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Boundary Layer Treatment of the Porous Channel Flow 
with Wall Regression 

Joseph Majdalani* and Chong Zhou†

University of Tennessee Space Institute, Tullahoma, TN 37388  
 

This work extends a sequence of studies devoted to the analysis of the laminar 
flow in porous channels with retracting walls.  This problem was originally used to 
model slab propellant grain regression by Zhou and Majdalani (Zhou, C., and 
Majdalani, J., “Improved Mean Flow Solution for Slab Rocket Motors with 
Regressing Walls,” Journal of Propulsion and Power, Vol. 18, No. 3, 2002, pp. 703-
711. doi: 10.2514/2.5987).  After identifying a subtle endpoint singularity that affects 
the former solution in its third derivative, a slow variable is introduced to capture 
the rapid variations in the channel’s core. The core refers to the midsection plane 
where the shear layer is displaced due to hard blowing at the walls.  Then using 
matched-asymptotic expansions with logarithmic corrections, a composite solution 
is developed following successive integrations that start with the third derivative.  In 
the process, the inner correction is retrieved from the fourth-order equation 
governing the symmetric injection-driven flow near the core. The resulting 
approximation is expressed in terms of generalized hypergeometric functions and is 
confirmed using numerics and limiting process verifications.  The composite 
solution is shown to outperform the former, outer solution, as the core is 
approached or as the injection Reynolds number is increased. Without undermining 
the practicality of the former solution outside the thin core region, the development 
of a matched-asymptotic approximation enables us to suppress singular terms, thus 
ensuring a uniformly valid outcome down to the fourth derivative.   

I. Introduction 
HIS work seeks to provide a complete asymptotic solution to the steady two-dimensional flow of a 
viscous fluid in a porous channel with expanding or contracting walls.  The channel is taken to be 

semi-infinite with uniformly porous sidewalls.  An incompressible fluid is injected with constant relative 
velocity across its walls as shown in Fig. 1.  Such an idealization serves to model a range of physical 
mechanisms including transpiration cooling, boundary layer control, jet mixing, surface ablation, 
propellant burning, and membrane separation.  It has recently led to new exact solutions to the porous 
channel flow problem in the form of homotopy-based series that are not limited by the size of the 
crossflow Reynolds number.1 
 In transpiration cooling applications, the injection of a lower temperature fluid across the walls 
creates, on the one hand, a thermal barrier that protects the walls of the channel carrying a higher 
temperature fluid.2  Boundary layer control, on the other hand, can be accomplished by injecting, 
redirecting, or pulsating streams of fluid that can serve to reduce drag or acoustic resonance on an aircraft 
wing or upstream of an ammunition bay.3-6  In jet mixing processes, pulsating the jet in a controllable 
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manner can substantially improve jet turbulence and penetration while reducing the length to achieve a 
given mixing state.7,8  In combustion chambers and nozzles, injecting a cold layer of oxidizer can be 
instrumental in maintaining tolerable wall temperatures.9  In chemical propulsion, the ejection of gases 
inside a thrust chamber can be simulated by the uniform injection of a fluid across porous and regressing 
walls.10-16  Another application that has provided the original motivation for this class of studies is 
connected with the separation of uranium isotopes 235U and 238U by differential gaseous diffusion.17 
 In a prequel by Dauenhauer and Majdalani,18 both injection and suction-driven flowfields are 
characterized inside a uniformly porous viscous channel with expanding and contracting walls.  This 
model is also employed in the context of a slab burning solid propellant rocket motor.19  By introducing a 
similarity solution for the streamfunction of the form xF  , the Navier–Stokes equations are reduced 
to a single ODE for the characteristic function F .  An asymptotic solution is then obtained, valid for a 
large crossflow Reynolds number R v aw /  , where R  is based on the wall injection (relative) speed 
vw  and the channel half-spacing a .20  This is followed by several related investigations,21-26 including a 
recent study by Xu et al.1 in which the Homotopy Analysis Method is used to obtain a series solution.  
 The motivation for this article and, hence, the driving factor behind the forthcoming analysis are 
connected to the following paradigm.  The outer solution presented by Majdalani and Zhou20 is marred by 
an essential singularity in its midsection plane that once appeared in Yuan’s model27 for porous channels 
with stationary walls.  This endpoint singularity stems from a logarithmic term that appears in the 
solution’s third derivative.  The derivative in question controls the axial pressure gradient in the porous 
chamber and must be rectified lest its magnitude becomes suddenly unbounded at the core.  Physically, 
the onset of irregular behavior signals the presence of a viscous layer along the channel’s midsection 
plane, as once shown by Terrill28 in similar context.  In the present work, we follow Terrill’s approach to 
the extent of not only uncovering the size and shape of the viscous layer, but also showing how this 
singularity may be removed through the use of matched-asymptotic expansions.  Before closing, we 
present a uniformly valid approximation that leads to holomorphic vorticity, shear, and pressure fields 
across the fluid domain. 

