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Asymptotic Methods for Solving Wave Propagation 
Problems in Porous Tubes, Channels and Spheres 

Joseph Majdalani* 
University of Tennessee Space Institute, Tullahoma, TN 37388  

We consider the general boundary-value ODE that describes the wave motion inside 
porous tubes, channels, and spheres. Its corresponding physical problem is simultaneously 
dispersive and dissipative, exhibiting both oscillatory and damped behavior.  The attendant 
second order equation is controlled by two keystone parameters: ,ε  the inverse of the cross-
flow Reynolds number, and ,S  the Strouhal number.  The presence of a third parameter   
is also entertained.  In this work, asymptotic solutions are obtained using WKB, composite-
scaling (CST), and generalized-scaling (GST) techniques. The last two methods are based on 
multiple-scale theory and lead to additional physical insight into the nonlinear scaling 
structure that characterizes the ensuing wave motion.  The GST approach remains unique in 
that it obviates the need for guesswork or rationalization.  Accordingly, the inner scales are 
deduced from the problem’s solvability condition.  This procedure enables us to solve 
problems which were hitherto difficult or intractable by conventional multiple-scale 
expansions.  By way of illustration, three examples are provided.  In addition to being 
conjecture-free, the one-term GST solution is simple to derive, compact, of nearly second 
order in ,ε  and capable of pinpointing the problem’s nonlinear scales.  The CST’s main 
advantage lies in its minimal integrability requirement.  In this work, two simple proofs are 
provided to show that the keystone CST scale, which is used at the basis of the composite-
scaling technique, does indeed return the problem’s inner and outer variable 
transformations in their respective regions of applicability. 

I. Introduction 
HE purpose of this paper is threefold.  First, it is to present, in general conceptual form, some of the 
fundamental asymptotic solutions for viscous wave propagation inside porous enclosures using a conventional 

Wentzel, Kramers, and Brillouin (WKB) approach.  Second, it serves to illustrate the application of the composite-
scaling technique (CST) to the same problem.  The CST approach was discussed by Majdalani1 and Majdalani and 
Van Moorhem2 in the context of an oscillatory flow in a tube with transpiring walls.  Therein, its outcome was 
scrutinized by means of numerical and experimental verifications.  The method was subsequently applied in the 
modeling of internal flows in porous channels and cavities by several workers.  These include Majdalani and Roh,3 
Majdalani,4,5 Wasistho, Balachandar and Moser,6 and Chedevergne, Casalis, and Majdalani.7  CST is a variant of 
multiple-scale and matched-asymptotic expansions that may be useful in the treatment of problems that exhibit an 
underlying multiple-scale structure.  As such, it can be suitable in the mathematical modeling of internal combustion 
and unsteady flows in porous enclosures where the interplay of dissimilar physical mechanisms can evolve at 
several disparate scales.6-14  In general, it may apply to unsteady convection-diffusion equations in which both 
dispersive and dissipative mechanisms co-exist. 
 From matched-asymptotic expansions, CST borrows the concept of constructing a composite scale, instead of a 
composite solution, that can reproduce or match asymptotically the inner and outer scales, instead of the inner and 
outer solutions, in their respective domains.  Its novelty lies in the idea of matching scales, instead of solutions, that 
are legitimate inner and outer approximations.  
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 The third goal of this investigation is to discuss a conceptual scheme that is hoped to broaden the scope of 
multiple-scale expansions.  Its originality stands in the manner by which a generalized expression for the inner 
scales can be obtained directly from the problem’s solvability condition.15  Unlike the CST’s procedural requirement 
of defining the scales at the beginning of analysis, the third approach operates with a generalized-scaling variable 
that is left unspecified during the derivation process.  In contrast to traditional multiple-scale methods that rely on 
foreknowledge of the inner transformations, the generalized-scaling variable will be determined by imposing the 
problem’s solvability condition.  As such, closure is deduced from the mathematical need for boundedness between 
successive perturbation levels.  The so-called generalized-scaling technique (GST)16 precludes the known pitfalls 
and elements of uncertainty that are often associated with traditional modes of selecting scales (e.g., via conjecture, 
inspection, rationalization, or trial).  It is stricter to formulate initially due to the need to retain generality.  But once 
constructed, the GST solution offers the freedom to accommodate the particular transformation that is germane to 
the problem’s underlying multiple-scale structure.16  Furthermore, it will be shown to outperform, in some cases, 
two of the formerly presented solutions.  In addition to the novelty in obtaining the scale a posteriori, the GST’s 
main contribution lies in the manner by which retaining an inner transformation in conceptual form can be combined 
with the mathematical requirement for boundedness to arrive at a uniformly valid solution.   
 The boundary-value problem to be solved entails a singular, second-order, ordinary differential equation (ODE) 
seeded with two perturbation parameters.  The equation represents the cross-flow component of the linearized 
rotational momentum equation that appears in the analysis of oscillatory fluid motions inside viscous channels, 
tubes, or spheres with permeable walls.1-5,15-19  It is obtained from the Navier-Stokes equations via perturbations in 
the small pressure wave amplitude.  The so-called wave amplitude denotes the ratio of the oscillatory amplitude and 
the mean pressure inside the enclosure in question.  The presence of several scales is commensurate with the 
multiple time-dependent inertial, convective, and diffusive mechanisms that stem from inevitable mean-flow 
interactions with the oscillatory wave motion.   
 Technically, the paper is organized as follows. To begin, a WKB solution is derived for the generalized cross-
flow momentum equation in porous channels, tubes, and spheres. This is followed by a presentation of the 
alternative CST approach.  The latter is used to identify the intrinsically nonlinear scaling structure.  The GST 
approach is presented last. A practical example is then chosen for which an exact solution can be arrived at.  Two 
more examples are discussed for which only asymptotic solutions may be obtained. Results from both asymptotic 
and exact predictions are compared and analyzed.  The special examples that we address emerge from practical 
applications.  Similar equations arise in a variety of problems involving both theoretical1-5,15-19 and computational6-14 
models of burning propellant, hydrodynamic instability of oscillatory flows,20-27 isotope separation,28-31 and 
ultrafiltration.32  

II. Problem Formulation 
 We introduce the rotational cross-flow boundary-layer equation for small-amplitude pressure perturbations in a 
porous enclosure.  In studies addressing simple geometric settings,1-5 this equation has been shown to exhibit the 
general form 
      0 1 0 1 0( ) ( ) ( ) ( ) ( ) 0;y a x a x y b x b x iSc x y           0 (0) 0a   (1) 

   (0) 0,y         (1) 1y   (2) 

In Eq. (1), the x -coordinate represents the dimensionless normal/radial distance measured from the core ( 0x  ) to 
the porous walls ( 1x  ).  Additionally, 1,i    and 0,a  1,a  0 ,b  1,b  and 0c  are real coefficients.   The case 
considered here corresponds to inflow across the walls for which 0( ) 0,a x    0,1 .x  
 The leading term   conveys the reciprocal of the cross-flow Reynolds number, / .R Vh    Due to small 
viscosity, most practical applications excluding some biological flows and flows inside microchannels correspond to  

10.R  33  The additional presence of unsteadiness is materialized in the appearance of the Strouhal number, 
/ .S h V   For nontrivial oscillations, 10,S   thus introducing a secondary perturbation parameter.  Inasmuch as 

R  and S  are independent, their ratio, 2
D/ ( / )S R V V  scales with the quotient of the small diffusion speed 

( DV  ) and the convection speed through the sidewalls (V ).  For nontrivial injection, DV V  and .S R   As 
usual,  ,  , and h  are the circular frequency, kinematic viscosity, and core-to-wall distance.  In view of 
1 ,S R   it is reasonable to define   and S  to be the small (primary) and large (secondary) perturbation 
parameters, respectively.  If ( ),qS    physical conditions translate into 11 ,S     or 0 1.q    In addition to 
the uniformly valid order 1

2 ,q   a special situation can be associated with the limiting order 1q   for which 
( ).S R  
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 Because of symmetry about the core, 0 (0) 0a   satisfies the physical requirement of a vanishing normal/radial 
component of the velocity.28  It also gives rise to a regular singularity.   

