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Stodola’s area-Mach number relation is one of the most widely used expressions in 

compressible flow analysis.  From academe to aero-propulsion, it has found utility in the 

design and performance characterization of numerous propulsion systems; these include 

rockets, gas turbines, micro-combustors, and micro-thrusters. In this study, we derive a 

closed form approximation for the inverted and more commonly used solution relating 

performance directly to the nozzle area ratio.  The inverted expression provides a 

computationally efficient alternative to solutions based on traditional lookup tables and root 

finding.  Here both subsonic and supersonic Mach numbers are obtained explicitly as a 

function of the area ratio and the ratio of specific heats. The corresponding recursive 

formulations enable us to specify the desired solution to any level of precision. In closing, a 

dual verification is achieved using a CFD simulation of a typical nozzle and through Bosley’s 

formal approach intended to confirm the truncation error entailed in our approximations. 

In this process, both asymptotic and numerical solutions are compared for the Mach 

number and temperature distributions throughout the nozzle. 

Nomenclature 

A  = local cross sectional area 

tA  = nozzle throat area 

nE  = absolute error between NM  and nM  

nM  = asymptotic property at iteration order n  

NM  = numeric property reflecting true value 
  = perturbation parameter, t /A A  
  = ratio of specific heats 
 

Subscripts and Symbols 

0 ,1  = leading and first order 
c  = condition in the combustion chamber 
e  = condition in the exit plane 
n  = asymptotic level 
N  = numerically calculated value 
t  = condition at the nozzle throat 

 = subsonic term 

I. Introduction 

HE design of a supersonic nozzle may be viewed as an optimization study in which the exit Mach number plays 

the role of a target variable defined by mission requirements.  In this vein, a wide variability exists as virtually 

any smooth curve can be used in the subsonic region so long as the concavity of the contracting section does not 

prompt flow separation.  In the throat section, curvature is minimized to promote the establishment of a uniform 
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choking plane.  Downstream of the throat, the flow is accelerated to supersonic levels across an expanding section.  

In this region, proper contouring becomes critically important as discontinuities in the Prandtl-Meyer angle can 

cause undesirable shocks and expansions.  In the vicinity of the exit plane, the curvature is re-straightened to reduce 

flow divergence losses.  While traditional techniques, such as the method of characteristics, can be employed to 

arrive at an optimal nozzle shape, computational fluid dynamics (CFD) can also be used as a modern alternative.    

 In addition to the geometric optimization challenges, thermal protection issues arise in practical nozzle 

manufacture.  These are often associated with the temperature distribution and heat fluxes resulting at the walls.  On 

the one hand, enhancing performance and payload capability entails reducing weight and tapering edges.  On the 

other hand, thermal protection against exhaust gases requires strong materials and optimally designed cross sections.  

To gradually straighten the flow out of the nozzle, a relatively long, slowly sloping skirt is required to the extent that 

choosing a suitable length becomes an optimization process in its own right, specifically, one that gauges weight 

constraints, geometry, and divergence losses.  It can thus be seen that the initial design phase of a nozzle relies on an 

iterative process in which a multitude of calculations are required and where isentropic tools can be readily 

employed due to their ease and relative accuracy. 

 During this iterative process, several isentropic flow approximations in converging-diverging nozzles may be 

used and these are based on the area-Mach number relation connecting the Mach number to the nozzle area ratio and 

gas properties. Since its inception in 1903 by Stodola,1 this key expression has led to a substantial leap in our 

understanding of supersonic nozzle behavior;2,3 today, it can be found in most fundamental textbooks on the 

subject.3-7 

 Stodola‟s relation has been verified both experimentally1 and more recently via CFD.8,9 It is used in 

compressible flow simulations of the internal flowfield in solid rocket motors by Cheng, Liu and Sirignano,10 

Jackson, Najjar and Buckmaster,11 and Stewart et al.12  It appears in one segment of Rocflu, a compressible Navier-

Stokes solver intended for simulating rocket internal ballistics.11-14  It is also used in characterizing 

turbomachinery,15-17 scarfed and contoured-plug nozzles,18,19 pulse detonation engines,20,21 and 

magnetohydrodynamic systems.22 More recently, it has been employed in applications of constructal theory by 

Bejan,23 and in modeling micro-thrusters and micro-combustors by Leach24 and Tosin et al.25  Its popularity as a 

simple design tool lies in its ability to predict the area ratio needed to produce a desired exit flow Mach number. 

