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We consider the one-dimensional equations that delineate the operating modes of a 

converging-diverging nozzle over a range of chamber pressures.  The main purpose of this 

study is to characterize the flow regimes experienced in the nozzle during the blowdown 

process at missionʼs end.  Blowdown transients can lead to sideloads in the nozzle due to flow 

asymmetries including normal and oblique shock transitions, shock movement and 

excursions, flow separation, and the formation of recirculatory zones.  By characterizing the 

nozzle flowfield with one-dimensional equations, we can achieve a direct analytical 

representation of the key pressure ratios that dictate the ensuing flow regime: supersonic 

with external shocks, supersonic with optimal expansion, supersonic with internal shocks, or 

subsonic throughout.  These dividing pressure ratios are obtained using asymptotic methods 

that enable us to estimate the duration of the sideload flow regime by comparing the 

blowdown pressure profile to the delimiting pressure values projected by their 

corresponding asymptotic solutions.  In fact, Part 1 of this investigation details the analytical 

methodology leading to closed-form representations of the pressure to an arbitrary level of 

precision (see Maicke, B. A., and Majdalani, J., “Pressure Variations in Rocket Nozzles.  

Part 1:  Direct Asymptotic Predictions,” AIAA Paper 2010-7072, July 2010).  In this study, 

these solutions are inverted to the extent of predicting the nozzle flow conditions associated 

with an evolving chamber pressure, rather than a varying back pressure. The flow attributes 

of the various regimes and their corresponding shock transitions are subsequently explained 

in view of the pressure descent that accompanies chamber blowdown.  We retire with a 

discussion of experimental observations involving slag accumulation and its effects on spin 

generation during tail off in the upper stage of a sounding rocket. 

Nomenclature 

A  = local cross sectional area 

tA  = nozzle throat area 

1 2,c c  = coefficients given by Eq. (18) 
p  = normalized pressure, c e/p p   

optp  = normalized exit pressure at optimal expansion, eopt /p p   

subp  = normalized exit pressure at initial choking, sub e/p p   

supp  = normalized exit pressure with shock in the exit plane, sup e/p p   
 

  = first exponent on the isentropic pressure equation, 2 / 
 

  = second exponent on the isentropic pressure equation, 1 1/    
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  = perturbation parameter, 2
t e( / )A A  

  = ratio of specific heats 
  = constant related to   via Eq. (4) 
 

Subscripts and Symbols  
0 ,1  = leading and first order 
c  = condition in the chamber 

e  = condition in the exit plane 

n  = asymptotic level 
t  = condition at the nozzle throat 
  = condition before a normal shock (minus) 
  = condition after a normal shock (plus) 

 = overbars denote dimensional quantities 

I. Introduction 

OZZLE transients have long been a source of frustration for aerospace engineers.  Though often 

short in duration, transient effects can lead to unpredictable vibrational loads on both the nozzle and 

vehicle structure.  In addition to vibrations, persistent torques and sideloads are repeatedly shown to affect 

the mission profile.  Sideloads have been observed in a number of different hardware configurations 

including the J2-S,1 Vulcain,2 LE-7A,3,4 and the Space Shuttle Main Engine.5  In some cases, the 

sideloads are severe enough to cause damage to both the structure and nozzles of these engines. 

 In order to understand the physical phenomena present during the blowdown process, it is first critical 

to understand how the nozzle behaves as variations in the pressure ratio are introduced.  For a fully-

flowing nozzle at the end of its mission, the nozzle often begins with under-expanded operation, denoted 

as region  in Fig. 1.  The higher exit plane pressure results in continued expansion as the flow exits the 

nozzle at supersonic speeds.  When the motor finishes its burn, the chamber pressure decreases and the 

nozzle passes through the first delimiting pressure value at , thereby denoting a fully supersonic nozzle 

with no aftershock effects anywhere.  This condition is considered to be the ideal/optimal operating case 

for the nozzle, although it rarely occurs near the end of rocket flight because of mission profile 

constraints.  Instead, this ideal case is passed through at some point in the middle of the mission to 

prevent the early stages of the burn from experiencing severe overexpansion.  After crossing this 

boundary, the flow enters the slightly over-expanded regime as illustrated in region .  At this stage, 

oblique shocks form at the edges of the nozzle such that the lower exit pressure can increase to match 

chamber

pressure

1 underexpanded
2 full-flowing supersonic nozzle,

no shocks present, p
opt

4 standing normal

shock at exit, p
sup

time

7 subsonic flow throughout nozzle

5 serious overexpansion, normal and oblique shocks

inside nozzle, separation and recirculation present

6 choked flow boundary, psub

3 slight overexpansion,

external oblique shocks

 
 