III. On the WKB Technique 
 Following Bender and Orszag,34 a WKB solution can be sought via 

    1 2 3
0 1 2 3 4( ) expy x p p p p p          (3) 

where   is a small parameter and ( )jp x  ( j  ) are to be determined.  Differentiation gives 

 1 2 3
0 1 2 3 4( )y p p p p p y                (4) 

 2 2 1 2
0 0 0 1 1 1 0 2 2 0 3 1 2( 2 ) 2 ( 2 2 )y p p p p p p p p p p p p p                          

   2 2
3 2 0 4 1 3( 2 2 )p p p p p p y             (5) 

When Eqs. (3)-(5) are substituted into Eq. (1), the resulting equation can be multiplied by   and rearranged into 

  1 2 2 2
0 0 0 1 1 1 0 2 2 0 3 1 22 ( 2 ) ( 2 2 )p p p p p p p p p p p p p                           

   2 3
0 1 0 1 2 3 0 1 0( )( ) ( ) 0a a p p p p b b iS c                    (6) 

At least two possible distinguished limits are possible, depending on the order of .S    

A. Type I: R ~ S2 
 For a typical physical setting associated with an injection-induced flow, ½( )S    or 2( ).R S   The 
corresponding large cross-flow Reynolds number translates into a deeply penetrating wave that decays rather slowly, 
thus justifying the under-damped characterization.  When similar quantities in Eq. (6) are grouped in descending 
order, one obtains  

   0 0 0iS c a p  2 2
0 0 1 0p a p b       

2 2
0 0 1 1 0 0 2( 2 )p p p a p a p             

   3 2 2 4 2
1 1 0 2 1 1 1 0 3( 2 ) ( , ) 0,p p p p a p b a p                      (7) 

The distinguished limit must be prescribed in a manner to allow terms between brackets to display the same order.  
By inspection, this condition will be true when 2 (1)    and (1).S    Both requirements are satisfied when 

½( )   and ½( ).S     Without loss of generality, we choose the distinguished limit to be ½   and 
substitute this back into Eq. (7).  At the outset, the defining equations for ( )jp x  can be produced in succession (by 
collecting terms that are of the same order in ½ ).  The zero-order equation becomes 

   0 0 0 0,a p iS c                  1
0 0 01

d
x

p iS c a t     (8) 

Similarly, terms of (1)  yield 

   2
0 0 1 0 0,p a p b                    1 2 2 3

1 0 0 0 01
d

x
p b a S c a t     (9) 

At ( ),  the equation in 2p  reads 0 0 1 1 0 0 22 0.p p p a p a p          Thus, we retrieve 

     3 2 3 5
2 0 0 0 1 0 0 0 0 0 0 0 01

2 2 d
x

p iS a c a a c c a b c a S c a t           (10) 

Higher corrections may be obtained at orders   and 3/2  from 2
0 3 1 0 2 1 1 1 12 0a p p p p p a p b            and, 

consecutively, 0 4 2 0 3 1 2 1 22 2 0.a p p p p p p a p             These produce 

 
 2 2 3

3 0 0 0 1 0 0 1 0 0 0 01

x
p a b a a b a b b a b a        

    2 2 2 2 2 5 2 4 4 7
0 0 0 0 0 0 0 0 0 1 0 0 06 5 4 3 5 dS c b c a a c c c a a a S c a t           (11) 

 
 2 2

4 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
3 6 4 3 4 10 6 3

x
p iS a a c a a b c a b c c a a a c a a a c b b c a b c c a                   

   
2 2 2 2 2 2 5 2 4 5 9

0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 02 2 14a a c a a c a c a a c a b c a S c a         
 

   
 2 3 3 2 3 7

0 0 0 0 0 0 0 0 0 1 022 20 16 10 dS c a b c a c c c a a a t         (12) 

Letting 0 0 0( ) [( ) / ]d
x

w x b iSc a t    and 2 (1),S    the ( )  solution can be expressed as 

    W 3 2 1 3 2
0 0 0 0 0 0 1 0 0 0 0 0 0 01

( ) exp ( ) (1) + 2 2 d
x

y x w x w a c iS a c a a c c a b c c a t            
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     1 1 3 2 1 3 2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 1 1

exp d d + 2 2 d
x x x
b a t iS c a t a c iS a c a a c c a b c c a t                   (13) 

where the superscript stands for ‘WKB’ of Type I. 
 We mention, in passing, that the key similarity parameters that control the solution are S  and the viscous 
damping parameter .   It will be later confirmed that the solution type corresponds to a weakly damped oscillatory 
wave.  To obtain W

1y  at 2( ) , Eqs. (11) and (12) may be substituted back into Eq. (3).  In like manner, higher-
order solutions are possible and are best relegated to a symbolic program.  

B. Type II: R ~ S 
 For sufficiently small injection, the physical setting for which convection and diffusion velocities meet, 

( ),DV V  corresponds to 1( )S    or ( ).R S   Overall, this will be the smallest Reynolds number permitted 
for a fixed Strouhal number. The balance between the cross-flow Reynolds number and the Strouhal number leads to 
a damped wave.  This wave is generally under damped, as with Type I.  However, considering that its decay 
depends on the Strouhal number, the latter, when sufficiently small, leads to a barely oscillatory wave, namely, one 
that is reminiscent of critically attenuated signals with long wavelengths.  Starting again with Eq. (6), quantities of 
similar order may be grouped sequentially into 

 2
0 0 0 0iS c a p p    

1
0 0 1 1 0 0 1 0( 2 )p p p a p a p b              

  2 1 2
1 1 0 2 1 1 1 0 2( 2 )p p p p a p b a p                

   3 1 4 3
2 0 3 1 2 1 2 0 3( 2 2 ) ( , ) 0,p p p p p a p a p                      (14) 

Clearly, in order to achieve consistency in asymptotic orders, one should have 1 (1)    and (1).S    Both 
conditions are satisfied when the distinguished limit is chosen to be .    When this order is implemented, the 
eikonal equation34 becomes 

   2
0 0 0 0 0,p a p iS c                    21

0 0 0 02 1
1 1 4 d

x
p a i Sc a t      (15) 

Since one of the roots corresponds to a left running wave, it yields an unphysical solution that must be eliminated.  
The meaningful root that we retain is 

    21
0 0 0 02 1

1 1 4 d
x

p a i Sc a t      (16) 

Next, the transport equation results in 

   0 0 1 0 1 0 0( 2 ) 0,a p p p a p b                       1
1 0 1 0 0 0 01

( )( 2 ) d
x

p p a p b a p t        (17) 

A legitimate expansion can now be constructed by combining 0p  and 1p  in Eq. (3).  We find 

    K 1
0 0 1( ) expy x p p    (18) 

where the superscript K is used to denote a Type II WKB solution ( K K
0y y ).  It should be noted that integrating 

Eq. (16) for arbitrary 0a  and 0c  can at times require computation.  Practically, its semi-numerical evaluation can be 
more intensive than Eq. (8) which, being of lower order in 0a  and 0 ,c  proves to be substantially simpler to process 
in closed form.  This idea will be illustrated in two of the three forthcoming examples. 

C. Type III: R ~ S3 
 Upon further scrutiny, other distinguished limits may be identified.  An example includes 1/3   for which 

3( ).S   This leads to the largest yet cross-flow Reynolds number for a given Strouhal number, 3( ).R S   
The Type III expansion that follows may be expressed in sequential orders of the gauge parameter, 1/3.    
Interestingly, the resulting formulation returns, after four terms are combined, the type I solution evaluated at the 
same net order in  .  Using the superscript B in reference to this type of solution, one can write at ( ) : 

   B 1/3 1/3 2/3
0 0 1 2 3( ) exp( )y x p p p p       (19) 

Equation (19) can be shown to be identical to W 1/2 1/2
0 0 1 2( ) exp( )y x p p p     obtained using three terms only.  

Such an outcome persists in other distinguished limits of the form 4 5 6 7( , , , , ).S S S S        The only difference 
among these families of Type III solutions will be the additional penalty requirement of retaining progressively 
more terms before reaching the same truncation order in  .  The Type III expansion may therefore be deemed a 
slower converging series of Type I through which no additional benefit may be gained.  



 
American Institute of Aeronautics and Astronautics 

 

5

IV. On the Composite-Scaling Technique 
 It is well known that occasions arise for which the traditional method of multiple scales faces intractable 
obstructions.35,36  The injection-induced boundary-value problem that has been widely investigated constitutes one 
such example.  In seeking a multiple-scale solution, we find a nonstandard rational analysis to be requisite.  This is 
caused by the need to provide more freedom in the selection of transformations that are capable of handling 
nonlinear coordinate expansions. 

