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Pressure Variations in Rocket Nozzles.  Part 1:       

Direct Asymptotic Predictions 

Brian A. Maicke* and Joseph Majdalani† 

University of Tennessee Space Institute, Tullahoma, TN 37388  

We consider the one-dimensional flow equations that relate the expansion area ratio to 

the unique back pressures that define the operating modes of a nozzle.  To eliminate 

guesswork and numerical root solving in deducing these unique threshold values, we apply 

asymptotic tools to invert their corresponding thermodynamic relations analytically. Our 

perturbation approach is based on the square of the reciprocal of the nozzle area expansion 

ratio, which does not exceed 0.3 in most applications.  By extending our series approximation 

to higher orders, we develop a recursive expression that permits the efficient calculation of 

the pressure ratios to arbitrary levels of precision.  In most cases, a three-term 

approximation entails an error of less than 1% for a nozzle expansion ratio up to 0.56.  

Furthermore, the error in these approximations slightly decreases as   is decreased.  All 

solutions are numerically verified and compared to tabulated values. 

Nomenclature 

A  = local cross sectional area 

tA  = nozzle throat area 

, ,a b m  = coefficients given by Eq. (16) 
p  = normalized pressure, c/p p  

bp  = normalized back pressure, b c/p p  

optp  = normalized exit pressure at optimal expansion, opt c/p p  

subp  = normalized exit pressure at initial choking, sub c/p p  

supp  = normalized exit pressure with shock in the exit plane, sup c/p p  

 
  = first constant in Eq. (6), 2 /   
  = second constant in Eq. (6), ( 1) /     
  = perturbation parameter, 2

t e( / )A A  

  = ratio of specific heats 

  = exponent given by Eq. (15), ( 1) / ( 1)    

  = constant related to   via Eq. (4), 

2

11
2

[ ( 1)]     
 

Subscripts and Symbols 
0 ,1  = leading and first order 
c  = condition in the chamber 

e  = condition in the exit plane 

n  = asymptotic level 
t  = condition at the nozzle throat 
  = condition before a normal shock (minus) 
  = condition after a normal shock (plus) 

 = overbars denote dimensional quantities 
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I. Introduction 

HE analysis of converging-diverging nozzle flows has long been of interest to both applied and 

theoretical researchers.  After observing that a converging nozzle had limitations on the pressure 

ratios that it could achieve, Carl de Laval added a diverging section that greatly increased the efficiency 

and operating speed of the classical steam turbine.
1
  Albeit a victory for turbine design, the earliest uses of 

the Laval nozzle did not have a firm theoretical basis.  For example, choked flow was not considered and 

it was uncertain if the nozzle could promote supersonic flow conditions.  These questions were later 

resolved in Stodola’s landmark study in which he characterized the behavior of the flow through the 

nozzle, observing isentropic expansion and the existence of “compression shocks” in over-expanded 

nozzles.2  Nozzle flow also intrigued Prandtl who augmented existing theory with his coverage of oblique 

shock and expansion fan phenomena, thus forming the bedrock of compressible flow theory.  

 While these classic studies provide a satisfying beginning, significant research on nozzles is currently 

underway. Modern applications abound especially in the areas of refrigeration,3 mixing and entrainment,4 

flow metering,5 cold powder spraying,6,7 and propulsion.8  To study the effects of nozzle cavitation, 

models for two phase flow analysis are implemented9,10 while numerical simulations are used to quantify 

the effects of flow separation that can occur in rocket nozzles.11  Of particular interest to turbomachinery 

applications are the effects of unsteady pressure fluctuations on shock formation.12
  

 The practical applications of the Laval nozzle give rise to a set of fundamental challenges to the 

theoretical analyst.  On the one hand, the flowfield is simple enough that it is often cast as a one-

dimensional model.  On the other hand, even with such an ambitious simplification, the resulting 

equations are often transcendental to the extent of disallowing direct analytical solutions.  Indeed, modern 

textbooks still include compressible flow tables for handling one-dimensional nozzle expansions.  Even 

the calculations for vital quantities, such as the nozzle back pressure, are carried out in multiple steps that 

require either interpolation of tabular data or iteration of numerical roots.   