Figure 1.  Pressure trace of a rocket motor during blowdown. 
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ambient conditions.  These shocks remain external to the nozzle and, as such, have a limited effect on 

vehicle performance.  As blowdown progresses, the chamber pressure continues to falter and the flowfield 

passes through a non-isentropic boundary point, a standing normal shock in the exit plane, labeled  in 

Figs. 1 and 2.  Further decreases in the chamber pressure are characterized in region  where irreversible 

effects move into the nozzle and both normal and oblique shocks start to occur depending on nozzle shape 

and configuration.  In addition to these shocks, flow separation and regions of recirculation can occur.  As 

these processes unfold asymmetrically, the probability of a resulting net sideload increases.  Then as the 

pressure decreases further, the flow passes through the choking boundary (labeled  in Figs. 1 and 2).  It 

finally enters the region of fully subsonic flow.  In this regime, the flow may no longer be predominantly 

axial given the absence of supersonic gas expansion in the streamwise direction.  As a result, the orders of 

the velocity components become equalized to the extent that tangential velocities and forces may no 

longer be small relative to their counterparts in the axial direction.   This is especially true during the 

evacuation phase of the flow that is often accompanied by the formation of bathtub vortices and throat 

reduction due to vortex blockage.  Furthermore, as the fluid is cooled during the blowdown process, slag 

particles can solidify and present an increasingly important factor in drag generation.  

 It is possible to use one-dimensional nozzle theory to predict these transition points with varying 

degrees of accuracy.  While this type of model cannot account for multi-dimensional effects, the 

predominantly axial flow through a supersonic nozzle can often be approximated through the use of 

quasi-one-dimensional expressions, namely Stodolaʼs isentropic-area ratio equation.  In this study, the 

Stodola area ratio expression will be combined with the equations for isentropic pressure behavior to 

determine an expression relating the pressure and area ratios.  Additionally, the equation for the pressure 

jump across a normal shock will be used to predict the condition for which a normal shock will stand in 

the exit plane of a supersonic nozzle.  These expressions will be systematically inverted, using asymptotic 

methods, to provide engineering approximations that can predict the transition points without resorting to 

numerical modeling or tabulation. 

II. Formulation 

 While the generation of sideloads cannot be handled one-dimensionally, the present model provides a 

fundamental starting point to separate these more complicated flow regions while retaining analytical 

closure.  The boundaries labeled  and  in Fig. 1 are generated using the isentropic pressure relation, 

reformulated in terms of the area ratio rather than the Mach number.  It is given by 

1

3

4

5

6

2

psub

psup

popt

 
 

Figure 2.  Various flow configurations with clearly labeled regions and threshold states during pressure blowdown.  
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    1

2

2/ /
1

1 1 2
1

1 1
p p 


 


 


   

    
   

 (1) 

Here   is the inverse of the expansion ratio squared, p is the pressure ratio ce / ,p p  and   is the ratio of 

specific heats.  There are two roots that emerge in an isentropic expansion.  The first denotes the subsonic 

pressure ratio  at which the throat is first choked.  The second refers to the supersonic root  leading to 

optimal design conditions, with shock-free supersonic flow throughout.  In Part 1, Eq. (1) is solved for 

ce / .p p   This ratio is selected owing to a fast convergence rate, which can result in fewer terms for an 

acceptable solution.  In the present study, the chamber pressure is the primary variable of interest and so, 

to facilitate comparisons to existing experimental and numerical work, it is useful to have the chamber 

pressure in the numerator of any ratio.  This leads to two possible approaches:  (a) solving for the faster 

converging ratio as in Part 1, and then inverting the final solution so that the chamber pressure appears in 

the numerator, or (b) inverting the ratio upfront and then solving the modified governing equation.  

Results from both methods will be compared in the following sections. 

