 

are carried out in the reciprocal of the crossflow Reynolds number R, while assuming a 

Strouhal number of the same order as R.  At the outset, a general WKB formulation for the 

wave motion is obtained from which the cases of wall injection or suction may be readily 

extracted.  The character of the solution is found to be consistent with that of a weakly 

under-damped wave that is strongly influenced by the mean flow profile prescribed in the 

chamber.  A multiple-scales expansion is also undertaken, thus helping to unravel the inner 

scaling structure associated with this problem.  Our approach applies to the case of suction 

where a linear scaling constitution is established. For the case of wall injection, a nonlinear 

scaling transformation will be required and this will be demonstrated in a forthcoming study 

where a generalized-scaling technique will be employed.  By way of verification, two closed-

form multiple-scales and WKB expressions are retrieved for the case of large crossflow 

Reynolds number and shown to compare quite favorably with an exact limiting process 

solution.  Finally, the Stokes layer thickness and Richardson annular effect associated with 

this model are briefly captured and discussed. 

Nomenclature 

A  = dimensional pressure wave amplitude 

a  = tube radius 

 a  = coefficient in the generalized separated momentum equation 

 0 a  = leading-order term in  a  

 1 a  = higher order term in  a  

1A  = integration function from the multiple-scales analysis 

2A  = integration function from the multiple-scales analysis 

sa  = stagnation speed of sound 

 b  = coefficient in the generalized separated momentum equation 

 0 b  = leading-order term in  b  

 1 b  = first order term in  b   

 c  = coefficient in the generalized separated momentum equation 

nE  = maximum absolute error between an asymptotic solution and the exact solution 
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F  = mean flow similarity parameter 

0F  = the mean flow similarity parameter, F , evaluated at the wall 

G  = dependent variable used in the generalized separated momentum equation 

i  = 
1/2( 1)  

L  = dimensional tube length 

l  = nondimensional tube length 

cL  = characteristic length dimension 

M  = Mach number 

m  = oscillation mode number 

p  = pressure 

jQ  = functional argument of the WKB expansion 

R  = crossflow Reynolds number  

r  = radial coordinate 

S  = Strouhal number 

t  = time 

u  = velocity vector 

wU  = wall velocity 

( )X x  = r-independent velocity function 

x  = axial coordinate 

( )nY r  = x-independent velocity function 

z  = stretched coordinate near the wall or a dummy variable used for integration 

 
  = the inverse of the crossflow Reynolds number 

  = nondimensional pressure wave amplitude 

  = confluent hypergeometric function 

  = the ratio of specific heats 

  = independent variable used in the generalized separated momentum equation 

n  = momentum equation separation eigenvalue 


 = fluid dynamic viscosity 

  = fluid kinematic viscosity 

  = density 

   = shear stress tensor 

  = nondimensional circular frequency 

s  = dimensional circular frequency 

  = stretched length scale near the porous wall 

  = steady stream function 

  = nondimensional del operator 

 

Subscripts 

0,1,… = the order of approximation in a perturbation series 

s = stagnation value of a quantity 

 

Superscripts 

* = dimensional quantity 

^ = acoustic component 

~ = vortical component 

I. Introduction 

INCE Berman’s landmark paper,1 extensive studies into the problem of flows in porous tubes and channels with 

wall suction or injection have been undertaken.  These proved essential to a variety of technological applications 

including membrane separation processes,1,2 transpiration cooling,3 jet mixing,4,5 boundary layer control,6-9 and 

propellant burning.10-16   In modeling the flowfield inside solid rocket motors, Berman-based solutions have formed 

the backbone of most mean flow models used to describe the bulk gaseous motion.  These include the Hart-
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McClure,17,18 Taylor,19-21 and Taylor-Culick22 steady-state profiles under both incompressible and compressible flow 

conditions.23,24  In recent work, Berman’s similarity-based equation has given rise to several innovative 

mathematical solutions based on quasi-linearization,25 Lie-group theory,26,27 the Adomian decomposition method,28 

the homotopy-perturbation method (HPM),29 and the homotopy-analysis method (HAM).30,31  The latter was shown 

to provide series approximations that remained independent of the size of the crossflow Reynolds number.31   

 Berman first studied the porous channel flow by reducing the Navier-Stokes equations to a single, fourth order, 

non-linear ordinary differential equation (ODE) through the use of a steady stream function.  Berman then solved 

this ODE via regular perturbations, with the crossflow Reynolds number as a small parameter.  Berman’s crossflow 

Reynolds number is traditionally written as /w cR U L  , thus combining the wall suction velocity wU  and a 

characteristic dimension cL .  For the rectangular channel, cL  is taken to be the channel half-height h , while for the 

porous tube, the radius a  is substituted.  In the case of wall injection, one simply replaces the velocity by .wU  

 By taking R  as the perturbation parameter, Berman managed to obtain solutions that could be used for small 

Reynolds number.  Based on Berman’s equation, numerous studies emerged and these were concerned with the need 

to generate accurate descriptions of the steady flow in both channels and tubes undergoing different levels of suction 

or injection.  In this vein, Yuan32,33 extended Berman’s range, in both channel and tube geometries, to 20R , while 

Sellars34 and Terrill35 developed exact solutions as R . 