 In fact, one-dimensional, isentropic flow theory offers two roots for the pressure ratio across a Laval 

nozzle. The subsonic root denotes the pressure ratio at which the throat first chokes, while the supersonic 

root corresponds to a fully flowing, supersonic nozzle with shock-free conditions.  Between these two 

pressure ratios, isentropic solutions cannot exist and a non-isentropic process must be introduced.  

Evidently, a variety of agents can give rise to entropy increases.  For example, both numerical simulations 

and experiments have shown that viscous effects can initiate oblique shocks, flow separation, 

recirculation, and expansion waves.11  Because these effects require a departure from one-dimensional 

theory, an approximation can be made via a single normal shock introduced at some location in the 

nozzle.  

 Understanding these critical values is vital in understanding the effects of transients on nozzle 

performance.  During start-up and shut down, the pressure in the chamber varies abruptly as the motor 

cycles up or blows down.  The transient timescales are short, but significant sideloads can be incurred 

during transition through the over-expanded regime.  Though asymmetries in the flow generally drive 

these sideloads, one-dimensional theory can provide the boundaries that separate the internal and external 

shock regions.  

 The aim of this study is to present closed form expressions for the critical back pressure ratios that 

separate the different regimes/modes of nozzle operation.  Specifically, these regimes include subsonic, 

supersonic with internal shocks, supersonic with external shocks, and under-expanded supersonic flow.  

We exploit three basic relationships of one-dimensional compressible flow (i.e., Stodola’s area ratio 

equation, the isentropic pressure equation, and the pressure ratio across a normal shock) to determine 

closed-form analytical expressions for three critical back pressures that delineate these regimes.  

T 
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II. Mathematical Model 

 For our study we consider a nozzle, as shown in Fig. 1, with throat area tA , exit area eA  and chamber 

pressure c .p  The latter may be approximated with stagnation conditions owing to low velocities in the 

combustion chamber.  We consider both a shock-free, isentropic nozzle and a nozzle containing a 

standing shock in the exit plane.  For the standing shock case, we employ p  and p  to indicate the 

pressure before and after the shock, respectively.  

 To begin the exploration of the flow regimes in a Laval nozzle, we take a back pressure ratio larger 

than the subsonic root.  In this 

case, the flow through the nozzle 

is entirely subsonic (see Fig 2a).  

For most applications, this 

situation is undesirable as it leads 

to the onset of a variable mass 

flow rate and a relatively modest 

flow energy.  When the back 

pressure ratio is reduced to the 

first critical value, sub sub c/p p p , 

the flow at the throat becomes 

choked.  Further reductions in the 

back pressure do not affect the 

flow upstream of the throat, and 

the mass flow rate through the 

nozzle remains constant.  As the 

back pressure is further decreased, 

the flow behaves as in Fig 2b, 

accelerating after the throat until it 

reaches a standing normal shock 

inside the nozzle.  This is a 

potentially hazardous area for 

propulsive applications as the flow 

in this range may lead to 

asymmetric separation which, in 

turn, can produce damaging 

sideloads inside the nozzle.  

Further reductions in the back 

pressure drive the standing shock 

wave toward the exit plane until 

the second critical value, 

sup sup c/p p p , is reached (see 

Fig. 2c) where the shock occurs in 

the nozzle exit plane.  At this 

point, the flow within the nozzle is 

still entirely supersonic.  With 

subsequent bp  reductions, the 

pressure in the exit plane drops 

below the actual back pressure.  

 
 

Figure 1.  Schematic diagram of a nozzle hosting a normal shock. 