II. Outer Solution 
 We consider the injection-driven viscous flow inside a uniformly porous channel with expanding or 
contracting walls.  As shown by Majdalani and Zhou,20 one can apply similarity transformations in space 
and time to convert the Navier-Stokes equations into a well-posed fourth-order boundary value problem. 
This problem exhibits the form 

      R F R yF F FF F
21 1 2            (1) 

 
Figure 1.  Flow geometry. 
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where the boundary conditions are specified at the channel wall and midsection plane, 
   F (0) 0  , F(0) 0 , F (1) 0  , F(1) 1.  (2) 
As before, x  and y  represent the longitudinal and normal coordinates measured from the headwall and 
the midsection plane, respectively (see Fig. 1).  They are made dimensionless by reference to the channel 
half height a . The wall expansion ratio aa /    is the Reynolds number based on the speed of wall 
regression a .  For a large injection Reynolds number, the small parameter R 1   is used by Majdalani 
and Zhou20 to solve Eq. (1) asymptotically.  Following consecutive applications of the variation of 
parameters method, we obtain 

 F S1 1
4 2

( ) sin (2 / ) 4 / ( cos sin )ln tan cos ( ) sin                            

      S2 21 1 1
2 2 2

8 4 cos           
; y1

2
  ;S

0
( ) csc d


      (3) 

where the x  and y  components of velocity can be deduced using u xF  , and v F .  In like 
fashion, other flow attributes may be extrapolated from F  and its derivatives.  The axial pressure 
gradient, for example, can be evaluated from F   via 

      p x x F FF F F yF
2

/ 2 
            

 (4) 

where 

  F S31 1 1
8 4 2

cos ( 4 / ) sin ( ) 2 cos sin ln tan 1 cos                          

        S2 21 1 1
2 2 2

8 4 3 cos sin             
 (5) 

The singularity at hand is caused by the ( 1
2

cos ln tan  ) term that appears, for the first time, in F  . 
Because this term becomes suddenly unbounded as 0  , it marks the presence of a core boundary 
layer that requires special treatment.  This spurious behavior may be attributed to the effects of blowing at 
each wall, a convection mechanism that drives the shear layer away from the wall and into the core 
region.  Inside this layer the viscous term R F1   in Eq. (1) becomes comparable to the inertial term 
FF F 2( )  .  Consequently, the full equation will have to be revisited and carefully rescaled before 
seeking a suitable outcome.  
 By retaining the highest derivative, however, the order of the equation is increased by one.  Formerly, 
only three of the four boundary conditions had to be satisfied by the outer solution.  Under the premise of 
a large injection Reynolds number, it was not necessary to impose the first condition, F (0) 0  , in Eq. 
(2).  At present, two boundary conditions at y 0   must be secured by the inner approximation while 
two others must be employed to determine the remaining constants of integration through matching with 
the outer solution.   
 In retrospect, it may instructive to note that the case of large blowing at two opposing but fixed walls 
displays similar features to ours.  This case is treated by Yuan27 whose series solution also appears to 
exhibit a core anomaly:  It continues to agree with numerical predictions until undergoing a threefold 
differentiation.  Much like ours, Yuan’s third derivative becomes infinite in its midsection plane.  To 
suppress this unphysical behavior, a follow-up investigation by Terrill28 may be consulted in which a 
mathematical strategy is introduced for the purpose of characterizing the subtle inner layer that is not 
considered in Yuan’s analysis.  In what follows, the existence of a comparable singularity will be shown 
to exist in the problem under investigation.  