Naturally, these past studies have been focused on the non-oscillatory motion developed due to suction or 

injection at the boundaries.  However, random fluctuations in the crossflow velocity are often inevitable and take 

place over a wide spectrum of frequencies.  Those matching the enclosure’s natural modes can give rise to a self-

sustaining acoustic field that exhibits rich fluid dynamical structures.36-38  Additionally, the modeling of the 

respiratory and circulatory functions of the body exhibit an externally induced oscillatory field that is of interest to 

physiologists.39  Although the problem of oscillatory flows in tubes and channels without suction or injection at the 

walls has been extensively studied in the past,40-42 and despite the availability of models to describe the oscillatory 

flow in porous tubes with arbitrary levels of wall injection,43,44 no solutions have been developed to model the 

oscillatory flow in porous tubes with arbitrary levels of suction. 

In this article, we present mathematical generalizations to describe the oscillatory velocity field in a porous tube 

that is subjected to arbitrary levels of wall suction.  The solutions obtained here will apply equally well to the 

modeling of injection-driven oscillatory waves in porous enclosures, such as simulated rocket motors, although the 

converse may not always hold.  An analytical formulation of the oscillatory velocity field in a porous tube may be 

viewed as a basic contribution to viscous boundary-layer theory.  The technique to be used will rely on perturbation 

theory and the differential equation ultimately describing the time-dependent velocity for arbitrary suction will be 

solved using both multiple-scales and WKB expansion methods.  In addition, an exact solution for the problem, 

which was derived under special suction conditions,37 will be used to verify the asymptotic approximations.  The 

particular equation to be examined with perturbation tools exemplifies the elements of analysis associated with a 

doubly-perturbed problem that needs to be solved for large Reynolds and Strouhal numbers.  The procedure leading 

to its simplification into a singly-perturbed problem may be by itself a valuable maneuver in asymptotic analysis.  

The same approach may have applications in the treatment of similar differential equations that are encountered in 

modeling complex physical processes that entail co-existing dispersive and dissipative mechanisms. 

II. Problem Formulation 

A. Basic Flow Model 

Our enclosure consists of a long slender tube with a porous wall and radius a .  Although wall injection can be 

considered as in the simulation of solid rocket chambers,43 we adopt the more general case of a fluid being 

withdrawn from the porous surface at a uniform wall velocity wU .  The length of the tube is defined as L , and 

symmetry about the longitudinal axis is assumed.  This enables us to reduce the solution domain to 0  x l , and 

0 1 r , where /l L a  is the dimensionless tube length.  To illustrate the cylindrical geometry, Fig. 1 is provided 

to present a cross-section of the tube with the mean flow streamlines calculated from Terrill’s model for large 

suction.35 

Under the influence of small variations in the crossflow velocity, a tube or channel that is rigid at the head end 

and isobarically open at the aft end can develop longitudinal pressure oscillations of amplitude A .  The 

corresponding acoustic frequency is specified by 

    ½ /  s sm a L ,  (1) 
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where sa  refers to the stagnation speed of sound, and m  is the oscillation mode number. 

In order to simplify the analysis to the point where an analytical solution can be attempted, several restrictions 

must be observed.  First, the mean flow is assumed to be laminar.  The mechanisms of mixing, swirling, or 

turbulence are also discounted.  The fluid is restricted to Newtonian behavior, and the oscillatory pressure amplitude 

is taken to be small in comparison with the stagnation pressure. 

B. Governing Equations 

Employing asterisks to represent dimensional variables, density, pressure, time, velocity, and shear stress can be 

defined as  
, 

p , t , 
u , and    respectively.  Continuity and conservation of momentum are then presented in 

their general forms 

     0
t





  




  


u  (2) 

   
 

   p
t


 

 

       




      



u
u u . (3) 

By using continuity to simplify the left-hand side of the equation of motion and by evaluating the viscous transfer 

term, Eq. (3) can be transformed into 

        
4

3
p

t
 


            



   
                 

u
u u u u , (4) 

where 
 is the dynamic viscosity. 

In order to generalize the analysis, dimensionless parameters are introduced.  Spatial coordinates are normalized 

by a , the total instantaneous velocity by sa , and time by the system’s oscillation frequency s .  The normalized 

parameters are then defined as 

   */x x a , */r r a , * st t , */ sau u , */ sp p p  and */   s , (5) 

where s  is the stagnation density, sp  is the stagnation pressure, and   is the ratio of specific heats.  Following 

this choice, Eqs. (2) and (4) become 

     0
t


 


 


u , (6) 

   ( )
t

 
 

   

u
u u    4 / 3        p M u u . (7) 

The resulting set displays the non-dimensional frequency /  s sa a , the suction Mach number /w sM U a , and 

the small parameter 1/  R . 

 

 
 

Figure 1.  System geometry showing mean flow streamlines. 
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1. Perturbed Variables 

With the introduction of small amplitude oscillations at a frequency s , the instantaneous pressure can be 

expressed as the linear sum of the time-dependent and steady components: 

   0 1 exp( )  p p p it , (8) 

where 1 i , / ( )  sA p  is the pressure wave amplitude, and    and 1p  are only functions of space.  