 

 
 

Figure 2.  Modes of nozzle operation. 
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To compensate for this disparity, oblique shocks form at the edges of the nozzle as in Fig 2d.  In this 

region the flow can no longer be handled with a one-dimensional model.  Further decrements in the back 

pressure ratio will decrease the angle of the oblique shocks until isentropic supersonic shock-free 

operation is reached with b optp p  (see Fig. 2e).  After this optimal expansion point is passed, the nozzle 

operates in an under-expanded mode.  The increased pressure in the exit plane forces the formation of 

expansion fans, similar to those shown in Fig. 2f, through which the pressure is reduced to match the back 

pressure.  

 Two of these critical values are determined from a nonlinear relation connecting the nozzle area 

expansion ratio,  
2

t e/A A  , to the critical pressure ratio, b c/p p . This well-known expression takes 

the form13
 

   

1 1 2
2

1
b b t

c c e

1 2
1

1 1

p p A

p p A

 

  

 

 



 

         
                     

 (1) 

Two roots precipitate from Eq. (1).  The first, subsonic root, determines the largest back pressure subp  

that will still induce choked conditions at the throat.  Further reductions in the back pressure do not affect 

conditions upstream of the nozzle; they only lead to further delays in oblique shock formation along the 

diverging sidewall of the nozzle.  Shock effects lessen as we approach the second, supersonic root, often 

referred to as the optimal back pressure optp  for a given nozzle area expansion ratio.  Conversely, when 

subp  is exceeded, sonic conditions at the throat become unattainable.  Here cp  represents the chamber 

pressure approximated as the total stagnation pressure and /p vc c   denotes the ratio of specific heats.   

 Equation (1) is applicable to a variety of propulsive applications involving variable area duct and 

nozzle flow.  Due to its transcendental nature, however, it is traditionally inverted via numerical root 

solving.  For this reason, numerical solutions rendering back pressure data versus nozzle area ratios are 

often presented in graphical or tabular form in several textbooks on the subject.13-15  Equation (1) can 

apply to the entire flowfield within the nozzle and has been resolved analytically in a recent study of the 

isentropic pressure, density, and temperature in such a configuration.16  However, when applied at the exit 

plane, the relationship determines the first and third critical points in the nozzle flowfield.   

 It is hence the purpose of this work to provide a unified analytical description of the flow through a 

converging-diverging nozzle including the necessary detail leading to a full analytical inversion of the 

missing critical pressure ratio for which a normal shock stands in the exit plane.  This will be 

accomplished using asymptotic expansions that will enable us to express bp  as a direct function of c ,p  

,  and most importantly, t e/A A .  The advent of a closed form expression for bp  will also enable us to 

calculate the pressure tolerance for a given nozzle by directly evaluating the ratio of bp  and the optimal 

expansion pressure ep . 

III. Analysis 

 Before applying perturbation theory, we introduce the dimensionless back pressure b b c/p p p  and 

the small perturbation parameter  
2

t e/A A  .  At the outset, Eq. (1) collapses into 

    
2

1 1/
1

2/
b b

1 2
1

1 1
p p 




 


   

    
   

 (2) 

Note that   is the reciprocal of the square of the nozzle area expansion ratio.  We make use of the 

relative size of   which, according to Sutton,17 varies customarily between 0.04 and 0.3.  In actuality,   

can be as small as 0.0025 when involving high altitude nozzle applications.  Such low values provide an 
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optimal environment for applying perturbation theory and retrieving a closed-form approximation for 

b b ( , )p p   .   

 In what follows, we sketch the procedural steps needed to arrive at the desired solution.  We also 

recognize that Eq. (2) exhibits two possible roots that correspond either to subsonic or supersonic exit 

conditions.  The subsonic root will be first pursued to obtain the leading critical value, subp , the largest 

back pressure at which the nozzle chokes. As usual, results will be verified both theoretically and 

numerically.  