A. Disparity and Nonlinearity 
 Due to the interactions among diffusive, convective, and inertial mechanisms, our jointly dispersive and 
dissipative problem exhibits three dissimilar scales.  In addition to the outer scale 0 ,x x  two interior scales have 
been shown to exist.  Near the inner core, the transverse mean flow component vanishes by virtue of 0(0) 0.a    The 
convective cross-flow component, expressed by the first derivative term in Eq. (1), becomes negligible.  A balance 
between diffusive and inertial forces can be then be achieved in Eq. (1) using 2

1 i / .x x x  1,2  The existence of 
this scale was proved in related work by the author.4  Near the porous wall, inertial and convective forces dominate, 
and the use of 2 w (1 )x x x    becomes necessary to achieve a balance in Eq. (1) between the locally dominating 
mechanisms.  In the foregoing, the subscripts ‘i’ and ‘w’ refer to the inner-core and near-wall transformations.  Note 
that the nonlinearity in the choice of ix  eludes conventional transformations of the form 1 ( )x f x  or 

1 ( )(1 ).x f x  34,37  In reality, it is the failure of linear transformations that has prompted the search for a more 
suitable scaling paradigm. 

B. Limitation 
 Due to the disparity and nonlinearity displayed by the scales, a standard three-variable expansion using 0x , 1x  
and 2x  leads to a mathematically intractable problem.  However, two-variable expansions using only a pair of 
virtual coordinates ( 0,x  1 ix x ), or ( 0,x  2 wx x ) can produce local approximations that are valid either near the 
core, or near the wall, respectively.  This aspect will be further expounded in Example 3 below.  In view of the 
practical limitation to a two-variable expansion, we have introduced a single composite scale, cx , that possesses 
space-reductive properties satisfying 

   1 i
c

2 w

; 0

; 1

x x x
x

x x x

 
  

   (20) 

If such a function exists, then it can be argued that a two-variable expansion with ( 0,x  cx ) will, in principle, yield 
an expression that remains valid uniformly over the solution domain.   

C. Matching of the Scales 
 In the spirit of reproducing ix  and wx  asymptotically near the core and the porous walls, we consider a function 
that fulfills the requirements stated in Eq. (20), specifically 

   2
c (1 )x x x    (21) 

 Proof.  Near the core, we let 0 .x x      The core and composite variables become 

   
2

i

2
c

/

(1 ) /

x x

x x x





  


   
 (22) 

In Eq. (22), it can be seen that c i~x x  as 0.x   
 Near the porous wall, we let 1 .x x     The wall and composite variables become 

   
w

2
c

(1 1 )

/ (1 )

x x x

x x x

 



     


  
 (23) 

From Eq. (23), it is clear that 2
c w(1 ) ~ ; 0.x x x x x        

 We conclude that, since Eq. (21) secures the requirements imposed by Eq. (20), it can be adopted instead of both 
interior scales to arrive at a uniformly valid, two-variable expansion.  This CST expansion must be based on 0x x  
and the spatially composite variable 1 c.x x  

D. Scaling Function 
 In a two-variable expansion, the second variable can be taken, in general, to be i ,x  w ,x  or c.x   Depending on 
the chosen variable, the resulting asymptotic solutions will be accurate near the core, near the wall, or throughout the 
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domain.  To avoid repetition, we find it convenient to define a generally nonlinear scaling function that can, when 
needed, return any of the following forms 

   1 ( );x s x   where     
2

i i w w

2
c c g

/ 1/ ; / (1 )
( )

/ (1 ) / ;

s x x s x x
s x

s x x x s

 



      
  

 (24) 

Here, gs  corresponds to a general scaling function that remains, at present, unspecified; i ,s  w,s  cs  retain their 
usual significance. 

E. Two-Variable Expansions 
 Using 0x x  and 1 ( ),x s x  derivatives become 

   
0 1

d
,

d
s

x x x
  

 
  

2 2

2 2
0

d
( )

dx x


 


  (25) 

Substitution into Eq. (1) gives 

      
2

2
0 1 0 0 0 12

0 10

( ) 0
y y y

a a a s b iSc y b y
x xx

             
 

  (26) 

Next, we insert 2
0 1 ( )y y y     into Eq. (26) and combine terms of the same order in .   At (1),  the 

leading-order equation may be taken as 

    0
0 0 0 0

0

0
y

a b iSc y
x


  


 (27) 

Subsequent integration in 0x  yields 

   0 0 1( , )y x x  1 1( ) ,wC x e      
0

0 0 0 0( ) ( ) / d
x

w x b iSc a t    (28) 

In like fashion, the first-order equation becomes 

    
2

0 0 01
0 0 0 1 0 1 1 0 2

0 1 0 0

y y yy
a b iSc y a s a b y

x x x x

         
   

 (29) 

F. Solvability Condition 
 In seeking 1,y  the adjointness concept may be employed.  This is accomplished by setting 1 0 0( ).y y g x   In 
order to determine ,g  one multiplies Eq. (27) by 1 2

0 1 0a y y   and subtracts the product from Eq. (29) times 1 1
0 0 .a y    

Two terms cancel with the remainder being 

   
2

0 0 0 01 1 1 1
2 2

0 0 0 0 0 1 0 0 0 0 0 00 0

1 1y y y yy y a bg s

x y x x y x a y a y x ay x

   
      

    
 (30) 

By virtue of the principle of least singular behavior, the ratio of 1y  and 0y  must be remain perpetually bounded to 
ensure a series of successively decreasing terms.  This can be achieved by imposing  

   
0

2
0 0 01 1

0 2
0 1 0 0 0 0 0 00

1
( ) d (1)

x y y ya bs
g x t

y x a y a y x ax

    
        
   (31) 

From Eq. (28), derivatives may be evaluated straightforwardly.  One finds 

   
0

2
1 1 1 1

0
1 1 1 0

d ( ) ( ) ( ) ( ) ( )( )
( ) d (1)

( ) d ( )

x C x w t w t a w t b ts t
g x t

C x x a t

      
    

 
   (32) 

G. Imposing a Sufficient Condition 
 Irrespective of how large 0x  may be, a sufficient condition that ensures the boundedness of g  may be obtained 
by setting  

   
2

1 1 1 1

1 1 1 0

d ( )
0

( ) d

C x w w a w bs

C x x a

     
   (33) 

Subsequent integration with respect to 1x  renders 

   2
1 0 1 1 1 0exp ( + ) / ( )C C w w a w b x a s          (34) 
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In the above, 0C  is a pure constant that may be determined from the boundary condition at 1x   in Eq. (2).  
Returning to the original laboratory coordinate ,x  the multiple-scale solution to the first order in   can be put in the 
form 

  
C 2

1 1 0( ) exp ( ) (1) ( ) ( ) ( ) ( ) ( ) ( ) / ( )y x w x w x w x w x a x w x b x a x            

   2
1 1 0(1) (1) (1) (1) (1) (1) / (1) ( );w w a w b a                 ( ) ( ) / ( )x s x s x    (35) 

and 

  0 0 0( ) / ,w b iSc a        
22 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0[( ) ( 2 )] /w w S c b a b a b iS a c a c b c a               (36) 

where the superscript ‘C’ refers to an approximation based on the ‘CST’ approach.  Backward substitution of the 
variable coefficients renders: 

 2C 3 2 2 2
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0( ) exp ( ) (1) ( ) ( 2 )y x w x w x a S c b a b a b a a b a b iS a c a c b c a a c                     

   23 2 2 2
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

1
(1) (1) ( 2 ) ( )

x
a S c b a b a b a a b a b iS a c a c b c a a c 


                   (37) 

The resulting expression may be rearranged to the extent of extracting the group parameter 2.S   We get  

    C 3 2 2 2 2 2
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0( ) exp ( ) (1) 2y x w x w a S c S b a b a b a a b a b i S a c a c a a c b c                     

      3 2 2 2 2 2
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

1
(1) (1) 2 ( )

x
a S c S b a b a b a a b a b i S a c a c a a c b c    


                    (38) 