Noting that the mean flow solutions have been developed for incompressible flow, the density can be expanded in a 

similar fashion by putting 

   11 exp( )   it . (9) 

Finally, the total velocity may be expressed as 

   0 1 exp( )  M itu u u . (10) 

Note that the Mach number appears in the definition of the mean flow velocity because 0u  represents the (1)

steady velocity normalized by wU . 

 

2. Leading-order Decomposition 

Equations (8)–(10) must be inserted back into Eqs. (6)–(7).  The zero-order terms yield the mean flow equations 

   0 0 u  (11) 

        2 2 4
0 0 0 0 03

M p M          u u u u . (12) 

A steady stream function that observes Berman’s similarity form1 may be written in terms of a characteristic mean 

flow function F  where 

   ( )xF r   . (13) 

The velocity components can then be expressed as      0 0, / , /   u v xF r r F r r .  Applying these definitions to 

Eq. (12), it may be shown that F  must satisfy Yuan and Finkelstein’s mean flow equation33 

      3 2 2 22 3 3 3 3 0r F r F rF F R r F F FF r FF F FF                  
 

 (14) 

with        
0

1 0 lim / / 0


      
r

F F F F r r ,  1 1F . (15) 

The mean pressure associated with F  may be extracted through straightforward integration of Eq. (12); one gets 

      2 2 2 2 21
0 2

, 1/ /         
 

p x r M r F x F FF FF r . (16) 

 

3. Time Dependent Equations 

Collecting terms of    from Eqs. (6)-(7) leads to 

    1 1 1 0     i Mu u , (17) 

 1i u      0 1 1 0 0 1           M u u u u u u    1 1 14 / 3       p M u u . (18) 

Equations (17) and (18) clearly suggest that the steady-state velocity 0u  has a substantial bearing on the oscillatory 

flow component.  This also emphasizes the role that Berman’s class of mean flow solutions plays in modeling the 

oscillatory motion in porous channels and tubes. 

C. Temporal Field Decomposition 

In order to proceed, the temporal disturbances are now split into solenoidal and irrotational components.  Using a 

circumflex to denote the curl-free pressure-driven part, and a tilde for the divergence-free boundary-driven part, the 

time-dependent velocity component may be expressed as 

   1
ˆ u u u  (19) 

with 

   1 u u , 1
ˆp p , 1

ˆ  . (20) 

This so-called Helmholtz decomposition charges all vortices to the solenoidal field and compressibility sources and 

sinks to the irrotational field. 

Insertion of Eqs. (19)-(20) into Eqs. (17)-(18) leads to two independent sets that are coupled only through 

existing boundary conditions.  The acoustic set remains compressible and irrotational while the vortical set 

combines both incompressible and rotational characteristics. 
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The Acoustic Set: 

    0
ˆ ˆ ˆ     i Mu u , (21) 

    ˆ ˆˆ 4 / 3      i p Mu u    0 0
ˆ ˆ       M u u u u . (22) 

The Vortical Set: 

   0 u , (23) 

         i Mu u      0 0 0          M u u u u u u . (24) 

Physically, two boundary conditions must be secured by the unsteady velocity component 1u .  These are the no-slip 

condition at the wall 1( ,1) 0u x , and symmetry about the midsection plane, 1( , 0) / 0  u x r . 

 

1. Acoustic Solution 

Equation (21) can be multiplied by i  and added to the divergence of Eq. (22).  After assuming that the 

system is isentropic to first order in the pressure wave amplitude, a wave equation is produced, namely, 

           2 2 2 2

0 0 0
ˆ ˆ ˆˆ ˆ ˆ4 / 3               p p M M i pu u u u u u . (25) 

A solution, at ( )M , can be achieved through the use of separation of variables.  Its construction assumes 

longitudinal oscillations and proceeds from the rigid wall boundary conditions.  After some algebra, the acoustic 

pressure and velocity are found to be 

    ˆ cos ( ) p x M ,   ˆ ˆsin ( ) xi x e Mu . (26) 

 

2. Vortical Equations 

Given that the ratio of the normal to axial velocity is of the same order as the Mach number (i.e. / ( )v u M ), 

v  can be neglected at the first perturbation order.  This assumption can be justified in view of the arguments 

presented by Majdalani and Van Moorhem.45  Applying this condition, along with the definition of the mean flow 

velocity, the axial momentum equation reduces to 

    0 0 ( )
    

    
    

u u
iSu uu v r M

x r r r r
, (27) 

where /S M  is the Strouhal number.  Having defined the mean flow stream function, Eq. (27) becomes 

   ( )
       

       
      

F F u xF u u
iS u r M

r r r r x r r r
. (28) 

The next section presents further simplifications of Eq. (28). 

 

3. The Separable Boundary-Layer Equation 

A solution to Eq. (28) can be achieved through the use of separation of variables.  Assuming the product 

    , ( ) ( )u x r X x Y r , (29) 

substitution into Eq. (28) leads to 

   
2

2

d d d d
1

d d dd

 
     

   
n

x X F Y r Y Y iSr

X x F Y r F Y F Y r Fr
, (30) 

where 0 n  is the separation eigenvalue.  The x -integral can be performed easily and then inserted into Eq. (29).  