This feature is, however, not analytically invertible due to the transcendental nature of the Mach number 

dependence. At present, one must resort to tabulation or root finding in the process of estimating the expected exit 

Mach number for fixed area ratio and specific gas properties.  In this study, we overcome this difficulty through the 

use of asymptotics. 

 The inversion of a Mach number relation via asymptotics is not a novel concept. In similar context, the Prandtl-

Meyer function has been treated by a number of researchers such as Probstein26 who introduced an analytical 

inversion of the Prandtl-Meyer function for particular values of the specific heat ratio.  Day27 is also known for 

developing a hybrid inversion using a mix of analytical and computational tools.  While these methods vary from 

those employed here, they lend support to the usefulness of analytical approximations for problems that arise in 

similar physical contexts.  The present relation will be derived with a sufficient degree of accuracy to serve as a 

direct and practical design alternative. Not only will this solution increase our repertoire of known approximations 

for compressible flow models, but it will also provide a simple alternative to tabulation and root finding. 

II. Formulation 

 For isentropic flow through a converging-diverging nozzle with throat area tA , a transcendental equation relates 

the area ratio, t /A A  , and the local Mach number M  at any cross section of surface area A .  We are 

particularly interested in the so-called nozzle expansion ratio for which A corresponds to the maximum area eA  in 

the nozzle exit plane. From an asymptotic perspective, this condition results in the smallest possible e  .  In 

order to calculate the exit Mach number for a given nozzle design ratio, one can solve for M  using a numerical root 

finding technique appropriate for 

   
( 1) ( 1)

21 12( 1) 2( 1)
2 2

1 ( 1) 1 ( 1) 0M M
 

   
 

            (1) 

In general,   varies between 1.1 and 1.67 .  In rocket motors,   varies between 1.1 and 1.4  with an average value 

of 1.25 . For example, the Reusable Solid Rocket Motor (RSRM) has an average molecular weight 

28.46 kg/kmolwM  , constant specific heats 1966.54 J/kg-KpC   and 1674.4 J/kg-KvC  , a specific gas 

constant 292.14 J/kg-KR  , a mean chamber pressure 0 6.28 MPap  , a ratio of specific heats 1.17  , and an 
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exit area ratio e 0.13  . The exit Mach number is typically larger than 2 and can, of course, be calculated from Eq. 

(1). According to Sutton,7 the exit value can range from as low as 2.5 to as high as 10, with most being in a 4-6 

range.  What is important is that, in many applications, the area ratio e  varies between 1/ 3  and 1/ 25 .7  For high 

altitude applications (100 km or higher), e  ranges between 1/ 400  and 1/ 40 ; here the exit areas are increased to 

accommodate expansions to lower external pressures. To be conservative, one may then assume 

   e0.002 0.4   (2) 

 The natural emergence of a small quantity   is the motivation for using perturbation methods. These permit the 

construction of asymptotic solutions for the area-Mach number ( , )M    that encapsulate both roots of Eq. (1). 

 Once the Mach number is determined it can be used to predict the spatial evolution of the temperature, pressure, 

and density throughout the nozzle. Because Stodola‟s equation remains an idealized case, it may be used in 

conjunction with isentropic relations such as, 

     21
c 2

/ 1 1T T M     ,         21 1
c 2

/ 1 1p p M


      ,        
1

21 1
c 2

/ 1 1 M          (3) 

where c c,  ,p T  and c  stand for stagnation chamber properties.  Clearly, substitution of ( , )M    in the above 

will give rise, by direct extension, to c c( , , ), ( , , )T T p p       , and c( , , ).   
 

 The pressure and temperature are of chief interest because the pressure determines, in part, how the nozzle 

performs for a given geometry, and the construction of the nozzle is dependent, in part, on the wall temperature 

distribution and its induced thermal gradients.  To illustrate these effects, Fig. 1 is used to describe the pressure and 

temperature distributions in an isentropic nozzle.  In this graph, the subsonic pressures and temperatures are seen to 

exhibit qualitatively similar shapes, starting at a maximum value and decreasing as the flow enters the converging 

section of the nozzle.  The temperature decreases rather gradually as the acceleration in the subsonic region builds 

progressively.  After the flow crosses the throat at 1,   the pressures and temperatures continue to decrease.  In the 

case of the pressure, the supersonic branch appears to mirror its subsonic counterpart, with the slight asymmetry 

being caused by the location of the critical pressure at the throat, here shown for 1.4.    The temperature, 

however, experiences visibly dissimilar trends.  As the flow enters the supersonic region, the temperature steadily 

decreases, for 1  , and then drops precipitously as the area ratio approaches zero.  This behavior can be attributed 

to the thermal-to-kinetic energy conversion and its sensitivity to the degree of area expansion.  For small values of 

,  the substantial gain in Mach number is seen to translate into appreciable temperature differentials, specifically in 

the nozzle exit section. 