The real part of the wave solution can, in turn, be expressed as 

  C 2 3 2 2 2 2
0 0 0 0 0 0 0 0 1 0 0 1

1
( ) exp

x

y x S a c S b a b a b a a b a b w                     
 

     3
0 0 0 0 0 0 1 0 0 0 1

cos 2 ( )
x

S a a c a c a a c b c            (39) 

H. Avoidance of Singularity 
 At this stage, it may be instructive to note that the amplitude of the CST solution is prescribed by the dominant 
term that controls the wave’s exponential growth or decay. To avoid unboundedness, say at 0,x   the sign of the 
most dominant term cannot be permitted to trigger exponential growth.  Given the multiply-perturbed nature at 
hand, situations may be conceived for which a singularity will occur unless the small contribution of 2( )S   is 
suppressed in Eq. (39).  Dismissal of the quantity in question may be justified when the parametric excursions over 
which   varies remain of 1( )S   or smaller, such as 2( ).S    Under these auspices, the 2( )S   component of 
Eq. (39) may be absorbed by the truncation error, thus leading to a compact expression for the CST approximation, 

  C 2 3 2 3 2
0 0 0 0( ) exp ( ) (1) ( ) ( ) ( ) (1) (1) (1)y x w x w S x a x c x a c        



 
     3

0 0 0 0 0 0 1 0 0 0 1
2 ( )

x
i S a a c a c a a c b c            (40) 

where Cy


 is always bounded.  It can be shown that such an expression will be less prone to singularities,38 although 
the added robustness is usually accompanied by a slight reduction in precision with respect to Eq. (38).  In the 
forthcoming analysis, the full expression will be employed, barring situations that warrant the dismissal of the 
higher order quantities that naturally crop up in the CST expansion.  The issue of boundedness will also be 
addressed in the concrete examples ahead. 

I. Local and Composite Length Scales 
 In Eq. (35), ( )x  lingers as the only unspecified quantity that needs to be defined.  Physically, ( )x  can 
represent the characteristic length scale for normal or radial wave convection away from the porous walls.  Based on 
Eq. (24), one finds 

   i w

c

/ 2; (1 )
( )

( 1) / ( 2)

x x
x

x x x

 



  

    
 (41) 
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When i ,  w  and c  are each substituted back into Eq. (35), three different solutions i ,y  wy  and Cy  are realized.  
With Ny  denoting the numerical solution of the governing equation, then it can be verified that i ,y  wy  and Cy  
will be reasonable approximations to Ny  in the near-core region, near-wall region, and uniformly throughout the 
domain, respectively.  The degree of accuracy in these approximations will stay, of course, commensurate with the 
size of .   These remarks will be clarified in the Example 3 below. 

V. On the Generalized-Scaling Technique 
 In order to determine C ,y  the form of cs  and corresponding c  have to be known.  This pre-selection of the 
modified scaling transformation is consistent with standard multiple-scale practices.  At the expense of presetting 
the scales, however, the need arises to use a stronger constraint than is required by our problem’s solvability 
condition.  A sufficient albeit unnecessary condition is therefore used in Eq. (33) to secure a uniformly valid 
outcome.  For instance, although Eq. (33) satisfies the solvability condition, it may not always lead to a rational 
approximation.  On that account, it may be argued that a more rigorous approach must offer the freedom to employ a 
coordinate transformation that fully complies with the requirements needed for solvability.  This notion is explored 
next. 

A. A Necessary and Sufficient Condition 
 Equation (32) can be rewritten as 

   
0

2
0 1 1 1 1

0
1 1 1 0

( ) d ( ) ( ) ( ) ( ) ( )
( ) d (1)

( ) d ( )

xs x C x w t w t a w t b t
g x t

C x x a t

     
    

 
   (42) 

In order for the function g  to be bounded for arbitrary variable coefficients, 1,x  and 1
0 ( ),x    it is necessary 

and sufficient that 

   1 1

1 1 1

d ( )1

( ) d

C x

C x x
                  1 1 0 1( ) exp( )C x C x   (43) 

where   is a subsidiary constant.  Inserting Eq. (43) back into Eq. (42) yields a formal expression for ( ).s x   This is 

   
0

2
1 11 1

0 0
0

( ) ( ) ( ) ( )
( ) d ( )

( )

x w t w t a w t b t
s x t g x

a t
       

   
 

  (44) 

In the above, ( )g x  can be any bounded function.  The generality of form assigned to ( )s x  makes satisfying Eq. (44) 
possible. 

B. Generalized Solution 
 Recalling that 1x s , we now return to the original variable x  and substitute Eq. (44) back into Eqs. (43) and 
(28).  In the process,   is fully eliminated!  The resulting expression reads 

    1 2
0 0 0 1 1( ) exp ( ) d ( )

x
y x C w x a w w a w b t g x             (45) 

By insisting on ( ) (1)g x   for boundedness, it follows that exp( ) 1 ( )g    .  As such, g  does not influence 
the solution that we seek at ( ).   It can be safely dismissed hereafter.  The remaining constant 0C  can be 
evaluated from the boundary condition at 1x  .  At length, using ‘G’ for ‘general,’ we write 

     G 1 2
0 1 11

( ) exp ( ) (1) d ( )
x

y x w x w a w w a w b t             (46) 

where   1 2
0 1 1a w w a w b       

   
2 2 2 2 3

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0[( ) ( 2 )] /S c b a b a b a a b a b iS a c a c b c a a c a               (47) 

 By inspection of Eqs. (35) and (46) the term multiplying 
2 2 3

0 0/S c a  appears to be the largest.  It thus dictates the 
exponential rate of decay of the wave amplitude.  This is evident in the result obtained by substituting Eq. (47) back 
into Eq. (46).  The outcome is: 

  G 2 3 2 2 2 2
0 0 0 0 0 0 0 0 1 0 0 11

( ) exp ( ) (1) ( )
x

y x w x w S a c S b a b a b a a b a b             

   1
0 0 0 0 0 0 0 1 0( 2 ) d ( )iS a c a c b c a a c t          (48) 

When compared to Wy  in Eq. (13), Gy  shares, at leading order, the same exponential arguments.  However, Gy  
contains additional correction terms in its real part that are of 2( ).S    These are accompanied by slightly improved 
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accuracy which may be attributed, in part, to the use of information belonging to the first-order equation in 1y  
during the leading-order evaluation of 1C  in Eq. (28).  Such quantities in the comparable WKB solution of Type I 
emerge at the next perturbative order (i.e., in W

1y  instead of W
0y ).  The reader is cautioned, however, that the added 

precision is not gained without penalty.  It may be shown for some cases that the retention of 2( )S   terms in Eq. 
(48) can make the solution vulnerable to singularities. Here too, the amplitude of Gy  will be governed by the 
coefficient of the most singular term in the exponential.  For some values of the control parameters, boundedness 
will be contingent on securing the (negative) sign of the most dominant term.  Then given the small size of the 

2( )S   contribution, it can be systematically lumped with the truncation order to the extent of producing a bounded 
solution independently of the control parameters.  This expression may be written as  

    G 2 3 2 1
0 0 0 0 0 0 0 0 0 1 01

( ) exp ( ) (1) ( 2 ) d ( )
x

y x w x w S a c iS a c a c b c a a c t            


  (49) 

Interestingly, this compact and robust form differs from the comparable Type I WKB expansion by one member 
only.  When benchmarked to Eq. (49), W

0 ( )y x  is seen to comprise one additional imaginary term that affects its 
phase angle.  One finds 

    W
2 3 3 5

0 0G 1

( )
exp 2 d

( )

xy x
i S c a t

y x
    (50) 

The contribution of this term is typically small, albeit more difficult to evaluate in view of its dependence on the 
integrability of 3 5

0 0 .c a  

C. Deducing the Generalized-Scaling Function 
 Since traditional approaches require guessing the inner scaling transformation before expanding the derivatives, 
we find it expedient to define gs  to be the general inner transformation that can lead to Eq. (46) in a conventional 
multiple-scale expansion.  With no loss of generality, it can be seen from Eqs. (46), (43) and (28) that the effective 
scale provided by the solvability condition is 

    1 2
g 0 1 1( ) d

x
s x a w w a w b t        (51) 

Based on Eq. (35), the characteristic length scale stemming from the generalized formulation becomes 

   
 
 

1 2
0 1 1g

g 1 2
g 0 1 1

d( )
( )

( )

x
a w w a w b ts x

x
s x a w w a w b






    
   

     


 (52) 

This expression is different from the composite c  given in Eq. (41).  Unlike the previous result that was obtained 
from initial guesswork, the present solution is prescribed at the conclusion of the asymptotic analysis.  It is 
established in a manner to fully comply with the problem’s solvability condition.   
 Clearly, the GST scheme just described is capable of capturing the dominant behavior of the problem at hand.  
However, it represents a subset of an even more general approach in which the generalized scale is granted more 
freedom by being expanded in series form.  For problems that exhibit a different character or in which several 
successive corrections are desired, a broader formulation is required.  In this case, the general scale in Eq. (24) may 
be expanded as 

   1 2 3
1 0 1 2 3 4x x x x x x          (53) 

This particular series expansion of the generalized scale is analogous to the argument of Eq. (3).  When applied in 
concert with multiple-scale theory, it has the potential to restore the WKB solutions described above.  Yet given the 
level of detail prescribed by the attendant analysis, it will be the subject of a forthcoming study. 