 Before addressing the alternate formulations, it may be useful to recall that no isentropic solutions 

exist between the optp  and sub ,p  states  and  in Fig. 1.  The surface of demarcation between 

externally and internally occurring shocks corresponds to state  in the exit nozzle plane where supp  may 

be calculated using the normal shock relation given by: 

   

1

12 1
1

1 4
2P P






 



   
   

   
  (2) 

where P is the pressure change across a shock, /p p  , with p  being the larger pressure after the shock 

and p , the smaller pre-shock pressure.  This relation may be tied to the chamber pressure via the 

supersonic branch of the isentropic pressure expansion used to calculate the previous curves.  The 

equations themselves are transcendental to the extent of requiring numerical solutions.  However, using 

asymptotic methods,6 a set of analytical approximations may be developed that are accurate for expansion 

ratios common to most propulsive applications.  The solutions may be readily returned from a recursive 

form, and as such can be calculated to an arbitrary level of precision.  In practice, most propulsive 

applications only require two terms for a solution with acceptable engineering accuracy. 

A. Inverse Isentropic Formulation 

 To demonstrate the flexibility of the asymptotic methods employed here, we solve both the isentropic 

and shock equations with the chamber pressure in the numerator.  This approach is preferred over solving 

the ratio with the chamber pressure in the denominator and then inverting the solution.  First, after some 

manipulation, Eq. (1) can be rewritten as 

   p p    (3) 

Here 2 / ,     1 1/ ,     and 

   

1 2

1 11 2 1 1

2 1 1 1



  


  



     
    

     
 (4) 

Determining the subsonic root of Eq. (3) requires a regular perturbation expansion which, to arbitrary 

precision, can be expressed as  

   2 1
0 1 2 1 ( )n n

np p p p Op   
      (5) 

Equation (5) may be substituted into Eq. (3) and then expanded.  For the readerʼs convenience the 

expanded equation is presented below at 2( ) :O   
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      11 2
0 0 1 0 1 0 0p p p p p p O             (6) 

Because these quantities must vanish identically for all values of ,  we can segregate Eq. (6) into n 

separate equations and then solve them in series for the individual values of p at each order.  This 

produces 

 
 

 

  

 

2 3

2

3

3

2

1 2 1 2 1
1

2 6
p

       
  

     

         
       

          

 

   
   

 
 4

4

4

5
2 2 1 3 1 3 1

24
O

      
 

 

      
  
  

 (7) 

Owing to the judicious choice of   and ,  Eq. (7) duplicates that which appears in our previous study.  

However, the actual rate of convergence is different here.  As expected, the ratio with the chamber 

pressure in the denominator converges more quickly than in the inverse case.  Practically, the disparities 

in convergence are relatively small and become indiscernible when carried out to 5( ).O    At the outset, 

excellent agreement may be expected even with the slower converging approach in which the larger 

chamber pressure appears in the numerator. 

 The supersonic root can be handled in a similar fashion.  Equation (3) provides the relation for the 

new, inverted pressure ratio.  Keeping with the generalized constants, we find that, after substitution and 

binomial expansion, Eq. (3) becomes 

      
2 2

0 1 0 1 0 0 1 0 1 01 ( / ) / 1 ( / ) / 0p p p O p p p p p O p p            
   

 (8) 

When solved for 1,p  Eq. (8) returns 

   
0 0 0

1

0 0(2 / )

p p p
p

p p



 



 

   



 (9) 

which is similar to the form derived in the previous study, albeit with generalized constants.  Additional 

terms can be calculated via the recursive relation 

   

1 1

0 0

1 1
1 1

0 0

m m

j j

j j

m
m m

j j

j j

p p

p

p p

 

 



 

 

 

 
 

 

   
    

   
   


   

   
   
   

 

 

 (10) 

The total solution for pressure consists of the summation of the individual orders, starting with the 

leading-order approximation, namely 

   opt 0

1

( , , )
n

m

m

p n p p 


   (11) 