The solution becomes 

   ( , ) ( )


 n

n n

n

u x r c x Y r , (31) 

where nc  is a constant associated with n .  Satisfaction of the no-slip boundary condition at the wall requires 

setting the acoustic and vortical velocity components equal and opposite at 1r .  One finds 

   ( ,1) sin( ) u x i x . (32) 

At this point, one may use a series expansion of the sine function and set the result equal to Eq. (31); one obtains 

   
2 1

0

( 1) ( )
(1)

(2 1)!

  




 


 n

n n

n n

n n

x
c x Y i

n
. (33) 

Equating like-terms yields 
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2 1( 1)

2 1, , (1) 1
(2 1)!





    



n n

n n nn c i Y
n

, (34) 

where 0,1,2,..., n .  The expression for the rotational component emerges, namely, 

    
2 1

0

( 1) ( )
( , )

(2 1)!

 




 




n n

n

n

x
u x r i Y r

n
. (35) 

In order to complete Eq. (35), nY  needs to be determined from Eq. (30).  The search for nY  leads to a boundary-

value problem of the form 

    
2

2

d d
+ 2 2 0

dd




   
        
   

n n
n

Y YF F
iS n Y

r r r rr
, (36) 

that is subject to  

   (1) 1nY ,  (0) 0 nY . (37) 

The two boundary conditions stem from the no slip and core symmetry requirements. 

D. Boundary Layer Analysis 

Equation (36), referred to as the separated momentum equation, is a linear ODE that can be represented by the 

general second order form 

        
2

2

d d
0

dd
   


     

G G
a b iSc G  (38) 

with    1 1G  and  0 0 G , (39) 

and where      0 1    a a a  and      0 1    b b b .  For the suction case,   0 a , whereas  b  and 

 c  will be positive throughout the solution domain. 

The mathematical treatment of Eq. (38) may be achieved through the use of classic perturbation techniques.  For 

this purpose, a small perturbation parameter must first be defined.  From a physical standpoint, we must insist that 

fluid withdrawal at the surface can play an appreciable role in altering the flowfield associated with non-porous 

channels and tubes.  We thus conclude that the crossflow Reynolds number must be finite and that 1  .  

Additionally, in order to develop an oscillatory flow that is markedly different from the mean flow, the Strouhal 

number must be sufficiently large or 1S  . 

Asymptotic approximations to the solution of Eq. (38) will subsequently depend on the development of a relation 

between the two possible perturbation parameters that characterize this problem.  By inspection of the exact 

solutions developed for the infinite suction case, and by scrutinizing numerical solutions developed for small 

suction, we realize that the problem exhibits a typical second-order wave type response that tends to be slightly 

under-damped (i.e., with minimal overshoot) over all ranges of   and S .  Consequently, the assumption that Eq. 

(38) leads to a critically damped response will be adopted in relating the small perturbation parameter (  ) to the 

large perturbation parameter ( S ). 

To begin, a generic relation between the flow parameters is assumed: 

    S . (40) 

Then to ensure that the derivatives are of (1) , the independent coordinate can be stretched by means of 

      k
. (41) 

At this stage, the substitution of Eqs. (40)-(41) into Eq. (38) give rise to  

        
2

2

2

d d
0

dd

     


       
k kG G

a b i c G . (42) 

The resulting expression clearly displays the orders of magnitude of each of its members. For a critically damped 

response to occur, a balance between all three terms in Eq. (42) must be established.  Such a paradigm will require 

that   k  and so 

        
2

1 2

2

d d
0

dd

       


       
G G

a b i c G . (43) 
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Balancing terms in Eq. (43) yields 1   for the suction case.  Its unique distinguished limit is therefore identified as 
1 S .  While other distinguished limits of the type 1/2 S , 1/3 S , etc., may be used with limitations in the 

injection-driven flow analogue, they lead to unphysical solutions for the case at hand. 

III. Generalized Asymptotic Solutions 

Attempts are made here to apply classic perturbation techniques to solve Eq. (38) in its general representation.  

To do so, a two-variable multiple-scales solution to the problem is presented after extrapolating the relevant inner 

variable from a formal scaling analysis.  This is followed by a WKB expansion in which the solution is assumed to 

possess, as it should, an exponential damping character.  At the heart of each solution will be the reduction of the 

attendant doubly-perturbed equation of motion into a singly-perturbed relation. This, in turn, will be accomplished 

through the judicious choice of an asymptotic relation linking the two existing group parameters. 

A. Generalized Multiple-Scales Solution 

It is known that the validity of multiple-scales analysis is closely tied to the choice of inner scales.  Herein, the 

inner coordinate transformation may rest on stretching the independent variable by  .  With the boundary layer 

developing near the wall ( 1  ), we introduce two scales of the form 

        and   
1 





 . (44) 

In the above,   denotes the outer scale while   designates the stretched coordinate inside the boundary layer. 