III. Analysis 

 For a fixed area ratio, two Mach numbers are possible depending on whether the axial position is located 

upstream or downstream of the throat section. In what follows, the asymptotic analysis leading to each of these roots 

is described. 

A. Subsonic Solution 

 Using   as our perturbation parameter, an explicit series approximation for the subsonic Mach number, 

 , ,M    can be pursued. The subsonic series approximation can be obtained using regular perturbations. To 
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Figure 1.  Sensitivity of the pressures and temperatures to the nozzle expansion ratio at  = 1.4. 
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begin, Eq. (1) can be written in subsonic notation.  In the interest of clarity, it is helpful to define two constants and a 

variable, 

   1

2
( 1) / ( 1)     ; 1

2
( 1)


     ;    21

2
( 1)M M    (4) 

These transform Eq. (1) into 

    1 1M M



      (5) 

Equation (5) represents the reduced relation that needs to be solved for .M  First, one may express M  in a series of 

diminishing terms, specifically 

   
2 3 4 5 6 7

0 1 2 3 4 5 6 ( )M x x x x x x x               (6) 

Second, by inserting Eq. (6) into Eq. (5), one may expand and segregate terms of the same order. At the outset, one 

finds that terms of even order must strictly vanish: 

   0 2 4 6 0x x x x     (7) 

In theory, the expansion of M  will be accurate to 
7( )  when the first three nonzero corrections are retained. The 

effective expansion reduces to 

   
3 5 7

1 3 5 ( )M x x x        (8) 

Subsequently, one may substitute Eq. (8) into Eq. (4) to retrieve a series expression for ,  

   2 2 2 2 4 4 61 1
1 1 1 3 1 32 2

( )x x x x x x             (9) 

One may also use the binomial expansion of Eq. (5) to evaluate 

     2 31 1

2! 3!
1 1 ( 1) ( 1)( 2) ...


                  (10) 

and so 

    1 2 31 1 1 1

2! 3!
1 ( 1) ( 1)( 2) ...



   
                      (11) 

The binomial expansion in Eq. (11) will be valid for 21

2
( 1) 1,M    an expression that remains true in the 

subsonic case.  This is especially true when considering that the ratio of specific heats varies between 1.1 and 1.4 in 

most propulsive applications.  This ensures that 1  which, in turn, prompts the swift convergence of the series.  

The left-hand side of Eq. (5) can now be replaced by the perturbed form of M  such that 

    1 3 5 7

1 3 51 ( )x x x


            (12) 

The final step is to insert Eq. (11) into Eq. (12). Collecting terms of the same order yields 

       3 51 1 1
1 3 1 5 12 4 32

1 , 1 , ( 1)(3 7)x x x x x


   


          (13) 

The corresponding Mach number may be obtained to arbitrary order from 

    
1

2 1 2 3

0 0
2 1

(2 )! (
(2 1) ( )

!2

1

(2

)

1)!

i

i i

n i
i n

n

i j

i
M

i i
ji 







 

 



  


   (14) 

By way of example, a three-term subsonic series approximation becomes 

    3 3 5 5 71 1
2 1 1 14 32

1 ( 1)(3 7) ( )M x x x              (15) 

It may be later shown that this expression is virtually indiscernible from the numerical solution of the problem. In 

fact, for operational area ratios up to 0.47   and 

1.7,   only one term needs to be calculated and still 

secure a practical approximation that accrues a less 

than 5% error. Table 1 catalogues the maximum value 

of   for which the error will remain bracketed under 

5% at different values of   and the first three 

asymptotic orders.  Note that the range of validity 

broadens when more terms are retained or when   is 

lowered. The range extends to 0.50   for the lowest 

value reported, 1.1.   Using a two-term correction, 

the maximum operational range increases to 

0.64 0.79   for 1.1 1.7  , with the largest   

corresponding to the smallest .  From an engineering 

perspective, Eq. (15) mirrors the exact solution because 

Table 1.  Maximum nozzle area ratio with less than 5% 

relative error at increasing asymptotic orders 
 

 
Subsonic Supersonic 

n
  0  1  2  0  1  2  

1.1 0.495  0.794  0.889  n/a 0.948  0.987  

1.2 0.491  0.670  0.885  n/a 0.767  0.999  

1.3 0.486  0.664  0.883  n/a 0.729  0.962  

1.4 0.482  0.658  0.881  0.00631  0.746  0.940  

1.5 0.478  0.653  0.879  0.01890  0.773  0.931  

1.7 0.470  0.644  0.875  0.06470  0.820  0.930  
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its error remains smaller than that associated with the governing equation itself; the latter is attendant on the 