The solutions for both branches are compared in Table 1.  Much like the subsonic solution, the inverse 

solution shows a somewhat slower convergence rate as increasing numbers of terms are retained.  In fact, 

the difference becomes quite small after three terms. The reader is cautioned, however, that care must be 

taken when using this formulation, rather than the solution derived in Part 1.  As   increases and   

decreases it is possible to violate the principle of least singular behavior and thus render the solution 

invalid.  A coupling of the embedded dependence of   and   and pressure ratios greater than 1 in the 

present supersonic solution can lead to unphysical behavior.  Such an issue does not affect the subsonic 

solution, as the explicit gauge functions prevent it from occurring. 
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B. Inverse Shock Formulation 

The shock pressure relation is already inverted in a manner of speaking.  Because of the changes in 

variable used in the previous study, namely 1) 1(P p      and 1/X P , the problem is already 

inverted to the faster converging solution, which in this case is also the /p p   type solution.  For the 

sake of completeness, the slower converging solution is presented here.  The corresponding route follows 

a similar procedure but does not invoke the 1/X P  variable change.  The resulting governing equation 

becomes 

   

1

12 1

1
2 1

4
P P






 



  
  

   
  (12) 

The leading-order term in Eq.(12) may be found by balancing the dominant terms of the equations; in this 

case, we extract 

   
 

11

1
00

1 1

2
2

1
P P


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

 




 



 (13) 

which, in turn, yields 

   

1
1

2
2

0

1
2

1
P











 

  
 

 (14) 

The remaining terms can be calculated using successive approximations.  For the first-order correction, 

we have 

        
1 1

1 1
0 1 0 1

2 1
1

1
2

4
PP PP

 

 



 

 

 
   

     
  

 (15) 

The solution for 1P  can be found using the same binomial expansion technique, 

   

   
 

 
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11 1
11 1
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1 2 1
1 1

0

2 1

1 2 1

1

1 2

2 2

1
2

1

PP

P

P
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 




 


 

   
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
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

 (16) 

or 

   

1
1 2

1 1
1 1 1 2 0 0 0 1 2

2 1

1 1
P c c c P cP cP


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 






 
    

           





 (17) 

Table 1.  Comparison of Part 1/Part 2 solutions using  = 1.6  
 

 
Subsonic, subp  Supersonic, optp  

n
  1 3 1 3 

0.05 
1.0130 

1.0128 

1.0132 

1.0132 

58.645 

55.840 

58.764 

58.764 

0.1 
1.0263 

1.0256 

1.0270 

1.0270 

31.739 

29.007 

31.798 

31.796 

0.3 
1.0834 

1.0770 

1.0910 

1.0906 

11.355 

8.5034 

11.281 

11.250 

0.5 
1.1472 

1.1283 

1.1732 

1.1702 

6.7619 

3.6792 

6.5728 

6.4902 
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where 

    
1

1
1 2c






        
 2

1
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c



 





 (18) 

Higher-order terms can be precipitated from the recursive expression, 

   

1
1 2

1 1 11 1

1 1 2 1 2

1 1 10

2 1

1 1

n n n

n i i i

i i i

P c c c P P P c c



 

 





   

  

   
                             

    (19) 

With the addition of Eq. (19), a comparison between the inverted and noninverted values can be 

conducted.  The inverted values in this case converge more quickly as they consist of the solution that 

employs the smaller ratio of the two.  Again the larger ratio is found to converge more slowly, although 

the error between them becomes negligible after a handful of terms. 

III. Results and Discussion 

 With these one-dimensional boundary values in hand, it is possible to evaluate existing performance 

data with the goal of examining the operating pressure ratios during blowdown.  It is also possible to 

determine the range and duration of the pressure variation through which the profile remains susceptible 

of generating sideloads.  In this vein, the relationships in Table 2 can be plotted versus the expansion ratio 

of the nozzle to provide a map of the operating boundaries as the pressure ratio across the nozzle varies.  

Figure 3 displays the boundary curves that make up the nozzle map.  The regions are labeled consistently 

with Figs. 1 and 2.  Therein, analytical expressions with a limited number of terms are compared to the 

numerical solution to provide a comprehensive map for the nozzle transition points.  It is clear that, for 

the high expansion ratios common to most propulsion configurations, a few terms of the analytical 

approximation provide adequate accuracy relative to a numerical solution.   