 

1. Leading-Order Multiple-Scales Expansion 

Application of the inner variable transformation to Eq. (38) leads to 

            
2

0 1 0 12

d d
0

dd
       


           

G G
a a b b iSc G . (45) 

Recalling that G  depends on both scales, derivatives are converted into 

   
d

d


  

 
 
 

G G G
 and 

2 2 2
2

2 2

d
2 ( )

d

G G G
 

  

 
  

 
. (46) 

Now letting 
2

0 1 ( )   G G G , Eq. (45) becomes 

     
2 22

0 0 01 1
0 1 0 12 2

2    
    

   
     

    

G G GG G
a a a a  

       0

0 1 0 1 0 1 0
G

a a b b iSc G G    



      


. (47) 

 At this stage, two equations may be segregated for 0G  and 1G .  With the assumption that 1 S , the (1)  

expression returns 

   
2

0 0
0 02

0


 
  



G G
a iSc G , (48) 

and at ( ) , 

   
22

0 0 01 1
0 1 1 0 0 02

2
    

   
     

    

G G GG G
a iSc G a a b G . (49) 

Solving Eq. (48) yields 

          2 2

0 1 0 0 2 0 0exp 4 exp 4
2 2

 
   

   
        

   
G A a a iSc A a a iSc . (50) 

Forthwith, Eq. (50) may be differentiated and inserted into the right-hand-side of Eq. (49).  Then the principle of 

least singular behavior may be called upon to prevent the emergence of secular terms at   .  The desired 

condition can be achieved by putting 

   
   

 

2 2

0 0 0 1 0 0 0 1 01
12

0

2 2 4 2 4 4d

d 2 4

  

 

         
 
 
 

b a a a a iSc a a iSc a a iScA
A

a iSc
, (51) 

and  
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   

 

2 2

0 0 0 1 0 0 0 1 02
22

0

2 2 4 2 4 4d

d 2 4

  

 

         
 
 
 

a b a a a iSc a a iSc a a iScA
A

a iSc
, (52) 

where primes denote differentiation with respect to  .  The solutions to Eqs. (51)-(52) may then be substituted into 

Eq. (50) to give 

          2 2

0 1 1 0 0 2 2 0 0

1 1
exp 4 exp 4

2 2

 
 

 

    
          

   
G c I a a iSc c I a a iSc  (53) 

with 

   
   

 

2 2

0 0 0 1 0 0 0 1 0

1 21
0

2 2 4 2 4 4
d

2 4

   



         
 
 
 


b a a a a iSc a a iSc a a iSc

I z
a iSc

, (54) 

   
   

 

2 2

0 0 0 1 0 0 0 1 0

2 21
0

2 2 4 2 4 4
d

2 4

   



         
 
 
 


a b a a a iSc a a iSc a a iSc

I z
a iSc

. (55) 

Note that 1c  and 2c  are pure constants connected with the boundary conditions.  In fact, the constraints  0 1 1G  

and  0 0 0 G  may be applied along with the assumption that (0) 0c   to produce  

   1 0c    and   2 1c . (56) 

Finally, the generalized multiple-scales solution that we arrive at can be expressed as 

      2

2 0 0

1
exp 4

2






 
    

 
G I a a iSc . (57) 

 

2. Leading-Order Eigensolution 

For arbitrary suction profiles at the wall, the generic parameters in Eq. (38) become 

    nG Y ,   r , 0 / a F r , 1 1/a r ,  0 2 2 / b n F r , 1 0b , and 1c  (58) 

Using these definitions along with Eqs. (57) and (55), the leading-order expression for nY  may be written as 

      1 2 2

2

1
exp 4

2




   
    

 
n

r
Y I Fr F r iS  (59) 

where 

 
 

 
1 2 1 2 1

2 2 21 1 1 2 2

1 d
d 2 3 d

24 4 

    

 

 
   

 
  

r r rFz Fz F z z Fz F z
I z n z

zF z iS F z iS
 

2

5
2 1 2 2

2 d
4 




 




r Fz
n z

F z iS
 (60) 

and  0 1F F .  It may be worthwhile to remark that 2I  consists of a higher-order correction in Eq. (59).  

Furthermore, the first three members of Eq. (60) may be integrated in terms of the general mean flow function F .  

Although the fourth term cannot be explicitly integrated, it represents a secondary contribution that does not affect 

the solution at ( ) .  For this reason, only the leading eigenvalue ( 0)n  will be essential.  Integrating and 

applying the definite bounds renders a nearly closed-form approximation for nY , namely, 

   
   

2 3 1
2 2 2

0 0 0 1 2 2

2 22 2

4 4 1
exp 4

244

 






 

                  

n

n

r F F iS r F iS r
Y Fr F r iS

F iS rF F iS r

2

1 2 2

5
d

2 4 






 

 


r Fz
z

F z iS
. (61) 

It may be easily verified that the resulting formulation stands in excellent agreement with the numerical solution of 

Eq. (36).  In practice, when compared over the parametric range associated with plausible physical settings, 

numerics and asymptotics become indiscernible. 

 

3. Axial Velocity in Multiple Scales 

Pursuant to the flowfield decomposition presented earlier, the unsteady axial wave velocity may be synthesized 

from 1
ˆ u u u  with  ˆ sin u i x  standing for the acoustic wave.  The vortical wave that suitably cancels with û  

at the wall may be cast into 
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    
2 1

0

( 1) ( )
( , )

(2 1)!