III. Inner Expansion of the Outer Solution 
 To eliminate the singularity in F  , an inner solution is attempted in the thin core region. This is 
accomplished by applying the concept of matched asymptotic expansions. Starting with  

 F B S A1
2

sin (2 / ) ( cos sin )ln tan cos ( ) sin cos                          (6) 



 
American Institute of Aeronautics and Astronautics 

 

4 

      A S

B

2 21 1 1
2 2 2

1
4

8 / 4 /

4 /

    

  

      
 (7) 

a term-by-term expansion yields 

      F B3 5 2 31 1 1 1 1
3! 5! 2! 3! 2

( ) 2( / ) 1 ln                       
 

     B 2 31 1
2! 18

1         A3 5 21 1 1
3! 5! 2!

1           

      A B3 51 1
3! 5!

2 /               

    B B B A3 31 1 1 4 1 1
3 2 3 9 6 2

ln ln 2          . (8) 

 Letting the slow inner variable take the form n/   , substitution into Eq. (1) reveals a balance 
between inertial and viscous forces for n 1

2
 .  Recognizing that the core layer has a thickness of O 1/2( )

, the appropriate coordinate transformation becomes  1/2/   ; forthwith, the outer solution given by 
Eq. (8) may be expanded in the inner variable using  

o i oF F( ) ( )( ) ( )  A B B
1 3 5
2 2 23 31 1

6 6
2 / ln                      

    B B B A
5
2 5 3 31 1 1 4 1 1

120 3 3 9 6 2
ln ln 2               

   f f f f
1 3 5 5
2 2 2 2

1 2 3 4ln        . (9) 

IV. Inner Solution 
 Next, the independent variable in Eq. (1) is changed from y  to  . This replacement returns 
    F F F FF F F21 1 1

4 2 2
3 0                (10) 

where the subscript denotes a derivative with respect to  . Using the spatial distortion 
1
2   , one 

obtains the inner equation that dominates near the core.  One finds 

    F F F FF F F
1 3
2 221 1 1

4 2 2
3 0                (11) 

with local boundary conditions 
   F (0) 0      and    F(0) 0  (12) 

 At this juncture, the inner solution can be written in a series of progressively diminishing terms, 
specifically 

   iF g g g g
1 3 5 5
2 2 2 2( )

1 2 3 4( ) ( ) ( ) ln ( ) ( )             . (13) 
When substituted into Eq. (11), terms of the same order can be gathered. One gets 
  O g g g g g1

1, 1 1, 1, 1,2
( ) :   0          (14) 

  O g g g2 1
2, 2, 2,2

( ) :   0         (15) 

  O g g g3 1
3, 3, 3,2

( ln ) :   0          (16) 

  O g g g3 31 1
4, 4, 4,2 3

( ) :   (2 / )             (17) 

 According to Van Dyke’s matching principle, Eqs. (14)–(17) must be integrated and then matched 
with Eq. (9). This operation yields 
   g1   (18) 

    g A B31
2 6

2 /          (19) 
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   g B 31
3 6

  (20) 
However, applying F (0) 0   from Eq. (12), one deduces that g4, (0) 0  .  Equation (17) can then be 
integrated twice and put in the form 

 
       g Z e

2

2 3 21 1
4, 6 2 0

4 1 4 / erfi / d



          


       

      e
2

21
4

erfi /

   


   (21) 

where 
x

tx e t
3

1
2 0

erfi( ) d   refers to the error function and Z  alludes to a constant that must be 
determined through matching with o iF ( )( ) . 