A. Direct Isentropic Solutions for Threshold Pressures 

 To start, a regular perturbation approximation is invoked with   at its epicenter. The dimensionless 

back pressure can be constructed from a series of diminishing terms, namely,   

   2 1
sub 0 1 2( , , ) ( )n n

np n p p p p O             (3) 

where sub ( , , )p n   represents the solution at the nth order.  Equation (2) may be further simplified into 

   2/ 1 1/
sub subp p    ; where 

2

11 2

1 1








  
   

   
 (4) 

 Further details of the solution can be found in a previous study by Majdalani and Maicke.18  The total 

series solution is hence constructed and presented as 

    
 2 5 2 11

21 11 1
sub 1 2 1 3 2 1p

 
       

 
         

 7 3 1
315 1

3
2 4 1

 
    

 
     

      
 11 3 4 1

4 517 1
3

2 6 5 2 1 ( )O

 
      

 
       (5) 

One can continue to higher orders until a repeatable trend is realized.  This enables us to express the 

critical back pressure as a recursion capable of returning the solution to the nth order.  We find19
 

  

 

   
 

1

1
sub (2 )!

0

1

1

( , , ) ( )
1 !

m

n
m n

m m
m

j

m j j

p n O
m

 

   
 









    

  
 


  

   
   

 

(2 )!

1

0

1 (1 ) 1
2 Pochhammer , 1 ( )

!

m mn
n

m

m
m O

m

  


   







    
    

  
  (6) 

where 2 /   and ( 1) / .      Similarly, the critical point for shock-free operation can be extracted 

from the same relation, though a different methodology is required to ensure convergence to the 

supersonic root.  Instead of a regular perturbation, successive approximations are employed to determine 

the solution to the supersonic branch.   

 To determine the first order correction, we substitute opt 0 1p p p   into the pressure equation, factor 

out /2
0 ( ) ,p   and employ a binomial expansion in 1 0/ .p p   This operation results in 

  
22/

0 1 0 1 01 (2 / )( / ) /p p p O p p   
 

 

    
2( 1)/

0 1 0 1 01 (1 1/ ) / / 0p p p O p p          
 

 (7) 

whence 

   

( 1)/2/
0 0 0

1 ( 1)/ 2/
0 0[( 1) / ] (2 / )

p p p
p

p p

 

  



  





   


 
 (8) 

In retaining additional terms, a recursive formulation can be found, namely, 
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2/ ( 1)/ 1

1 1/ 2/ 12
0

; ;
m

m m
m m j

jm m

p p
  

  
 

 

 


  
  

  
       1m   (9) 

Since the total pressure is the summation of its constituents, we simply collect 

    2
opt

1

( , , )
n

m

m

p n p


  


   (10) 

The solutions in Eqs. (6) and (10) provide two of the three back pressure transition points during nozzle 

expansion. The third transition occurs when a deviation from isentropic behavior is considered, 

specifically when the flow passes through a normal shock.  

B. Direct Non-Isentropic Solutions for Normal Shock Capture 

 The pressure ratio across a normal shock is given by the familiar relation 

   22
1 ( 1

1
)

p
M

p









    

    or    2 1
( ( 1) 1

2
)

p
M

p
 








 
  


 


 (11) 

The pressure ratio /p p   for a normal shock standing in a nozzle can be determined as function of the 

area ratio by substituting the pre-shock Mach number into Stodola’s equation, viz.  

   

1
2

1
2

2
t

1 2 1
)1 (

( 1 2)

A
M

A M














   
    



  
 
  


 (12) 

The resulting expression becomes 

      

1

12
2

1
1 1 1 1 1

1 4

p p

p p




    

 



 

 

      
           

      


 

 (13) 

The transcendental nature of Eq. (13) precludes a direct solution.  However, using successive 

approximations, an accurate representation may be extracted.  This is accomplished by first choosing 

  /1 1P p p      to the extent of reducing Eq. (13) into 

   

1

12 1
1

1 4
2P P






 



   
   

   
  (14) 

Equation (14) can be solved numerically for P.  For values typical of nozzle applications, P is found to be 

a large quantity.  This prompts us to set 1/X P  and solve for X asymptotically.  The X transformed 

relation becomes 

      X X aX b


   (15) 

where 

   

1

1 1;
1

4 4
1

;
1

a b



  













  

  
 

 (16) 

Assuming 0 0( )X X o X   one gets, at leading order:  

       1
0 0 0 0XbX aX

         (17) 