 




 




n n

n

n

x
u x r i Y r

n
 (62) 

Given the availability of an explicit nY , the axially traveling wave velocity can be assembled into 

          2
1 2 2

1
1 2 2

1 5
, sin exp 4 d

2 2 4
 

 


 



  
      

  


rr Fz
u x r i x Fr F r iS z

F z iS
 

   
     

2 1
2 22 2

0 0 0 00

2 22 2 2 2

4 44
sin

44 4

  

 

                            

r F F iS xr F F iSr F iS

F iS rF F iS r F F iS r
 (63) 

Driven by the accuracy associated with nY ,  1 ,u x r  may be tested and shown to provide an excellent 

approximation vis-à-vis numerical simulations of this problem. 

B. Generalized WKB Solution 

 For an nth order linear ODE that exhibits an oscillatory behavior, a traditional WKB expansion assumes that G  

possesses n linearly-independent solutions of the form 

   
0

1
exp 







 
 
 
 j

j

j

G Q , (64) 

where 

  
0 0

1 1
exp 

 

 

 

   
    

   
 j j

j j

j j

G Q Q  and 

2

2
0 0 0

1 1 1
exp  

 

  

  

    
            

  j j j

j j j

j j j

G Q Q Q . (65) 

 

1. Leading-Order WKB Expansion 

Substituting Eqs. (64)-(65) into Eq. (38) and rearranging, one gets, 

   

2

0 1
0 12

0 0 0 0

0
  

    
  

   

   

 
           

 
   j j j j

j j j j

j j j j

a a
Q Q Q Q b b iSc . (66) 

Subsequent expansion to the order of 1Q  gives 

   2 2 0 1
0 0 1 1 0 1 0 0 1 0 1 1 0 12

2
0

   
   

   
                    

a a
Q Q Q Q Q Q Q a Q Q a Q b b iSc . (67) 

Using the assumptions of a critically damped response and 1 S ,   may be determined such that dominant terms 

acquire equal weights.  Balancing the leading-order terms in Eq. (38) swiftly yields   .  This enables us to 

change Eq. (67) into 

    2 0
0 0 1 0 0 0 1 1 0 0

1
2 0

 
              

a
Q Q Q Q Q a Q a Q b iSc . (68) 

From Eq. (68), two equations can be retrieved for 0Q  and 1Q .  At (1/ ) , one finds the so-called Eikonal 

equation, 

   
2

0 0 0 0   Q a Q iSc , (69) 

and at  1 , one extracts the transport equation, 

   
 

 
0 0 1 0

1

0 02

   
 

 

Q b a Q
Q

Q a
. (70) 

The solution of Eq. (69) engenders dual solutions, specifically 

    0

2

0 0
1

1
4 d

2



   Q a iSc a z . (71) 

A leading-order WKB approximation can be constructed now from the linear combination of the two explicit roots 

of Eq. (71).  One obtains 

      2 2

1 0 0 2 0 0
1 1

1 1
exp 4 d exp 4 d

2 2

 

 
 

   
        

   
 G c a iSc a z c a iSc a z

. (72) 
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Equation (72) can be paired with (1) 1G   and (0) 0 G  to secure 

   
 

   

0
2

0 0
1

1
0 0

2 2

0 0 0 0
1 1

1
exp 4 d

2

1 1
exp 4 d exp 4 d

2 2




 
 

 
   

   
          



 

a iSc a z

c

a iSc a z a iSc a z

, (73) 

and 

    
 

   

0
2

0 0
1

2
0 0

2 2

0 0 0 0
1 1

1
exp 4 d

2

1 1
exp 4 d exp 4 d

2 2




 
 

 
   

   
          



 

a iSc a z

c

a iSc a z a iSc a z

. (74) 

For the wall suction case, recalling that   0 c  throughout the fluid domain, Eqs. (73) and (74) may be shown to 

reproduce 1 1c  and 2 0c  as 0  . 

 

2. Two-Term WKB Approximation 

Solving to    can be achieved through the direct integration of Eq. (70) viz. 

   
 

 
0 0 1 0

1
1

0 0

 d
2

   
 

 
Q b a Q

Q z
Q a

. (75) 

The integrand contains 0Q  and so we choose the right-traveling wave solution presented in Eq. (71).  By selecting 

    0

2

0 0
1

1
4 d

2



  Q a iSc a z , (76) 

Eq. (75) reduces to 

   0 0 1 0 0 0
1 121 2 1 1

00

21
d d d

2 44

  



   
   
  
  

a a a b a a
Q z z a z

a iSca iSc
. (77) 

Both 0Q  and 1Q  may be consolidated into 

   0

2

0
1

1
exp 4 d

2







  


G a iSc a z 0 0 1 0 0 0

121 2 1 1
00

21
d d d

2 44

  



   
   

   
  

a a a b a a
z z a z

a iSca iSc
. (78) 

 

3. WKB Eigensolution 

Substituting the place-holding coefficients from Eq. (58) into Eq. (78), a leading-order WKB solution for 

arbitrary F  may be constructed.  We get 

  
 1 1 2

2 2 1

2 21 1 1

1 1 1 d
exp 4 d d

2 2 24


 

  

 



  
    


  

r r r

n

Fz F z Fz z
Y F z iS Fz z z

zF z iS
  

      
1 2 2

5 5
2 22 2 2 21 1

2 d 2 d
4 4 

  