VI. Example 1: Wave Propagation in Cylindrical Cavity 
 In order to set a rigorous benchmark for comparisons, we explore a case for which Eq. (1) comprises 0 ,a x  

1 1/ ,a x  0 2 4( 1), 0,1, ,b n n        1 0b   and 0 1.c    The boundary-layer equation becomes 
      / 2 0;y x x y iS y                (0) 0,y         (1) 1.y   (54) 

We propose to solve Eq. (54) both exactly and asymptotically.  The pertinent physical problem is analogous to that 
described for the vortical wave propagation equation of motion in rectangular channels with porous walls.4,5   The 
present model corresponds to porous tubes with circular cross sections.  As such, two dissimilar scales, 0x x  and 

1 i ,x x  may be anticipated. 
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A. Whittaker Equation 
 An exact solution is feasible through a series of manipulations guided by the Liouville-Green procedure.  After 
some algebra, we recognize the need for the dual transformations, 

   2 / (2 )X x           21
2( ) exp( ) ( ) ( / 2 )exp / (4 ) ( )F X X X y x x x y x       (55) 

By setting these preferences, backward substitution changes Eq. (54) into the Whittaker equation, 

    
2

1 1
4 42 2

d 1
0 0;

d

F
F

XX X

        
       1 1

2 2iS     (56) 

Interestingly, the general solution for Eq. (56) is expressible in terms of   and ,U  the Kummer and regular 
confluent hypergeometric functions.39  These give 

      2 2 21 1 1 1 1
1 22 2 2 2 2( ) exp( / ) 1 ,1, / 1 ,1, /y x x C iS x C U iS x               (57) 

B. Exact Solution 
 At present, the (0) 0y   requirement proves to be redundant; it is unconditionally satisfied by Eq. (57) 
irrespective of 1C  and 2.C   The physical existence condition at 0x   must be used instead.  Thus, in order to 
ensure that the solution is finite at the core, 2C  must vanish.  The remaining constraint at 1x   yields 1C .  Then 
using the superscript E  for ‘exact,’ we can put 

      E 1 2 1 2 11 1 1
2 2 2( ) exp (1 ) ,1, / ,1, ,y x x x              1

21 iS     (58) 

where   
2 3

2 2 2( ,1; ) 1 ( 1) ( 1)( 2)
(1!) (2!) (3!)

x x x
x                (59) 

We note, in passing, that the inner-core scale 2
ix x   appears explicitly in E ,y  albeit inverted. 

C. WKB Solution 
 Using Eq. (13), the Type I solution can be explicitly evaluated.  We get 

   W W 2 2 2 21 1
0 2 2exp ( 1) ln ( 1)( 4 ) ( )y y x x iS x x x                      (60) 

Higher-order solutions can be constructed as well.  These result in 

 
 W 2 2 2 2 2 2 43 51

1 2 2 3exp ( 1) 1 2 (1 2 ) (1 )(4 1) (1 )y x x S x x x                        

    2 2 2 2 21 1
2 2ln ( 1)( 4 ) ( 1) 6 (2 1)(1 )iS x x x x x                   

   2 4 2 2 4 272
3 2(20 7)(1 ) (1 )(1 ) ( )x x x x                 (61) 

 
W 2 2 2 2 2 2 4 23 51

2 2 2 3exp ( 1) 1 2 (1 2 ) (1 )(4 1) (1 ) (1 )y x x S x x x x                          

  
2 2 4 2 4 2 3 10 222 42

3 52 (1 2 ) (35 16)(1 ) 4 (1 )(1 10 ) (1 ) / (1 )x x x x x                           

  
 2 2 2 2 2 471 2

2 2 3ln ( 1) ( 4 ) 6 (2 1)(1 ) (1 )(1 ) (20 7)iS x x x x x x                           

  
2 4 2 2 2 4 2 2 48

3(1 ) (7 24 20 )(1 ) (21 132 140 )(1 )(1 )x x x x x x                           

   
2 10 2 3 2 4 6 356

3 (9 5)(1 ) / (1 ) 22 (1 )(1 ) ( )x x x x x                 
  (62) 

 Using Eqs. (16)-(17), the Type II solution can be determined as well.  After some algebra, one finds 

  

 
1
8

1 2
2 2 2 2

K 2 2 2
2 2 4

1 16 1 1 4
exp 1 1 4 1 1 4

41 16 1 1 4

S i Sx x
y x i Sx x i S

S x i S



    
 




 


                           
 

   
2 2

1
2 2 2

1 1 4 1 4 (1 )
ln ln tan ( )

4 1 161 1 4

i Sx S x
iS x

S S xi S

  


 




                     
  (63) 

It is interesting to note that, in both Wy  and K ,y  the 2x   term forces the traveling wave amplitude to decay more 
rapidly as .    
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D. Traditional Multiple-Scale Expansion 
 In applying the conventional derivative-expansion procedure, it may be helpful to remark that the solution must 
be similar to its equivalent arising in a rectangular geometry.  The latter was described by Majdalani4,5 where it was 
obtained using 0x x  and 2

1 .x x    Using the same two scales as before and letting 2
0 1 ( ),y y y     

derivatives can be expanded and substituted into Eq. (54).  Collecting terms of 0( )  and 1( ),  one segregates 

   0 0
0

0

: 2 0
y

x iS y
x

 
   


  (64) 

   
2

2 10 0 01
1 2

0 1 0 0

: 2 2
y y yy

x iS y x x
x x x x

     
     

   
 (65) 

Partial integration of Eq. (64) yields 

    
0 0 1 1 1 0( , ) ( )exp 2 lny x x C x iS x      (66) 

Following the solvability condition given in Eq. (31), we now have 

   21 1
12

1

d
4 ( ) 0

d

C
S iS C

x
         or  21

1 1 0 12( )  exp 4 ( )C x C S iS x        
(67) 

Recalling that 2
1 ,x x   Eq. (66) becomes 

     2 21
0 0 2( )  exp 2 ln 4 ( )y x C iS x x S iS             (68) 

Then using the boundary condition at 1,x   the traditional multiple-scale solution collapses into 

    T 2 2 2 21
2( ) exp ( 4 )( 1) ln 2 ( 1) ( )y x x x iS x x                 (69) 

where the superscript ‘T’ stands for ‘traditional.’  Due to the multiply-perturbed nature of this problem, the absence 
of singularity in Eq. (69) at 0x   depends on the physical ranges over which the dominant coefficient 24 0.     
This condition translates into 2 24S   or 2 .S    Conversely, when the 24  contribution to the exponential 
argument in Ty  is dismissed, unboundedness is uniformly suppressed.  Equation (69) becomes 

    T 2 2 21
2( ) exp ( 1) ln 2 ( 1) ( )y x x x iS x x            


  (70) 

In what follows, we assume that 2S   to the extent of warranting the use of Eq. (69). 

E. CST Solution 
 Alternatively, in the presence of a single inner (nonlinear) variable, 2

1 i ,x x x    the composite scale may be 
used to identically reproduce the inner coordinate transformation.  Letting c i ,s s  one can legitimately derive and 
use c i 1 1/ / 2x x x       in the CST approximation.  At the outset, Eq. (35) becomes 

    C 2 2 3exp (1 2 / ) ( ) / (1) ln ( );y x i S x x iS x                / 2x   (71) 

Upon expansion and rearrangement, it may be readily shown that Eq. (69) may be restored, term-by-term, from Eq. 
(71).  This confirms the legitimacy of the CST procedure for this particular ODE. 