isentropic flow idealization.  Hence, by virtue of the physical range defined in Eq. (2), a one-term approximation is 

sufficient to provide an accurate approximation up to 0.40,   .  This key result is: 

    
( 1)

31 2( 1)
2

1 ( )M


  


     (16) 

Note that   is not limited to the nozzle expansion ratio. It may correspond to any cross section so long as the 

inverted ratio with the throat area remains small. 

B. Supersonic Solution 

 Using the method of successive approximations, an explicit series expansion for  ,M    may be obtained. 

Successive approximations may be applied to polynomials and transcendental relations in which roots are not 

deducible from a regular expansion, namely, from a predetermined sequence of gauge functions.28  The ensuing 

linearization may be achieved by striking a balance in Stodola‟s equation between terms that dominate for 1.M   

To this end, we rewrite Eq. (1) in supersonic notation by introducing the three constants ,  ,  and  : 

   ( 1) / ( 1)     ; 1

2
( 1)   ; 1/ 2/ 1     (17) 

These may be substituted into Eq. (1) to render the simple form 

    2 2 2 2/1 M M     (18) 

Next, M  must be expanded carefully.  In identifying the leading order part of Eq. (18), we substitute 0 0M X  into 

Eq. (18) and write 

   
2/ 2 2 2 2

0 0 0X X       (19) 

A scaling analysis reveals that the first two members of Eq. (19) dominate with the third member representing a 

secondary contribution.  This behavior can be confirmed through the use of a numerically calculated root.  For the 

supersonic case at 0.1 , the Mach number is (1).   When substituting the ordered quantities back into Eq. (19), 

the first member will be seen to carry the largest contribution.  Along similar lines, the second member will exhibit a 

non-negligible, albeit smaller contribution, owing to its coefficient 
2 2/   multiplying its 

2

0 1X   part.  The third 

member in Eq. (19) contains an 2/  term only; as such, it can be viewed as a higher order quantity.  It is important 

to note that by balancing the first two members, a different leading order equation is achieved.  At leading order, the 

two largest terms will balance when 

    
  1

2
/ 1 ( 1)

0 [ ]X
  

 
 

   (20) 

Successive expansions of M  may be similarly undertaken by setting 1 0 1M X X  . Backward substitution into Eq. 

(18) leads to a solution for 1X  bearing a truncation error of 
4( 1)/( 1)[ ]   

.  For all approximations past 0 ,X  a 

recurrence relation may be written for iX  in terms of 1iX  : 

 
  2/ 2 2 2

1 1 1i i i iX M M M      
   

  
1/2

2 2/ 2 2 2 2 2 4 4/ 2/ 2

1 1 1 1

2

1( 4 4) (2 3) 2 (2 )i i i i iM M M M M            

    
          ; 1i     (21) 

where 

   
2/ 2 2 2 2

1 1

1

2 ( 2)i iM M


    


 

 (22) 

The higher order solutions may be sequentially obtained from the straightforward sum 

    0 1n nM X X X     (23) 

  Table 1 also lists the area ratios for which the relative error in Eq. (23) will reach 5% at different perturbation 

orders. To maintain a less than 5% error, a two-term approximation is clearly necessary as the validity of one term 

expressions is limited. Using 01 1,M X X   the relevant range of area ratios extends to [0.73 0.95]  depending on 

the value of .  When three terms are held, the valid range is extended to 0.99 at 1.2.   Considering that practical 

nozzles do not exceed 0.4,   a two-term approximation of the form 1M M  may be relied on. 