A. Outer Expansion of the Inner Solution 
 In order to evaluate the inner solution in the outer domain, it is useful to introduce the large   
expression 

   B
e

2

2

4
erfi( )

( 4 )



  




 (22) 

Based on Eq. (22), the third and fourth terms on the right hand side of Eq. (21) become 

   e
2

1
2

2 / erfi / d

      


    B

B1
2 21

4

2 / d 2 ln
( / )

      
   

 
  (23) 

     B B
e e e

2 2 2

2 21 1
4 4 1

4

( ) erfi / ( )
( / )

  
   

     
    

 
   


 (24) 

The outer expansion of Eq. (21) can now be written as 
   og Z B B O3 2 1 31

4, 6
( ) ( 4 ) 2 ln ( )               . (25) 

Next, Z  needs to be determined before initiating the twofold integration of Eq. (25). 

B. Matching with the Outer Solution 
 According to Eq. (13), g4( )  represents the O 5/2( )  correction to the inner solution iF ( ) ; og4,( )  is 
hence the second derivative of the 5/2  correction arising in i oF ( )( ) .  Pursuant to Van Dyke’s matching 
principle, this term must be set equal to the second derivative f4,  of the 5/2  correction arising in 

o iF ( )( ) .  Returning to Eq. (9), it is clear that  
    f B B B A5 3 31 1 1 4 1 1

4 120 3 3 9 6 2
ln ln 2           (26) 

and so 
    f B B A31

4, 6
2 ln 2 ln 2 3           (27) 

By setting og f4, 4,( )  , Eqs. (25) and (27) can be equated in a manner to provide 
   Z B A 2(2 ln 2 3 ) / ( 4 )       (28) 
At the outset, Eq. (25) becomes 
      og B B A B O3 1 31

4, 6
( ) 2 ln 2 ln 2 3                (29) 

hence 
    og B A B B B B5 3 31 1 1 1 5 1

4 120 3 6 2 18 3
( ) ln 2 ln ln                (30) 

The outer expansion of the inner solution is finally at hand.  Substituting all ig  back into Eq. (13), one 
collects 
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 i oF A B B
1 3 5
2 2 2( ) 3 31 1

6 6
( ) 2 / ln                      

    B A B B B B
5
2 5 3 31 1 1 1 5 1

120 3 6 2 18 3
ln 2 ln ln                   . (31) 

This solution can be expressed in the original variable   and put in the form 

   i oF A B( ) 3 51 1
3! 5!

( ) 2 /               

    B A B B3 31 1 1 5 1
3 6 2 18 3

ln 2 ln          B O2 21
2

ln ( )     . (32) 

C. Inner Correction 
 Having determined the constant in Eq. (21), one can integrate twice and write 

     p qg B A F5 3 2 3 2 271 1 1 1 1
4 120 3 6 2 120 2

ln 2 1 4 / 10 (1,1);(3, ); /                   
 

   C C1 0   (33) 
where C1  and C0  are pure constants and p qF  is the generalized hypergeometric function. Due to the 
boundary condition F(0) 0 , it can be readily seen that g4(0) 0  and C0 0 . The remaining constant 
C1  becomes immaterial as it appears at O 2( ) . This can be ascertained by first substituting Eq. (33) into 
Eq. (13) to retrieve 

 iF A B B
1 3 5
2 2 2( ) 3 31 1

6 6
( ) 2 / ln                     

 

    B A
5
2 5 31 1 1 1

120 3 6 2
ln 2        

       p qF C2 3 2 271
1120 2

1 4 / 10 (1,1);(3, ); /               . (34) 