Realizing that 0 1X  and 1,   the last term may be ignored, being of higher order.  This enables us to 

balance the first two members of Eq. (17) by setting 

      
 

 
1

11

1

12

2
0 0 0

1
0      or   

1
   

1

2
bX bX X







  

  
 





 
     





 
 (18) 

Next, we let 0 1 1( )X X X o X    and expand into 
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      0 1 0 1 0 1 0X X X X a X X b


           (19) 

Factoring out the leading term can be achieved by setting 

      1
0 1 0 0 1

0

1 0
X

X X
X

X aX aX b






 
      

 
 (20) 

Recalling that 1 0/ 1,XX 
 a binomial expansion leaves us with 

      1 2 2
0 1 0 0 1 0 1 0 1 0

( 1)
1 ...

2
X X X X XX aX aX bX

  
    

   





   (21) 

To expedite matters, we neglect terms of  2 2
0 1O X X  that entail smaller contributions.  The resulting 

equation, when solved for 1X , produces 

   
 0 0 0

1 1
0 0

)

(

(

1 1)

a b X
X

a b

X X

X X



 



   






    

 (22) 

The same method may be employed to generate higher-order approximations from the following 

recursive expression, 

   
  1

0 1
1 0

(

1)(
;

1

)
;

k
n k

k
k k

k

jk k

k j

k

a b x
X X X X X

x x

x xa
x

b



 



  




 


  




    
   (23) 

To convert back to the laboratory coordinates, we use the direct expression 

   
 

1

0

1

1 1
1

1 1

n

k

k

X X
p

p X
 

 







  
     

    





   (24) 

In order to compare Eq. (24) to the other threshold values, it is necessary to relate the solution to the 

chamber pressure.  This can be easily accomplished by multiplying the result with the supersonic 

expansion relationship previously determined in Eq. (10).  We readily obtain 
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   (25) 

With Eqs. (6), (10), and (25) in hand, we can delineate the operational modes of a nozzle as the back 

pressure is reduced from stagnation to under-expanded conditions.  

     
 

 

Figure 3.  Comparison between numeric and asymptotic solutions for the threshold pressure ratios a) psub and b) popt. 

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1



sub

c

p

p

a)

subsonic approx.
 n = 1  
 n = 2
 n = 3
 n = 4
 n = 5
 numeric

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

opt

c

p

p

b) 

 

 n = 1  
 n = 2
 n = 3
 n = 4
 numeric



 

American Institute of Aeronautics and Astronautics 

 

8 

IV. Results and Discussion 

 A detailed error analysis that pertains to Eqs. 

(6) and (10) can be found in Majdalani and 

Maicke.18  For the reader’s convenience we 

provide a graphical comparison of these results 

to the numerical solution of Eq. (2) in Fig. 3.  

The results appear to be in good agreement in 

the primary range of interest with slight 

deterioration as   increases.  Because of the 

recursive nature of solutions, an arbitrary level 

of precision can be reached through the inclusion 

of multiple terms, although a couple of terms 

only are sufficient for most applications.  

 To verify the efficacy of the shock pressure 

ratio calculation, we compare the values over a 

range of asymptotic orders with the numerical 

solution in Table 1.  For the large expansion ratios 

common to most nozzle designs, the solution 

converges rapidly with only 3 terms and a relative 

error of less than 1%.  The error is mildly 

dependent on   as the solution displays 

decreasing absolute and relative errors when   is 

varied from 1.6 to 1.2.  Employing a realistic 

example, the space shuttle main engine has a 

nozzle area ratio of 77 that yields a value of 

1.7×10-4 for  .  For 1.4  , a simple two-term 

expansion provides a shock pressure ratio of 49.75 

compared to a numerical value of 49.68, hence 

incurring a mere 0.14% discrepancy.  