 Before leaving this section, it may be interesting to note that the  -dependence differs in behavior between the 

subsonic and supersonic solutions.  In the former, the range of validity in   improves at lower values of  .  In the 

latter, more than one local minimum can appear due to the nonlinearity of the supersonic formulation.  For 1M M , 

a local minimum appears in the middle of the feasible range of ,  occurring approximately near 1.3  .  The 

corresponding range of validity in   subsequently expands as | 1.3 |   is increased. 
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IV. Comparison and Order Verification 

A. Numerical Verification 

 The approximation for nM  is compared in Fig. 2 to N ,M  the numerical solution of Eq. (1), at increasing 

asymptotic orders, 0,1,2n  .  Both NM  and nM  are shown in subsonic and supersonic regimes at a representative 

value of 1.4.    These trends remain unchanged at other .  The inset in Fig. 2 enhances the differences between 

numerics and asymptotics in the transonic region.  In the meaningful range of 0.4,   the visible discrepancies 

become indiscernible when using either the one-term subsonic or the two-term supersonic approximations. This 

behavior concurs with the relative error predictions (reflecting a less than 5% deviation) furnished in Table 1 for 

0M  and 1.M   In the vicinity of 1,   the discrepancies do not pose a concern as they only denote impractically 

small nozzle divergences. 

B. CFD Verification 

 An inviscid, axisymmetric, density-based, double precision, finite volume solver is employed to simulate the 

motion of an ideal gas in a fully-flowing supersonic nozzle.  The nozzle has inlet and outlet area ratios of 2.42 and 

5.44, respectively.  Given an overall nozzle length of L = 0.3 m, the computational domain is resolved using a mesh 

comprised of 26,801 quadrilateral cells, as shown in Fig. 3.  The nozzle contour consists of a simple three-point 

spline.  Using air as the working fluid, two separate validation runs are undertaken.  The first trial uses a low 

pressure, low temperature flow with c 300K,T   while the second simulates a higher chamber pressure and a 

temperature of c 2,200K.T    The thermodynamic properties specific to each trial are posted in Table 2. 

 Figure 4 describes the evolution of the velocity vectors and corresponding Mach numbers for the low 

temperature trial.  The velocity scatter and Mach number contours characterize the flow magnification through the 

converging-diverging nozzle (Figs. 4a-b).  Downstream of the throat section, in the supersonic acceleration stage, 

the particles at the wall outrun the centerline particles.  This can be attributed to the absence of friction at the wall 

and the enhanced radial and axial expansions near the wall due to nozzle divergence; these exceed the centerline 

expansion that is limited to axial acceleration alone.  Being expanded both axially and radially, the flow near the 

wall experiences increased values of the local Mach number.  Conversely, the axially dominated centerline motion 

undergoes no radial acceleration and, as such, remains limited to a relatively smaller increase in its local Mach 

number.  

 The wall, centerline, and average Mach numbers 

obtained at different stations in the nozzle are 

compared in Fig. 4c to the three-term analytical 

approximations.  This comparison is carried out point-

by-point and shows that the 1-D analytical model lies 

between the wall and centerline curves, thus providing 

excellent agreement with the average computed Mach 

number at any given station.  This agreement holds 

everywhere except in the close vicinity of the throat 
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Figure 2.  Comparison between numerics and asymptotics in both subsonic and supersonic regimes for  =1.4.  

Table 2.  Parameters used in the low and high temperature 

simulations with air as the working fluid 
 

Parameter Cold Hot 

Chamber pressure (Pa) 101,325 506,625 

Outlet pressure (Pa) 3,740 50,660 

Chamber temperature (K) 300 2,200 

Ratio of specific heats 1.4 1.4 

Exit area ratio (At/Ae) 0.184 0.184 
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where the solution begins to diverge as the area ratio approaches unity.  This region can be further shrunk by 

including more corrective terms, although the three-term approximation remains adequate over the vast majority of 

the nozzle. 

 Figures 5 and 6 display the thermal data for the low and high chamber temperature runs.  As expected, the spatial 

distribution of the temperature isolines are qualitatively comparable to the Mach number contours, both for the cold 

(Fig. 5) and hot (Fig. 6) simulations.  The temperatures undergo a constant decline as the fluid is accelerated 

throughout the nozzle, owing to the continual thermal-to-kinetic energy conversion.  Figures 5b and 6b compare 

both trials to the present study using the isentropic relation in Eq. (3).  As with the Mach number, the asymptotic 

approximations are seen to provide an excellent average throughout the nozzle, with small discrepancies being 

detected in the neighborhood of the throat.  The resulting expressions can thus be used as analytical alternatives to 

a)  

 

b)  

 

Figure 3.  CFD nozzle geometry and mesh selection with enlarged inset. 
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CFD computations in simplified thermal analyses of 

the nozzle.  For example, both Stodola‟s and CFD 

solutions predict the occurrence of the maximum heat 

flux just upstream of the sonic point where the 

centerline velocity first reaches the speed of sound.  