With 1/2/   , the last term involving C C5/2 2
1 1     can be dismissed when returning to the 

original coordinate representation.  The inner solution becomes  

   i
p qF F B( ) 3 5 2 5 2 371 1 1 1

3! 5! 120 2 6
( ) 1 4 / (1,1),(3, ), / ( ) ln                      

        A B B A O3 3 21 1 1 1
3 6 2 12

2 / ln 2 4 / ( )                         (35) 

where terms at order 2  and higher are ignored.  Having determined oF ( )( ) , iF ( )( )  and i oF ( )( ) , a 
uniformly valid composite solution cF ( )  can be reached by combining 
   c o i i oF F F F( ) ( ) ( ) ( )( )   . (36) 
One can evaluate the net correction iF ( )  which, when added to the formerly reported outer solution,20 
makes it singularity-free down to the fourth derivative.  Defining i i i oF F F( ) ( ) ( )( )  , one can put 
  i

p qF F B( ) 2 5 2 371 1
120 2 6

4 / 1 (1,1),(3, ), / ( ) ln                

    B B B3 3 3 21 5 1 1
3 18 12 2

ln 4 / ln                   (37) 

Based on this correction, the third derivative in cF ( )  is no longer unbounded at the core. The net 
corrections that must be added to the derivatives obtained by Majdalani and Zhou20 are, therefore, 
  i

p qF F B( ) 2 4 2 271 1
40 2 2

4 / 1 (1,1),(3, ), / ( ) ln                 

    p qB B F B2 2 21 1 13 5 1
2 12 10 2 2

ln (4 / ) (1,1),(2, ), / ( ) ln                   (38) 

 
  i

p qF F B( ) 2 3 271
20 2

1 4 / (1,1),(3, ), / ( ) ln                 
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      p qB F 2 2 27 1 5 1
15 4 2 4

2 ln (4 / ) (1,1),(2, ), / ( ) /                     

    2 5/2 2 21
8

4 erfi( / )exp[ / ( )] /            (39) 

 
  i

p qF F B( ) 2 2 271
20 2

1 4 / (1,1),(3, ), / ( ) ln                

    p qB F B229 1 5
30 4 2

2 ( 4 / ) ( 4 / ) (1,1),(2, ), / ( ) 8 ln                    

    2 3/2 21
4

4 erfi( / )exp[ / ( )] /           

      2 5/2 2 21 1
4 2

4 1 erfi( / )exp[ / ( )] / /              (40) 

and, finally, 
  iF B( ) 1/2 21

2
4 / erfi( / )exp[ / ( )] 2 /               (41) 

V. Corrected Core Values 
 Recalling that n n n n nF y F1

2
d / d ( ) d / d  , one can use either L’Hôpital’s rule or Taylor series 

expansions to study the behavior of F  and its derivatives as y 0 .   Without the inner correction, the 
formerly reported solution can be shown to exhibit 
  F F(0) (0) 0    (42) 

    F   2 21 1 1
2 2 4

(0) 1 4 16 2 /                 
 (43) 

      y
F y y3 21 1 1

8 2 2 0
( ) 8 / ln sgn( 16 )       

        
 (44) 

and 
    y

F y y4 2 21
16 0

( ) 16 / 1 / sgn( 16 )     
        

 (45) 

where  0.9159656  is Catalan’s constant. When the composite solution is constructed, singular terms 
take leave; one finds 

Table 1.  Spatial comparison in outer (o), composite (c), and numeric (n) predictions for F , F  , F   and F   
at α= 10  and ε= R =0.01 ( 100)  

 F  F   F   F   
y / (2 )  oF ( )  cF ( )  nF ( )  oF ( )  cF ( )  nF ( )  oF ( )  cF ( )  nF ( )  oF ( )  cF ( )  nF ( )  