 

 
    

  
 

r rF z Fz Fz
n z n z

F z iS F z iS
. (79) 

In Eq. (79) only the first and last members in the exponential cannot be tacitly integrated and hence expressed 

directly in terms of F .  While the first term must be retained, the last can be approximated at ( ) .  This is 

accomplished by keeping the first eigenvalue associated with 0n   in that term only.   We hence arrive at 

 
 

5
2

2
12

2 40 0
2 2 10

2 22 2 1

4 4 1
exp 4 d

244

 






 

      
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5
d

2 4 






 

 


r Fz
z

F z iS
. (80) 

 

4. Axial Velocity in WKB 

Equation (80) may be inserted into the axial traveling wave expression to produce 

       
2

2 2 1

1 2 21 1

1 5
, sin exp 4 d d

2 2 4
 

 


 



  
      

  
 

r r Fz
u x r i x F z iS Fz z z

F z iS
 



 

American Institute of Aeronautics and Astronautics 

 

12 

   
   

3

122 2
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0
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4 44
sin

44 4

  

 

           
                

r F F iS xr F F iSF iS

F iS rF F iS r F F iS r
 (81) 

The resulting formulation is comparable in accuracy to Eq. (63).  However, unlike the multiple-scales approximation 

in which the first exponential argument may be obtained in closed form, the WKB equivalent requires the evaluation 

of the corresponding integral, 2 2 1/2 1[( 4 ) ]dF z iS Fz z   .  

IV. Results 

To demonstrate the accuracy of the expressions that may be recovered from the generalized multiple-scales and 

WKB analyses, our approximations are compared to an exact solution developed for 20R .37  For flow in a porous 

tube with large wall suction, the steady-state profile derived by Terrill and Thomas may be used, namely,35 

     2F r r . (82) 

Inserting this characteristic function into Eqs. (61) and (63), expressions for nY  and 1u  from the multiple-scales 

analysis read 

 
 

 
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   
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iS

n

n

iSr r iS iS riS
Y r r iS

r iS rr r iS iS r r iS
 (83) 

and 
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           

iS x iSiS

r iS rr r iS r r iS
. (84) 

 Along similar lines, the WKB solution for large suction may be deduced by placing Eq. (82) in Eqs. (80) and 

(81).  These substitutions yield 
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4
 



 
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 
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and 
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iS

iS x iSiS

r iS rr r iS r r iS
. (86) 

 Finally, we can refer to Jankowski and Majdalani37 who developed an exact solution for large suction in a tube.  

In the interest of clarity, their result may be expressed as  

    
 
 

21 1
2 2

1 1
2 2

2 2 ,1;

2 2 ,1;
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n

n S Rr
Y r

n S R
, (87) 

and 
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, sin

(2 1)! 2 2 ,1;








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  

      


n n

n

x n iS Rr
u x r i x

n n iS R
, (88) 

where  , ; a b z  denotes the confluent hypergeometric function. 

Figure 2 presents a graphical evaluation of the exact and asymptotic solutions for 0Y .  Over typical ranges of 

operating parameters, the graphical comparison shows that both the WKB and multiple-scales approximations stand 

in close agreement with the exact solution.  One may also infer by inspection of part b that the accuracy of the 

asymptotic methods improves at higher Reynolds or Strouhal numbers.  Furthermore, the slightly under-damped 

wave type response can be observed.  This behavior is consistent with the original assumption that we made of a 

weakly under-damped response.  The underlying conjecture played an important factor in generating an asymptotic 

relation between R  and S  that was essential for the development of both the multiple-scales and WKB 

approximations. 

To more thoroughly quantify the accuracy of the attendant formulations, their error curves are displayed in Figs. 

3a and 3b for the multiple-scales and WKB expansions, respectively.  Therein, the maximum absolute error 

throughout the solution domain is plotted versus   for the first three eigenmodes, 0,1n   and 2 .  In both parts of 

the graph, the error is seen to diminish in absolute value with successive increases in S  and R .  Such behavior may 

 
Figure 2.  Graphical comparison of Y0 for a) R=20 and b) R=50 over a range of S.  The exact solution (solid 

line), multiple-scales (long dash), and WKB (short dash) are compared. 
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Figure 3.  Maximum absolute error vs.   for a) multiple-scales and b) WKB solutions using n=0 (solid), n=1  

(dash), and n=2 (dot-dash). 
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be expected if one can recall that the analysis starts by perturbing the solution in the inverse of the Reynolds number 

and that an asymptotic relation linking S  and R  is assumed at the onset.  Furthermore, one observes that the slopes 

of the curves for all three eigenvalues approach unity as 0  , at high Reynolds number.  The consistent 

convergence of the error curves into linear behavior provides a numerical confirmation of the reported asymptotic 

order associated with the derivation of nY  at ( ) .  One exception occurs in the multiple-scales approximation 

which, as shown in Fig. 3a (solid lines), exhibits a doubling in the error convergence rate for the 0n   oscillation 

eigenmode. 