This behavior is consistent with experiments7 and may 

be seen in Fig. 7 where the normalized heat flux, 

defined by / (2 ),q T r  is plotted over the length of 

the nozzle using Stodola‟s numerical solution, the 

present approximation, and CFD predictions.  Also 

shown on the same graph is the spatial variation of the 

Mach number obtained from Stodola‟s 1-D model 

previously described in Fig. 4. 

C. Asymptotic Error Verification 

 To verify the order of the error associated with the 

subsonic and supersonic perturbation expansions of 

,M  one may apply Bosley‟s graphical technique.29 

Accordingly, one may confirm that the expansion is 

asymptotically valid by showing that its absolute error 

exhibits, in some range of ,  a constant logarithmic 

rate. For that purpose, the absolute error may be 

defined as 

  
N N( , ) ;n n n nE M M E M M           (24) 

In either of the subsonic or supersonic cases, if the 

truncation error appears at order ,r  one can put 

  ( , ) r

nE C                                             (25) 

Graphically, the order of a given approximation can 

then be inferred from the log-log plot of nE  versus   

at constant .  According to Bosley,29 it is important 

for the error to approach zero at the correct rate (i.e., 

constr  ) as 0.   

 Forthwith, graphs of log nE  versus log  are given 

in Fig. 8 over a practical range of nozzle area ratios 

and a representative value of 1.4.    Corresponding 

asymptotic slopes are obtained using linear least-

squares and posted in Table 3, including those for 

1.2.    It is gratifying to note that all slopes 

approach constant rates, thus reflecting an „error-free‟ 

analysis. 

 In the subsonic case, the best fit slopes obtained 

from least-squares match quite closely the order of the 

theoretical truncation error given by Eq. (14). 

 In the supersonic case, the slope begins at a modest 

rate of descent that can be approximated by 1

2
( 1).   

It then increases rapidly as more terms are added. By retaining two terms, the asymptotic order in 1M  jumps to 

4( 1) / ( 1).    Being almost quadrupled in comparison to the leading order, 1M  is accompanied by a less than 5% 

error for practical values of   and up to 0.73 0.95   (Table 1). In the supersonic case, the order increases with 

.  In every case, the slope approaches a constant value with a higher correlation coefficient at higher values of n  

and in ranges of smaller .   The slopes shown in Table 3 are evaluated in the [0.001 0.01]    domain. Their 

agreement with the theoretical orders only improves in ranges of smaller .  
 

a)     

 

b)     
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 centerline CFD
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 3-term solution
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x/L

 

 =1.4

 c)  
 

Figure 4.  Cold flow simulation results depicting a) velocity 

vector distribution, b) Mach number contours, and c) 

comparison of Mach number predictions. 

 

Table 3.  Asymptotic slopes in En~r
 using the method of 

least squares 
 

  (subsonic) 
0E  1E  2E  

1.2  3  5  7  

1.4  3  5  7  

 (supersonic) 0E  1E  2E  

1.2  0.120  0.361  0.929  

1.4  0.210  0.635  1.518  
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V. Conclusions 

 In this work, two asymptotic approximations are presented as practical equivalents to the numerically-inverted 

area-Mach number relation. The present analysis provides the explicit dependence of the Mach number on the 

nozzle area ratio and ratio of specific heats. This dependence illuminates the influence of each of these parameters 

on the maximum achievable Mach number for isentropic motion. They also facilitate the efficient evaluation of 

thermodynamic properties while carrying out a performance analysis of a De Laval nozzle.  The present results are 

hoped to be further used in deriving closed-form expressions of other related parameters in compressible flow 

studies, which often assume inviscid motions.  Were viscous effects included in the analysis, they would have 

resulted in a reduced average velocity, especially near the wall where the flow would be decelerated.  If such were 

the conditions, then Stodola‟s relation could still provide a good approximation for the Mach number and 

corresponding temperature distributions near the centerline, where viscous effects are least significant. 

a)      

 

 
 

Figure 5.  Cold flow results depicting the a) thermal map in 

K and b) a comparison of wall temperature predictions. 

 

   
 

Figure 7.  Comparison of normalized heat flux and the 

spatial evolution of the Mach number. 

a)     

 

 
 

Figure 6.  Hot flow results depicting the a) thermal map in 

K and b) a comparison of wall temperature predictions.  
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Figure 8.  Asymptotic error entailed in supersonic and 

subsonic solutions for  =1.4.  
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