0.0 0 0 0 1.6525 1.6389 1.6476 0 0 0 -∞ -6.2752 -6.0567 
0.1 0.0033 0.0033 0.0033 1.6525 1.6389 1.6476 -0.0190 -0.0126 -0.0121 -8.5722 -6.2750 -6.0562 
0.2 0.0066 0.0066 0.0066 1.6524 1.6389 1.6475 -0.0354 -0.0251 -0.0242 -7.9301 -6.2746 -6.0547 
0.3 0.0099 0.0098 0.0099 1.6523 1.6388 1.6475 -0.0509 -0.0376 -0.0363 -7.5543 -6.2740 -6.0523 
0.4 0.0132 0.0131 0.0132 1.6522 1.6387 1.6474 -0.0657 -0.0502 -0.0484 -7.2875 -6.2732 -6.0489 
0.5 0.0165 0.0164 0.0165 1.6521 1.6386 1.6473 -0.0801 -0.0627 -0.0605 -7.0803 -6.2722 -6.0446 
0.6 0.0198 0.0197 0.0198 1.6519 1.6385 1.6471 -0.0941 -0.0753 -0.0726 -6.9109 -6.2709 -6.0393 
0.7 0.0231 0.0229 0.0231 1.6517 1.6383 1.647 -0.1077 -0.0878 -0.0847 -6.7674 -6.2695 -6.0331 
0.8 0.0264 0.0262 0.0264 1.6515 1.6381 1.6468 -0.1211 -0.1004 -0.0967 -6.6430 -6.2678 -6.0259 
0.9 0.0297 0.0295 0.0296 1.6512 1.6379 1.6466 -0.1343 -0.1129 -0.1088 -6.5330 -6.2660 -6.0178 
1.0 0.0330 0.0328 0.0329 1.6509 1.6377 1.6464 -0.1473 -0.1254 -0.1208 -6.4345 -6.2639 -6.0088 
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  c cF F( ) ( )(0) (0) 0    (46) 

      cF ( ) 2 2 2 21 1 1 1
2 2 4 8

(0) 1 4 16 2 / ln 2                       
   (47) 

   cF ( ) 31 1
8 4

(0) 1 ln 16 /           

          2 21 1 1 19
2 5 2 5

3 ln 2 8 ln 2 12 48 /                  (48) 

  cF ( ) (0) 0    (49) 
Clearly, a distinct improvement can be observed near the core in the first, third, and fourth derivatives. 
The difference between F (0)  and cF ( ) (0)  appears at a small logarithmic order in view of 

    iF ( ) 2 21 1
2 8

(0) 2 ln        (50) 

 Insofar as Eq. (50) enhances the accuracy of the solution in the vicinity of the chamber midsection, it 
leads to local ameliorations in axial velocity and both axial and normal pressure gradients.20  In fact, when 
inner corrections are accounted for, a better agreement is achieved at all levels with the numerical 
solution of the problem. This can be seen in Table 1 where the outer, composite, and numerical 
predictions for F  and its derivatives are reported.  This comparison is focused on the limited core region 
associated with y0 2   and representative values of R 100  and 10.    In addition to the gradual 
refinement in the composite solution over the outer expressions for F , F  , and F  , a significant 

Table 2.  Outer (o), composite (c), and numeric (n) predictions for F (0)  and F (0)  at α= 10  and an 
increasing range of R.  The composite solutions at the core are given using the first term, the first two terms, 
and the first three terms in Eqs. (47) and (48) 

 F  : Eq. (47) F  : Eq. (48) 
R  oF ( )  cF ( )

1( )  cF ( )
2( )  cF ( )

3( )  nF ( )  F (0)  cF ( )
1( )  cF ( )

2( )  cF ( )
3( )  nF ( )  