A. Nozzle Operational Modes and Chamber Pressure 

 As mentioned above, Fig. 3 enables us to identify different nozzle operating modes over a range of 

back pressure values.  In area  the nozzle is under-expanded and expansion fans occur in the exit plane 

as the relatively higher pressure fluid seeks to match ambient conditions.  Area  introduces external 

oblique shocks and one-dimensional theory no longer provides an accurate assessment of the flowfield.  

In area , the shock activities become internal and the flow undergoes a normal standing shock at some 

location within the nozzle.  Finally in area , the flow throughout the nozzle turns subsonic.  The 

unbounded nature of the nozzle shock and optimal expansion curves for small values of   increase the 

size of computations in the propulsive range of expansion ratios. 

 In complementing the data on this graph, we reproduce in Fig. 4 the same nozzle map using the 

pressure convention adopted in Part 1 wherein all ratios are referenced to the chamber pressure.  As a 

result, the unbounded behavior is eliminated and both pressure and   are scaled on a [0,1] interval.  It is 

interesting to note that the relative size of the operating modes does not remain constant.  On the one 

hand, the normal shock zone  displays inverse behavior with the normal shock increasing as   

decreases.  On the other hand, the oblique shock region  maintains a relatively constant size for most 

expansion ratios, closely resembling a semi-oval with the only large excursions appearing for 

substantially small or large expansion ratios.  For most propulsive applications, the expansion ratios 

would produce values of   that are well below 0.1.  During the transient stages of operation, the internal 

shock region has a much larger pressure ratio range than the external one.  This may explain the increased 

internal shock activities and separation patterns that may occur inside the nozzle during blowdown, events 

that contribute to the propensity of undesirable sideloads. 
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Table 2.  Summary of one-dimensional relations for nozzle flow characterization 
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Figure 3.  Pressure map versus   during chamber blowdown.  The vertical axis represents the chamber-to-exit 

pressure ratio. 
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B. Other Considerations 

 The present study is not meant to be a comprehensive investigation into blowdown, but rather a first 

step towards a generalized analytical framework for its modeling and prediction.  While the one-

dimensional equations treated here provide general breakpoints for nozzle behavior, the limitations of the 

analysis prevent it from predicting blowdown sideloads.  For example, experimental investigations have 

found that separation inside a nozzle and its associated sideloads are influenced by the local nozzle 

contour.7  The present study cannot account for such variation without further investigation.  Moreover, 

the asymmetric nature of the separation process causing sideloads requires at least a modified two-

dimensional approach in order to make any sort of prediction possible.  Finally, in addition to the steady-

state sideloads, oscillatory loads can be experienced during blowdown,8 and these would require a time-

dependence that the present model lacks.  The goal of future development is to focus on the specific 

regime where internal shocks and separations can occur and to use asymptotic methods to develop multi-

dimensional formulations that can better accommodate the physical mechanisms that induce the 

additional loads observed during blowdown. 

C. Motor Blowdown Data and Slag Accumulation 

 In a recent investigation, flight telemetry acquired from a sounding rocket motor has showed a 

significant increase in roll torque as propellant burnback reached its terminal phase.  The motor in 

question was approximately 17-inches in diameter and 210-inches long including the nozzle.  The 

propellant was aluminized and hence produced a substantial amount of slag during motor burn.  The 

motor itself formed the upper stage of a spin-stabilized sounding rocket.  At its nominal operating 

altitude, aerodynamic drag acting on the stabilizing fins became so small that it took less vortical force on 

the nozzle inner wall to increase the vehicle spin rate.  Furthermore, the grain design had two opposed 

slots as shown in Fig. 5 below.  Based on the burnback cross-sections, it can be seen that near motor 

blowdown, two opposed pools of slag materialized.  These were retained behind the final increment of 

propellant and appeared to be trapped on the case wall due to the centrifugal force exerted by the spinning 

motor.   

The spin rate of the motor and its corresponding pressure trace during tail off are displayed in Fig. 6 as 

a function of flight time.  As it can be seen, the declining motor pressure started around t =31 seconds and 
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Figure 4.  Inverted pressure map versus  using the chamber pressure as a benchmark.  
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triggered a linear doubling of roll frequency as the chamber gases blew down.  Radar and accelerometer 

data indicated that a massive expulsion of slag was also initiated simultaneously at 31 seconds due to its 

sudden volumetric expansion from dissolved chamber gases.  It was speculated that the slag-laden gas 

might be swirling at this point to the extent of inducing roll torques that were sufficiently large to cause 

the vehicle to spin in response to wall friction with the vortex.  