F. GST Solution 
 In the preceding multiple-scale analyses, identification of the inner scale was necessary.  Either foreknowledge 
or guesswork preceded the selection of the correct inner transformation.  This procedural burden, which is only 
exacerbated in the presence of nonlinear scaling distortions, is mitigated with the use of the generalized-scaling 
function.  For example, using Eq. (51), one may evaluate 

    1 2 2 21
0 1 1 2d 2 ( )

x
a w w a w b t S iS x             const (72) 

This step readily displays 2
g ( ) ( )s x x  with no need for guesswork.  Furthermore, regardless of whether gs  is 

explicitly determined or not, the GST solution may be constructed directly from Eq. (48).  Starting with 

    G 2 3

1
( ) exp (2 ) ln 4 ( ) d ( )

x
y x iS x S iS x t               (73) 

it may be promptly shown that Gy  is identical to both Ty  and Cy  for the case at hand.   
 In summary, a total of five asymptotic schemes have been successfully applied to Eq. (54).  Of the five, the three 
solutions based on multiple scales are found to be identical.  Despite its complexity, Ky  appears to be the most 
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accurate when   is relatively large.  Among W ,y  Ky  and G T C( ),y y y   Gy  appears to be the most accurate 
and straightforward as 0,   at least in the ranges explored. This behavior will be illustrated next. 

G. Exact vs. Asymptotic Solutions 
 By inspection of the real and imaginary arguments in Eqs. (60) and (69), one can infer that the solution is of the 
damped oscillatory type.  This character is ascertained in Fig. 1 where exact and asymptotic solutions of ( )  are 
compared at select values of the control parameters.  For fixed 210 ,   the agreement between Wy  and Ey  in Fig. 
1a deteriorates progressively in Figs. 1b and 1c.  This adverse trend can be attributed to increasing S  beyond the 

10R   value for which the Type I WKB expansion is optimized in Fig. 1a.  In fact, for the physical settings 
associated with Figs. 1a-c, it is clear that a quick damping response is taking place.  Thus, in all three subfigures, the 
Type II solution becomes a more suitable approximation.  When the primary parameter is decreased to 310   in 
Fig. 1d, the agreement improves to the point that asymptotics become graphically indiscernible from E.y    

H. Error Comparison 
 To more effectively measure the level of agreement entailed in each method, we compare the maximum 
discrepancy in each formulation with reference to the exact solution E .y   We thus turn our attention to the 
maximum absolute error E  that exists between a given asymptotic y  and exact E .y   Defining Emax ,E y y   
we then plot E  versus   at fixed values of S  and .   As shown in Fig. 2, a log-log plot can help to characterize 
the error through variations in ,  S  and .   Assuming the classic logarithmic form, ,mE K  the order of the 
error m  can be either inferred directly from the graph or calculated numerically using linear least-squares.  Whereas 
m  corresponds to the slope, K  is deducible from the vertical intercept.  As a result, we find in Fig. 2a that the 
multiple-scale solution exhibits an error of order 2m   as 0.    Furthermore, the coefficient K  and, in turn, the 
maximum error, diminish as   increases or S  decreases.  The accelerated convergence rate in the leading-order 

Gy  represents an added benefit.  In principle, it can be ascribed to the usage of a solvability condition that taps 
artificially into the second-order equation.  
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Figure 1.  Comparison between yE  (exact) and yW  (WKB Type I), yK  (WKB Type II), and y y yG C T   (GST, CST, 
and traditional multiple-scale solutions). For 210   and 2,   S  is varied from a) 10, to b) 20 and c) 50. Results 
become indiscernible in d) where   is decreased by one order while keeping S 50.   Insets are used for enlargements. 
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 The trends in the WKB solution of ( )  are somewhat reversed.  As depicted in Fig. 2b, the error in Wy  starts 
at 2m   and then shifts to 1m   asymptotically in .   Furthermore, both K  and E  increase as   or S  increase.  
According to Bosley,40 the shift in the slope from 2 to 1 does not undermine the validity of the WKB solution 
because its error exhibits a clear asymptotic order over finite ranges of .  
 The error in K ,y  on the other hand, behaves quite differently.  It fluctuates for 310   before shifting to 1.m    
Whereas both K  and E  increase as   increases, the error in Ky  keeps diminishing with further increases in .S   
This behavior favors Ky  for relatively large   and S  when it clearly outperforms its various counterparts.  
However, unlike G ,y  both Wy  and Ky  become relatively less accurate at higher values of   (or n ). 
 The WKB solution of 3( )  is defined in Eq. (62) and shown in Fig. 2c.  Despite this high of an order, its error 
exhibits 3m   over a range of .   However, this order shifts to 1m   as   is decreased.  Here, the error appears to 
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Figure 2.  Log-log plot of the absolute error versus   at constant S.   The error in y yC G

0 0  is shown in a) for 2,4   
and 6.   Unlike a), the error in the WKB solution does not decrease at higher integers.  This is illustrated in both b) and c) 
where yW

0 ,  yK
0  (WKB Types I and II) and yW

2  are analyzed.  Note that the  3( )  WKB solution in c) starts with an 
error of order 3 and then shifts to 1 as 0.    When errors are compared in d) for 6   and S 20,50  and 200,  the 
( )  multiple-scale solution appears to outperform the  3( )  WKB solution below the main bisector for small values of 
S  and .   This improvement becomes more appreciable as   is increased due to the consistent reduction in the 

multiple-scale error. 
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be insensitive to .   In addition, E  appears to be insensitive to S  for 42 10 .     As a result, the accuracy of Eq. 
(62) becomes nearly independent of variations in   or .S  
 In Fig. 2d, all asymptotic errors are compared for 2   and 20,50,S   and 200.   Despite its more compact 
expression, it is gratifying to note that the ( )  multiple-scale solution for this case exhibits a smaller error than the 

3( )  WKB solution.  This is especially true for small values of S  and .   Additionally, the choice of 6   
corresponds to an adverse case for G .y   While the WKB error remains unchanged, the trends are expected to favor 
the multiple-scale solution for which the error consistently diminishes with successive increases in .   This is 
illustrated in Table 1 where exact and asymptotic solutions are compared side-by-side for 10S    and 410 .    
In this example, Gy  remains closer to Ey  than the WKB solution of 3( ).   In some cases, the agreement between 
true and asymptotic values is manifested in several significant digits.   

VII. Example 2: Wave Propagation in Simulated Solid Rocket Motors 
 Several illustrative cases have appeared in the literature for which the present techniques apply.  For 

1 21
0 2sin( ),a x x  1 1/ ,a x  21

0 2cos( ),b x    2,4,6, ,    1 0b   and 0 1c  , one obtains a problem that 
has received much attention in the works of Flandro and Roach,41 Culick,42 Chedevergne et al.,27 and others.16-18  In 
these studies, neither WKB nor GST solutions in the present form have been available.  In this context, while a 
leading order GST solution is possible in light of Eq. (48), a formal WKB solution of Type II cannot be obtained in 
closed form.  Even the Type I solution leads to a series expression because of the presence of 5 5 21

2csc ( )x x  in the 
integrand of Eq. (13).  This impediment may be attributed, in part, to the need to integrate 2 1 3 5

0 02 S c a    analytically, 
an often prohibitive operation, depending on the nonlinearity of 0a  (and 0c ).  Given these factors, one immediately 
realizes a distinct advantage of the CST approach: since Eq. (35) may be resolved through differentiation rather than 
integration of the ( )w x  function, a closed-form CST result is not restricted to problems with coefficients that are 
amenable to integration.  In the same vein, the GST approximation is relatively convenient in that Eq. (48) 
comprises no terms higher than 3

0 .a   Consequently, provided that ( )w x  is manageable, a closed-form CST 
approximation may be retrieved, but the same cannot be said of the WKB or GST solutions.  Depending on the 
coefficients of Eq. (1), the level of difficulty due to integration will be low in GST’s Eq. (48), moderate in WKB 
Type I’s Eq. (13), and high in Type II’s Eq. (18). 