 Having shown that the asymptotic form of the 

normal shock pressure ratio behaves properly, we 

use Fig. 4 to graphically reconcile the composite 

solution linking the back pressure ratio to the 

normal shock, as per Eq. (25). The 

approximations accommodate the numerical 

solution, with increasing deviations as the area 

ratio approaches unity. For propulsive 

applications, expansion ratios are invariably larger 

than 3, hence translating into 0.11   where a 

two-term approximation is adequate.  This finding 

can be added to the subsonic and supersonic 

branches of Eq. (2) to produce a comprehensive 

map of nozzle operation through a range of back 

pressure values.  Such a map can display the 

behavior of nozzle flow in four distinct regions.   

 

 

 
 

Figure 4.  Numeric and asymptotic solutions of the 

supersonic back pressure using  = a) 1.2, b) 1.4 and c) 1.6. 
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 The construction of the map and a discussion of its benefits and limitations will be presented in Part 2 

of this paper series.20  In one of the regions, the flow throughout the nozzle will be subsonic.  In the 

second region, the flow will exhibit normal shocks at some intermediate location between the throat and 

nozzle exit plane.   

 As the pressure drops below the supersonic threshold pressure, b supp p , the shock begins to bow out 

from the nozzle exit plane as shown in Fig. 2d.  Oblique shocks begin to form and one-dimensional 

theory no longer provides an accurate assessment of the flowfield.  The nozzle will be under-expanded 

and expansion fans occur in the exit plane as the relatively higher pressure exhaust tries to merge with the 

surrounding gas.  It is interesting to note that the relative size of the operation modes is not constant.  A 

more detailed discussion of the ensuing physical mechanisms is given in the companion paper.20  As for 

the effect of   itself, its variations are captured in Fig. 5.  Therein, the supersonic back pressure ratio is 

described over the entire range of   and two values of the area-Mach number squared.  The horizontal 

axis represents   and the curves are shown at constant values of a) 0.01   and b) 0.5 .  For the range 

of normal motor operation, increasing the compression ratio leads to an almost linear decrease in the 

supersonic pressure ratio as clearly displayed in Fig. 5. 

 
 

 
 

Figure 5.  Variations in the supersonic back pressure ratio psup for a) ɛ = 0.1 and b) 0.5. 
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V. Concluding Remarks 

 This study focuses on the one-dimensional flow relations that relate the expansion area ratio to the 

critical back pressures that delineate the different operational modes of a converging-diverging nozzle.  

As we seek to eliminate guesswork and numerical root solving in deducing these threshold values, we 

apply asymptotic tools to the extent of inverting the corresponding thermodynamic relations analytically.  

To the authors’ knowledge, the resulting closed-form solutions represent novel additions to the 

compressible flow literature.  Our perturbation approach, being reliant on the reciprocal of the nozzle area 

expansion ratio, provides a proper approximation.  By extending our series to higher orders, we unravel 

simple recursive expressions that permit the efficient calculation of the pressure ratio to arbitrary levels of 

precision.  Favorable correspondence with the numerical solution at several gas compression ratios is also 

achieved as the relative error in a three-term approximation is found to drop, for example, below 0.57% 

for a nozzle area ratio of 0.3 and   = 1.2.  The error slightly decreases as the gas compression ratio is 

increased.  Then using an explicit relation for the exit pressure, the pressure ratio for the supersonic back 

pressure is obtained analytically as a direct function of the area ratio and  .  In concert with the solution 

for supp , we present an explicit solution for the isentropic pressure relation, providing subp  and optp  

boundaries for a given nozzle expansion area ratio. 

 By expressing the critical back pressures in terms of the nozzle area expansion ratio, we have provided 

a simple and direct analytical avenue to calculate these fundamental thermodynamic properties.  Our 

asymptotic solutions are extended to arbitrary order to the extent of becoming applicable anywhere within 

a nozzle, including sections adjacent to the throat where the area ratio approaches unity.  These 

formulations increase our repertoire of isentropic flow expressions that are widely used in the propulsion 

community.  It is hoped that their development will aid in achieving direct solutions in several related 

nozzle flow investigations, including a treatment of the blowdown mechanism that arises at the end of a 

mission as the combustion chamber depressurizes. 
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