 In Fig. 4, the total unsteady longitudinal velocity is plotted at four separate times for the fundamental axial 

oscillation mode, 1m  .  In this effort, the magnitude of the axially traveling wave is calculated at the chamber 

midpoint, 1
2

/x l  , using exact (solid line), multiple-scales (long dash) and WKB solutions (short dash).  Only the 

real part of  1 exp u it  is shown in view of the un-physicality of the imaginary part.  The ensuing graphical 

representations illustrate the striking resemblance established between the approximate models and the exact 

solutions that they represent over wide ranges of Reynolds and Strouhal numbers. 

 The oscillatory wave profiles in Fig. 4 depict a thin rotational layer near the wall and an irrotational region in the 

core.  Furthermore, a velocity overshoot may be observed in the rotational layer near the wall.  This near-wall 

overshoot, referred to as Richardson’s annular effect, has been observed and extensively characterized for 

oscillatory flows in channels and tubes with impermeable walls.40-42  In fact, the effect of doubling the oscillation 

 
 

Figure 4.  The axially traveling wave velocity, u1 exp(–it), plotted at four different times.  The oscillation 

frequency is doubled when going from a) to b), while the wall suction velocity is doubled when going from c) 

to d).  The exact (solid line), multiple-scales (long dash), and WKB (short dash) solutions are plotted for m=1 

and x/l=½. 
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frequency on the wave character is illustrated in Figs. 4a at 50S   and 4b at 100S   for a fixed suction velocity 

corresponding to 20R  .  These figures show that increasing the oscillation frequency drives the location of the 

maximum unsteady velocity closer to the wall while simultaneously increasing the magnitude of the velocity 

overshoot.  Both of these observations are in accord with the theory of time-dependent laminar flows.46,47  They are 

also concurrent with the effect of increasing the Strouhal number on the injection-driven traveling wave analogue in 

porous tubes.43,44  As for the impact of suction itself, Figs. 4c and 4d are used to showcase the effect of doubling the 

wall velocity.  This is accomplished by increasing the Reynolds number from 20 to 40 while simultaneously 

reducing the Strouhal number from 20 to 10, because wU  appears in both.  The corresponding figures show that 

increasing the suction velocity reduces both the depth of the rotational layer and the magnitude of the velocity 

overshoot.  Their behavior may be viewed as consistent with the results associated with an injection-driven 

oscillatory wave where the rotational layer thickens and its overshoot diminishes at higher injection velocities.43,44  

Increasing injection is clearly tantamount to decreasing wall suction.    

V. Conclusions and Future Work 

In this article, approximate solutions are obtained for the equations of motion describing the axisymmetric, 

viscous, laminar flow of a gas oscillating inside a porous tube with arbitrary levels of wall suction.  In the process, 

the viscous Navier-Stokes equations are first linearized by separating the flow into a steady part and an oscillatory 

wave that is comparatively small. The unsteady flowfield is further partitioned based on the Helmholtz 

decomposition of the velocity vector.  This decomposition leads to two sets of equations: the first describing a 

compressible, irrotational part, and the second alluding to an incompressible, rotational part.  The compressible set is 

found to be equivalent to the organ pipe wave equation that is already known for the problem at hand.  The solution 

of the rotational set then takes central stage in the remainder of this effort.   

To proceed, the rotational momentum equation is split using separation of variables.  This results in a second 

order ODE, referred to as the separated momentum equation, which must be solved to achieve closure.  The 

separated momentum equation is found to be a doubly-perturbed problem whose solution requires the establishment 

of an asymptotic relation between the two large parameters in the problem, R  and S .  This asymptotic relation sets 

the trajectory of the asymptotic treatment of the separated momentum equation which is then pursued using both 

multiple-scales and WKB techniques. 

Our findings indicate that the time-dependent flowfield remains intimately coupled to the mean flow and the 

latter can be represented by Berman’s characteristic function ( )F r .  The ensuing wave approximations, which are 

developed though the application of multiple-scales and WKB techniques, are formulated in terms of an arbitrary 

mean flow function ( )F r .  Given the variety of mean flow solutions available in the literature, we find that a 

suitable profile for a particular motion is generally connected to the level of wall suction that it bears.  The 

asymptotic solutions that we obtain can be applied to oscillatory flows with arbitrary levels of suction by simply 

inserting into our expressions the appropriate mean flow function.  To illustrate the solution behavior, both multiple-

scales and WKB approximations are compared to an exact solution that arises in the case of infinitely large suction.  

Based on this test case, we are able to ascertain that both of the perturbation solutions closely approximate the exact 

solution over a wide range of oscillation frequencies and wall suction velocities. The resulting approximations aid in 

understanding the multiple-scale structure of suction-driven oscillatory motions and increase our repertoire of 

engineering approximations for periodic flows. 

Finally, in closing we note that both the multiple-scales and WKB solutions presented here become suddenly 

unbounded as 0r  .  In situations where highly accurate solutions are required in the core, the singularity at the 

core can be removed by adding endpoint correction terms to the solutions.  The core singularity was also identified 

and corrected for in solutions of the injection driven planar flow in porous by Majdalani.44  In future work, we plan 

to use a procedure similar to Majdalani’s to determine the endpoint corrections to the solutions presented here, thus 

leading to the removal of the core singularity and the derivation of uniformly valid solutions.   
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