10 2.3877 1.5708 2.3877 1.7089 2.1281 -∞ -3.8758 -14.538 -17.208 -18.165 
20 1.9793 1.5708 1.9793 1.7585 1.8963 -∞ -3.8758 -10.812 -12.147 -12.294 
50 1.7342 1.5708 1.7342 1.6881 1.7173 -∞ -3.8758 -7.4986 -8.0326 -7.8156 
100 1.6525 1.5708 1.6525 1.6389 1.6476 -∞ -3.8758 -6.0082 -6.2752 -6.0567 
200 1.6116 1.5708 1.6116 1.6077 1.6102 -∞ -3.8758 -5.1025 -5.2360 -5.0798 
500 1.5871 1.5708 1.5871 1.5864 1.5869 -∞ -3.8758 -4.4513 -4.5047 -4.4242 
1,000 1.5790 1.5708 1.5790 1.5788 1.5789 -∞ -3.8758 -4.1956 -4.2223 -4.1776 
10,000 1.5716 1.5708 1.5716 1.5716 1.5716 -∞ -3.8758 -3.9184 -3.9211 -3.9160 
100,0000 1.5709 1.5708 1.5709 1.5709 1.5709 -∞ -3.8758 -3.8811 -3.8814 -3.8809 

Table 3.  Outer (o), composite (c), and numeric (n) predictions for F (0)  at α= ±5  and an increasing range 
of R.  The composite solution at the core is obtained using the first term, the first two terms, and the first 
three terms in Eq. (47) 

 5   (expanding walls) 5    (contracting walls) 
R  oF ( )  cF ( )

1( )  cF ( )
2( )  cF ( )

3( )  nF ( )  F (0)  cF ( )
1( )  cF ( )

2( )  cF ( )
3( )  nF ( )  

10 1.9502 1.5708 1.9502 1.6332 1.8116 1.0753 1.5708 1.0753 1.4816 1.5659 
20 1.7605 1.5708 1.7605 1.6574 1.7152 1.3230 1.5708 1.3230 1.4552 1.4061 
50 1.6467 1.5708 1.6467 1.6251 1.6372 1.4717 1.5708 1.4717 1.4993 1.4888 
100 1.6087 1.5708 1.6087 1.6024 1.6059 1.5212 1.5708 1.5212 1.5294 1.5263 
200 1.5898 1.5708 1.5898 1.5879 1.5890 1.5460 1.5708 1.5460 1.5484 1.5475 
500 1.5784 1.5708 1.5784 1.5780 1.5782 1.5609 1.5708 1.5609 1.5613 1.5612 
1,000 1.5746 1.5708 1.5746 1.5745 1.5745 1.5658 1.5708 1.5658 1.5660 1.5659 
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improvement in the performance of the composite solution can be noted for F  . Overall, the ability of 
the matched-asymptotic approximation to outperform the outer solution is consistent as 0.    This can 
be inferred from Table 2 where estimates for both F (0)  and F (0)  are produced at 10   and a 
progressively increasing Reynolds number ranging from 10  to 510 .  These estimates are compared to the 
numerical values with and without inner corrections.  In order to depict the improvement with each 
successive asymptotic correction, the matched-asymptotic expansions at the core are provided using the 
first term, the first two terms, and the first three terms that appear in Eqs. (47) and (48), respectively.  In 
the case of F (0) , the two-term composite solution that emerges is identical to the outer approximation.  It 
is in fact the third correction of order 2 ln   that marks the difference in Table 2.  This result is further 
confirmed in Table 3 where the behavior of F (0)  is illustrated for expanding and contracting wall 
expansions with 5   .  In both situations, the asymptotic behavior improves as 0.    
 The dependence of the core values on   is also captured in Table 4 where both F (0)  and F (0)  are 
calculated over a range of expansion ratios ranging from 100  to 100  at fixed R 1000 . It is 
interesting to note that the error in the asymptotic predictions becomes more appreciable as | |  is 
increased at constant R.   This can be attributed to our approximation being contingent on R 1| | 1 

  in 
Eq. (1). In reality, this constraint does not pose any physical limitations in view of the small reported | |  
in practical applications. The present development of a composite solution with critical core corrections 
completes our laminar flow treatment of the porous channel with retractable walls. 