VIII. Example 3: Wave Propagation in Planar Enclosure 
 Our third example corresponds to an original case that arises in the context of an oscillatory wave inside a planar 
enclosure for which Eq. (1) is prescribed by 0 tan ,a   1 0,a   21

0 4 sec ,b     1
4 ,x   1 0b   and 0 1.c    

These expressions lead to 

    21
4tan sec 0;y y iS y               (0) 0,y       (1) 1.y   (74) 

Following the procedure described by Majdalani,1 the ensuing multiply-perturbed boundary-value problem is likely 
to exhibit three dissimilar scales: 0 ,x x  1 ix x  and 2 w.x x   To explore this possibility, the fundamental 
techniques outlined above will be implemented and compared. Furthermore, the parametric range that leads to an 
unconditionally bounded wave motion will be determined for each of the solutions that are susceptible to spurious 
singularities.  This step is necessary due to the presence of three dimensionless parameters, ,  S  and .  

Table 1.  Exact and asymptotic solutions for S 10   and 410 .    Here, y y yG C T
0 0 0   

x  Ey  G
0y  K

0y  W
2y  W

1y  W
0y  

0.50 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008 
0.55 0.0000062 0.0000062 0.0000060 0.0000062 0.0000062 0.0000060 
0.60 0.0000133 0.0000132 0.0000128 0.0000132 0.0000132 0.0000128 
0.65 -0.0000774 -0.0000774 -0.0000754 -0.0000773 -0.0000773 -0.0000754 
0.70 -0.0007450 -0.0007451 -0.0007298 -0.0007443 -0.0007444 -0.0007298 
0.75 -0.0030832 -0.0030832 -0.0030358 -0.0030808 -0.0030811 -0.0030356 
0.80 -0.0070314 -0.0070308 -0.0069524 -0.0070275 -0.0070278 -0.0069521 
0.85 -0.0018222 -0.0018203 -0.0018063 -0.0018214 -0.0018215 -0.0018062 
0.90 0.0608180 0.0608212 0.0605377 0.0608038 0.0608049 0.0605368 
0.95 0.3132358 0.3132386 0.3125648 0.3132022 0.3132047 0.3125627 
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A. WKB Approximation 
 When Eq. (18) is applied to Eq. (74), intractable integrals appear in K .y   The Type II solution is hence ruled out.  
In contrast, the Type I approximation may be constructed straightforwardly using Eq. (13).  One obtains 

  W 2 2 2 22 1 2 1 1 1
2 2 2 2(tan ) exp csc 2 ln( csc ) ln( csc ) ( )(1 cot )y iS

                     

   2 4 21
2(3 4cos )csc 4 2ln( csc ) ( )           

  (75) 

Note that the leading-order term in the imaginary argument contains a small correction of order 1~ .S S    

B. Traditional Multiple-Scale Solution 
 As alluded to in Sec. IV, the problem at hand admits three dissimilar scales.  Because of the nonlinear scaling 
structure near the core, a traditional multiple-scale approach based on a combination of two or more linear scales 
proves to be infeasible.  The traditional approach is thereby abandoned. 

C. CST Approximation 
 Assuming that the scaling transformation of Eq. (20) holds, we let 0x x  and 2

1 c (1 ) .x x x x      The 
composite variable defined as such serves to duplicate asymptotically both 2

ix x   and w (1 )x x   near 
(0,1),x   respectively.  Using the conceptual result of Eq. (35) at ( ),  we readily extract  

     C 3 2 2 331 1 1 1
4 2 2 4 4(tan ) exp sec csc 2cos(2 ) cos(4 ) ( ) (1) sec cscy x                    

     1 2 2 22 1 1 1
2 4 21 cos(2 ) ( ) (1) ln( csc ) (1 2 ) cot csc ( ) (1)x iS x                        (76) 

Three different solutions, namely, i ,y  wy  and C ,y  can be recovered from Eq. (76) depending on whether i ,  w  
or c  are entered.  From Eq. (41), the spatial length scales that need to be retrofitted into Eq. (76) consist of  
   i w/ 2; (1 );x x    and c ( 1) / ( 2)x x x     (77) 

Were it not for the conjecture in guessing the scales upfront, Cy  could have been deemed, perhaps, the simplest to 
derive and the most illuminating with respect to the inner-core and near-wall approximations.  By evaluating Eq. 
(76) with c ,  a composite CST expansion may be arrived at, specifically 

   C 3 2 21
c16(tan ) exp sec csc 6 8cos2 2cos4 cos2y S                   

   2 2 22 1 1
c2 8ln( csc ) (1 2 ) cot csciS             (78) 

If we now turn our attention to the wave amplitude, (tan ) exp ,   it may be seen that the growth of the wave is 
strongly controlled by the exponential argument,  

    2
3

2( 1)
6 8cos 2 2cos 4

16( 2)cos sin
cos 2

x x
S

x
   


 




   


    (79) 

Evidently, a spurious singularity can occur near 0x   where 

   2 2 2 2
3 2 3

2
16 ( 1) 16 ( 1)S S

x x

     


 


                (80) 

Boundedness is therefore ensured so long as 2 216 ( 1) 0S       or 21
4 .S   

  
For problems in which this 

condition is not fulfilled, the alternative is to lump, as usual, the 2( )S   part with the truncation order to obtain  

 C 3 2 21 2 1 1
c c16 2 4tan exp sec csc 6 8cos2 2cos4 ln( csc ) (1 2 ) cot cscy iS i S

                     


 (81)
 

D. GST Approximation 
 The GST solution may be viewed as the most straightforward of the group given that it does not require the 
CST’s foreknowledge of the scales nor the WKB’s distinguished limits and integrability requirement of high order 
terms.  Based on Eq. (48), the GST expression may be written as 

  G 2 2 22 1 1 1
2 4 2(tan ) exp csc 2 ln( csc ) (1 )(1 csc ) (1 )ln coty 

                        

   2 22 1 1 1
2 2 2ln( csc ) ( )(1 cot ) ( )iS              (82) 

Unlike Example 1, Eq. (82) proves to be quite different from C.y   Nonetheless, it carries the same leading-order 
terms as W.y   In comparison to the latter, it contains small additional corrections, especially in its real argument, 
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that tend to enhance its accuracy.  Furthermore, despite the dissimilarity between Gy  and C ,y  they both share the 
same exponential argument in their wave amplitude in the neighborhood of the origin.  Physicality of Eq. (82) at 

0x   is hence contingent on 21
4 .S      Assuming that 2 ( )S    or smaller, a uniformly bounded 

representation may be given by 

  G 2 22 1
2tan exp csc 2 ln( csc )y 

        
 2 22 1 1

2 2ln( csc ) ( )(1 cot ) ( )i S S              (83) 

E. Comparative Analysis 
 The absence of an exact solution for Eq. (74) is circumvented by numerical integration.  We use Butcher’s 
seventh-order Runge-Kutta technique in concert with shooting and linear superposition1 to obtain a numerical 
solution that we label N .y   We find that a small step size of 610x    is sufficient to ensure accuracy in all digits 
reported in N .y   By way of confirmation, we test the code by solving Example 1 and verifying that Ny  coincides 
with Ey  everywhere. 
 In Fig. 3, Ny  is compared to W ,y  Cy  and G .y   Despite their dissimilar formulations, both multiple-scale 
solutions overlap on the graph.  Due to reasons stated earlier, the agreement between Wy  and Ny  in Fig. 3a 
gradually depreciates in Figs. 3c and 3d as S  is increased at constant .   The multiple-scale expressions, however, 
remain more robust, being less sensitive to variations in .S   When the perturbation parameter is decreased to 

310   (or beyond), the agreement with Ny  is markedly increased.  This is illustrated in Fig. 3d where all four 
solutions are shown to concur throughout the solution domain.  In particular, it is interesting to note the agreement 
between numerics and asymptotics near the multiple wave peaks.  This favorable behavior enables us to rely on the 
approximate formulations to accurately predict the wave depth, ,  as illustrated in Fig. 3d.  Since   is sensitive to 
small deviations, it can be used as a performance tool to gauge the level of agreement between numerics and 
asymptotics.  Following classic theory, the wave’s penetration depth   is defined here as the distance from the 
porous wall to the point where the solution reaches 99% of its final value. 
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Figure 3.  A comparison of numerical ( yN ) with WKB ( yW ) and multiple-scale approximations ( yC  and yG ).  For 

210   and 2,   S  is varied from a) 10, to b) 20 and c) 50.  Results become visually confounded in d) where   is 
decreased from 210  to 310  while keeping S  constant.  Also shown in d) is the wave depth, .   As before, 
enlargements are shown in the insets. 
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1. Numerical vs. Asymptotic Wave Depths 
 In order to gain a better understanding of the inner scaling structure, the wave depths predicted by W ,y  Gy  and 

Cy  are shown in Fig. 4 using 310 .    In addition to the uniformly valid Cy , we also show the inner-core iy  and 
near-wall wy  obtained through Eqs. (76) and (77).  Our concern here is not so much with the uniformly valid 
solutions (which appear to concur over a wide range of  ) as it is with the local approximations.  In fact, for both 

2   in Fig. 4a and 4   in Fig. 4b, the near-wall approximation wy  appears to offer an adequate representation 
as long as   remains small.  The same can be said of the inner-core approximation i .y   As expected, the latter 
provides an accurate prediction for   near the core.  Both wy  and iy  deteriorate as we distance ourselves away 
from the wall and the core, respectively.  The accuracy that these local approximations offer can be attributed to the 
validity of the inner-core and near-wall scales in their particular spatial domains.   
 