 In fact, the sudden accumulation of slag after tail off could be exacerbated by corner circulation and 

the drop in pressure and temperature in the chamber. These factors can promote solidification of the 

gaseous fraction of aluminum oxide remaining in the chamber.   

 A theoretical explanation of the observed behavior is this.  During normal operation, the high pressure 

in the motor ensures choking conditions and supersonic expansion in the axial direction.  Transonic 

expansions through the nozzle are dominated by axial motion, thus rendering the effects of the normal 

 
 

Figure 5.  Grain burnback cross-section versus time (sec) for a sounding rocket upper stage.  
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Figure 6.  Grain burnback pressure trace and roll frequency versus time for a sounding rocket upper stage.  
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(cross-streamwise) and tangential (spin) components negligible in comparison.  After blowdown, this 

scenario changes in that, as the pressure drops, so will the axial velocity.  Suddenly, one may notice an 

increase in roll, pitch, and yaw.  This behavior can be attributed to the resurgence of the tangential and 

normal forces as non-negligible contributors.  In addition, a bathtub vortex is typically formed while 

emptying, thus causing the spin velocity to become even more appreciable.  From this perspective, the 

spiraling motion of the slag-laden mixture through the nozzle may be partly responsible for the increase in 

roll.  When the normal and tangential forces are no longer negligible (i.e., when they become of the same 

relative order as the depreciating axial force), sudden redirections in pitch and yaw may be felt throughout 

the motor, in addition to a doubling in roll with the passage of time.  As shown in Fig. 6, the sustained  

doubling in roll frequency occurs shortly after the initiation of pressure blowdown.  The linear increase in 

f continues until reaching the time that marks the beginning of the sliver burn period.  This phase is 

accompanied by a substantial diminishment in thrust along with a horizontal flattening in the roll 

frequency. 

 Regarding the pressure trace in Fig. 6, it should be noted that three threshold values may be useful to 

point out.  The first corresponds to the chamber pressure supp  for which a shock will occur in the nozzle 

exit plane.  Any pressure below that value will induce shocks within the nozzle.  These shocks are 

susceptible to spiral around and cause random lateral moments that can, in turn, induce fluctuations in 

pitch, yaw, and roll.  The second threshold pressure will be the minimum chamber pressure subp  that will 

still induce choked conditions at the throat.  Below that reference value, the flow becomes subsonic 

throughout.  In the process, the supersonic axial velocity magnification in the streamwise direction will 

cease to occur.  The swirling angular momentum becomes of the same order at that of the axial 

component, and this condition can develop when the chamber pressure drops below 1.894 times the outer 

pressure.  In the present investigation, the determination of supp  and subp  requires instantaneous values 

for the external pressure and nozzle area ratio. 

IV. Concluding Remarks 

 In summary, two threshold pressure ratios are important to note.  The first, supp , corresponds to the 

chamber pressure for which a shock will occur right in the nozzle exit plane.  Any chamber pressure 

below that point will induce shocks inside the nozzle. These shocks can spiral around and cause random 

lateral moments, thus inducing fluctuations in pitch, yaw, and roll.  The next threshold pressure will be 

the minimum chamber pressure, subp , that will still induce choked conditions at the throat.  Below that 

value, the flow will turn subsonic everywhere. At that moment the supersonic axial velocity increase in 

the streamwise direction will no longer occur.  The swirling angular momentum becomes of the same 

order at that of the axial.  In practice, this situation unfolds when the chamber pressure falls under 1.894 

times the outer pressure.  

 Today, most nozzle transient predictions are conducted using empirical methods derived from 

correlating engine tests, as in the skewed plane method,9 or through numerical simulations.10,11  An 

improved analytical framework can help to guide these experimental and numerical investigations, as well 

as provide insight into the physical processes that stand behind these transient phenomena.  Future 

research efforts would include incorporation of two-dimensional effects as well as oscillatory models to 

account for both the steady and unsteady forces observed during the blowdown process. It will be helpful 

to investigate these effects further as it seems that they have been judiciously avoided in the past. 
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