VI. Conclusions 
 In this study, we first identify and then suppress the spurious logarithmic singularity that affects the 
mean flow of a porous channel with regressing or contracting walls.  The singularity in question is 
conspicuous by its sudden appearance in the third derivative of the characteristic mean flow function.  At 
the outset, unboundedness unexpectedly appears in the axial pressure gradient.  Its emergence signals the 
presence of a viscous boundary layer that must be carefully resolved.  In this vein, the quest for an inner 
scaling transformation is initiated to the extent of striking a quasi balance between viscous dissipation and 
inertia.  The ensuing scaling analysis unravels a slow-varying stretched coordinate of the form 

1/2/   .  Next, when the inner expansion of the outer solution is carried out in terms of the inner 
variable  , fractional powers of   emerge along with the dreaded logarithmic order at irregular intervals.  
The gauge functions in the resulting series follow a sequence that starts with 1/2 3/2 5/2 5/2{ , , ln , , }      .  
This particular establishment of a suitable asymptotic sequence proves to be essential to the construction 
of a meaningful inner approximation.  The latter is pursued by first rescaling the governing equation into 
a form that is appropriate of the boundary layer region.  Then, by assuming a parallel inner expansion of 
the form iF g g g g( ) 1/2 3/2 5/2 5/2

1 2 3 4ln        , g1,  g2  and g3  are readily obtained, contrary to g4 ; 
mathematical obstructions in the last term warrant a separate analysis.  To determine g4 , special error 

Table 4.  Outer (o), composite (c), and numeric (n) predictions for F (0)  and F (0)  at R = 1000  and a 
range of α  

  oF ( )  cF ( )
1( )  cF ( )

2( )  cF ( )
3( )  nF ( )  oF ( )  cF ( )

1( )  cF ( )
2( )  cF ( )

3( )  nF ( )  
-100 1.4827 1.5708 1.4827 1.4849 1.4872 -∞ -3.8758 -0.4459 -0.1589 -1.5951 
-10 1.5615 1.5708 1.5615 1.5617 1.5616 -∞ -3.8758 -3.5139 -3.4835 -3.5544 
-1 1.5693 1.5708 1.5693 1.5694 1.5694 -∞ -3.8758 -3.8207 -3.8160 -3.8250 
-0.1 1.5701 1.5708 1.5701 1.5701 1.5701 -∞ -3.8758 -3.8513 -3.8492 -3.8529 
 0 1.5702 1.5708 1.5702 1.5702 1.5702 -∞ -3.8758 -3.8548 -3.8529 -3.8560 
 0.1 1.5703 1.5708 1.5703 1.5703 1.5703 -∞ -3.8758 -3.8582 -3.8566 -3.8591 
 1 1.5711 1.5708 1.5711 1.5711 1.5711 -∞ -3.8758 -3.8888 -3.8899 -3.8873 
 10 1.5790 1.5708 1.5790 1.5788 1.5789 -∞ -3.8758 -4.1956 -4.2223 -4.1776 
 100 1.6577 1.5708 1.6577 1.6556 1.6598 -∞ -3.8758 -7.2636 -7.5470 -8.1171 
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function approximations are used to simplify its second derivative under farfield conditions.  This is 
followed by matching with the second derivative of the outer solution expressed in the inner variable.  
This step allows us to deduce the constants in g4

 .  Subsequently, pursuant to a twofold integration of g4
 , 

a complete representation of the inner approximation is arrived at.  At length, the remaining constants are 
specified through matching with the outer solution.  Finally, using Erdélyi’s principle of composite 
expansions, the inner, outer, and common parts are algebraically combined into a matched-asymptotic 
solution that remains uniformly valid throughout the domain.  In retiring, comparisons with numerics are 
used to show that the corrected formulation is no longer marred by singularity.  The correction presented 
in this study is hence essential not only to the porous channel problem, but to other injection-driven flows 
that exhibit common attributes.  In future work, it is hoped that a similar approach will be employed to 
rectify the outer approximations that have so far been developed for analogous injection-based flowfields 
with core singularities. 
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