2. GST vs. CST Scaling Transformations 
 In retrospect, g ( )s x  may be determined from Eq. (51) and compared to Eq. (24).  When this is performed, two 
relevant conclusions may be drawn.  First, by systematically deriving gs  from the problem’s solvability condition, 
the presence of nonlinearity in scaling constitution is formally ascertained.  Second, gs  may be seen to resemble in 
spatial content the composite scale c.s   Both are shown in Fig. 5 along with the inner-core and near-wall scales.  
Note that is  and ws  establish the upper and lower asymptotic limits of their uniformly valid counterparts.  
 
3. Numerical Versus Asymptotic Error Analysis 
 The mechanics of characterizing the error behavior are identical to those of Example 1 except that Ny  must now 
replace E .y   We find the results to be indispensable in evaluating the order of the error entailed in each formulation.  
The truncation order analysis is also instrumental in demonstrating the legitimacy of the corresponding 
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Figure 4.  Wave depths of the oscillatory solutions as predicted by the various asymptotic equations for a) 2   and b) 

4.    The uniformly valid yW , yG and yC  coincide with the numerical solution (for 310  ) to such a degree that 
their curves graphically overlap.  
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approximations.40  To that end, the absolute errors in C ,y  Gy  and Wy  are plotted versus   in Figs. 6a-c for three 
values of S  and .   Using the standard logarithmic form ,mE K  the error order m  may be graphically 
discerned.  We find that both CST and WKB errors exhibit a well-behaved asymptotic order in Figs. 6a and 6c.  The 
GST error depreciates more rapidly in Fig. 6b as 2m   asymptotically in .   Along similar lines, errors entailed in 
the multiple-scale approximations decrease with successive increases in .   However, they seem to barely increase 
with .S   This behavior does not mar the WKB error which has the advantage of being weakly dependent on S  (as 

0  ), and nearly insensitive to .   When all three errors are compared for 6   in Fig. 6d, the improved 
performance of Gy  below the main bisector may be singled out.  In addition to its higher rate of depreciation, the 
consistent reduction in the GST error at higher values of   may be connected to the formal procedural steps that 
make use of information at the 2( )  perturbation level while deriving an approximation for Gy  at ( ).  
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Figure 6.  Plot of the absolute error versus   at constant S.   The errors in yC,  yG  and yW  are shown in a), b) and c) 
for 2,4   and 6.   Unlike a) and b), the error in the WKB solution does not decrease at higher integers.  The one-term 
GST solution in b) exhibits an accelerated convergence rate caused by its error shifting from order 1 at 2   to order 2 
thereafter. When errors are compared in d) for 6   and S 10,20,50,100  and 200,  the ( )  GST solution appears to 
outperform both WKB and CST solutions below the bisector line.  Thus, for small S  or ,  the error in yG  outperforms 
that in yW.   This improvement becomes more appreciable as   is increased due to the corresponding reduction in the 
multiple-scale error. 



 
American Institute of Aeronautics and Astronautics 

 

19

IX. Conclusions 
 In this article, three asymptotic techniques are applied to a singular, second-order, multiply-perturbed, boundary-
value problem.  With the exception of the WKB approach, the CST and GST formulations increase our repertoire of 
rational approximations for this particular class of ODEs.  The startup equation is chosen with sufficient generality 
to make it applicable to physical settings arising in planar, cylindrical, and spherical geometries where oscillatory 
motion may be established.  In this work, the three aforementioned techniques are thoroughly tested and compared 
using three independent benchmark cases.   
 In hindsight, the originality of the GST procedure may be attributed to its ability to provide the correct 
generalized-scaling transformation while seeking to observe the problem’s solvability condition.  In the same vein, 
we find the nonlinearity in the resulting scale to be attributable to the mathematical need for boundedness between 
two successive perturbation levels.  In Example 1, the GST outcome precisely reproduces the result of the CST 
approximation.  Being entirely conjecture-free, the formal solution emerging thereof is helpful in clarifying the 
failure of linear transformations. The presence of nonlinearity, though infrequent, may actually be anticipated in 
problems with overlapping dissipative and dispersive mechanisms.  In fact, it does not constitute an unprecedented 
occurrence.  According to Van Dyke,43 a nonlinear transformation was first introduced by Munson44 in his study of 
the vortical layer on an inclined cone.  Therein, linear stretching was proved ineffective to the extent that an inner 
coordinate of the form ix x  had to be conjectured.   
 The leading-order GST approximation exhibits several characteristic properties.  Besides leading to a compact 
expression, it is shown to be (a) straightforward to derive, (b) accurate over a wide range of parameters, (c) more 
accurate with successive increases in (the eigenvalue)  , (d) unaffected by distinguished limits, (e) useful in 
illuminating the problem’s inner scales, (f) capable of accommodating an arbitrary scaling constituent, (g) of higher 
convergence rate, and (h) guesswork-free.  The latter attributes distinguish the GST from the WKB technique.  The 
WKB error, in comparison, (i) increases with  , (ii) depends on the ( )S  condition, (iii) offers no direct 
information about the scaling structure, (iv) exhibits a regular convergence rate, (v) requires the evaluation of harder 
integrals, and (vi) requires careful scaling before establishing its distinguished limits.  The main advantage of the 
WKB solution lies in its gradual insensitivity to S  as 0.    The main setback in both WKB and GST procedures 
stands in their potential failure, however remote, to generate closed-form expressions.  This is due to their reliance 
on the integrability of the variable coefficients that define the ODE in question. 
 The CST approach, on the other hand, is based on the systematic identification, matching, and presetting of the 
scales.  It shares the (a) through (f) features stated above.  In addition, it enables us to obtain locally valid 
approximations such as those that apply to the inner-core and near-wall regions.  In so doing, however, it may not 
exhibit an accelerated convergence rate and will often require guesswork or trial in determining the scales.  Its main 
advantage lies in its minimal requirement for integration.  The CST approach can therefore present a unique 
analytical platform in the event when both WKB and GST solutions prove intractable.  Both Examples 2 and 3 
illustrate cases for which the WKB solution of Type II cannot be obtained in closed form.  Countless intractable 
problems with intricate variable coefficients fall under this category.  Despite its reliance on the unconventional step 
of first reducing the scales, the CST solution employs the standard multiple-scale notion that suggests defining the 
variable transformations before differentiating.  In the GST procedure, the scales are, instead, determined at the 
conclusion of the analysis.  Interestingly, despite the blatant dissimilarities between the CST and GST expressions in 
Example 3, they both share the same asymptotic behavior in their wave amplitude when evaluated at the origin.   
 In closing, we return to Example 1 and note that, aside from being useful in verifying the accuracy of the 
conceptual formulations, it also serves to extend and provide one exact and two asymptotic solutions to a study 
introduced previously by Majdalani.4,5  From a perturbative standpoint, the attendant discussion clarifies and, in a 
way, justifies the paradigm adopted before in selecting nonlinear scales.1  Futuristically, it is hoped that the added 
freedom furnished in the GST approach will be further explored in problems with two or more dissimilar scales.  We 
also trust that a higher order expansion of the generalized scale will be tested in the treatment of similar problems 
involving jointly dispersive and dissipative waves.  
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