Pressure Variations in Rocket Nozzles. Part 3: Direct Calculation of the Local Mach Number

Joseph Majdalani* and Brian A. Maicke†
University of Tennessee Space Institute, Tullahoma, TN 37388

Foremost amongst rocket nozzle relations is the area-Mach number expression linking the local velocity normalized by the speed of sound to the area ratio \(A_t/A \), and the ratio of specific heats. Known as Stodola’s equation, the attendant expression is transcendental and requires iteration or numerical root finding in extracting the solution under subsonic or supersonic nozzle operation. In this work, a novel analytical inversion of the problem is pursued to the extent of providing the local Mach number directly at any given cross-section. The inversion process is carried out using two unique approaches. In the first, Bürmann’s Theorem of classical analysis is employed to undertake a functional reversion from which the subsonic solution may be retrieved. In the second, the Successive Approximation Approach is repeatedly applied to arrive at a closed-form representation of the supersonic root. Both methods give rise to unique recursive formulations that permit the selective extraction of the desired solution to an arbitrary level of accuracy. Results are verified numerically and the precision associated with the supersonic approximation is shown to improve with successive increases in the ratio of specific heats.

Nomenclature

\(A \quad = \quad \text{local cross-sectional area} \)
\(A_t \quad = \quad \text{nozzle throat area} \)
\(M \quad = \quad \text{local Mach number} \)

\(\alpha \quad = \quad \text{constant exponent in Eq. (4), } \frac{1}{2}(\gamma + 1)/(\gamma - 1) \)
\(\varepsilon \quad = \quad \text{perturbation parameter, } (A_t/A)^2 \)
\(\gamma \quad = \quad \text{ratio of specific heats, } c_p/c_v \)
\(\kappa \quad = \quad \text{constant exponent, } (\gamma - 1)/(\gamma + 1) \)
\(\zeta \quad = \quad \text{constant related to } \gamma \text{ in Eq. (4), } [\frac{1}{2}(\gamma + 1)]^\alpha \)

Subscripts and Symbols

\(0, 1, 2 \quad = \quad \text{leading, first and second order} \)
\(c \quad = \quad \text{chamber stagnation condition} \)
\(e \quad = \quad \text{exit plane condition} \)
\(n \quad = \quad \text{asymptotic level} \)
\(\mathcal{O}(\varphi) \quad = \quad \text{Landau’s big-O symbol, of same order as } \varphi \)
\(o(\varphi) \quad = \quad \text{Landau’s little-o symbol, of smaller order than } \varphi \)
\(\text{sub, sup} \quad = \quad \text{subsonic or supersonic} \)
\(t \quad = \quad \text{nozzle throat condition} \)

*H. H. Arnold Chair of Excellence in Advanced Propulsion, Mechanical, Aerospace and Biomedical Engineering Department. Senior Member AIAA. Fellow ASME.
†Graduate Research Assistant, Mechanical, Aerospace and Biomedical Engineering Department. Member AIAA.
I. Introduction

For isentropic flow through a converging-diverging nozzle with throat area A_t (see Fig. 1), a transcendental equation named after Stodola\cite{1} relates the area ratio t/A and the Mach number M at any cross-section of surface area A:

$$
\left(\frac{A}{A_t} \right)^2 = \frac{1}{M^2} \left\{ \frac{2}{\gamma + 1} \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right] \right\}^{\gamma + 1 \over \gamma - 1}
$$

where γ denotes the ratio of specific heats. Due to the nature of this expression, a perturbation parameter may be defined as $\varepsilon = (A_t/A)^2$, where $\varepsilon \ll 1$ except for flow in the direct vicinity of the throat section. In practice, ε will reach its lowest value in the nozzle exit plane where $\varepsilon_e = (A_t/A_e)^2$ represents the square of the so-called area expansion ratio. Naturally, the calculation of the corresponding local or exit Mach number M_e is of interest to the propulsion and power generation subdisciplines with particular areas of concentration in nozzle design and optimization. This can be attributed to the connection between exit Mach numbers and ideal thrust coefficients, rocket specific impulses, characteristic exhaust velocities, gas turbine efficiencies, and so on, and the relevance of Stodola’s relation to the problem of sizing and shape selection in a variety of combustion devices in which gases are expanded, such as rockets, ramjets, scramjets, and afterburners.\cite{2,4}

Despite its simplicity and one-dimensional form, Eq. (1) continues to find uses in modern propulsion-related studies. In this context, one may cite Najjar et al.\cite{5} who employ this relation to set up the initial conditions in their compressible flow solver Rocflu.\cite{6} Along similar lines, Haselbacher et al.\cite{7} use this expression to establish a test case for their slow-time acceleration problem in which time scales are estimated. Thakre and Yang\cite{8} and Zhang et al.\cite{9} also make use of the relation in question for the purpose of verifying their codes on nozzle erosion.

In order to determine the local and/or exit Mach numbers at a given cross-section, one can solve for M straightforwardly using either numerical root finding or compressible flow tables. However, to solve the problem analytically, it is helpful to rearrange Eq. (1) into

$$
\varepsilon^{\gamma - 1 \over \gamma + 1} \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right]^{2(\gamma - 1) \over 2(\gamma + 1)} - M^{8\gamma \gamma + 1 \over 2(\gamma + 1)2(\gamma - 1)} = 0
$$

In this study an explicit solution for the Mach number will be presented in terms of the area ratio A/A_t and the ratio of specific heats γ.

Figure 1. Converging-diverging nozzle schematic showing relevant properties and Mach numbers.
II. Analysis

For a fixed nozzle area ratio, two mathematically and physically possible Mach number roots exist: one subsonic and the other supersonic. In what follows, the analysis leading to each of these roots will be separately described. Subsonic and supersonic solutions at order \(n \in \mathbb{N} \) will be denoted by \(M^{(n)}_{\text{sub}} \) and \(M^{(n)}_{\text{sup}} \), respectively.

A. Subsonic Treatment Based on Bürmann’s Theorem

In previous work by the authors, the subsonic solution to Stodola’s equation was pursued using regular perturbation theory. At present, we provide a simple alternative based on classical analysis, namely, by means of Bürmann’s theorem. This form will lead to the establishment of a general recursive formulation from which the solution may be generated to any order. Bürmann’s theorem forms an extension of a Taylor series reversion for arbitrary functions. In layman’s words, if a function can be expanded about a particular point in terms of a second function, the converse is true, and one may express the second function in terms of the first. This theorem enables us to write an expression for the Mach number in terms of the local area ratio to arbitrary precision.

To start the analysis we revisit Stodola’s equation and simplify it into
\[
\varepsilon^2 \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right]^{\alpha} = M \zeta
\]

where
\[
\alpha = \frac{\gamma + 1}{2 (\gamma - 1)} \quad \text{and} \quad \zeta = \left(\frac{\gamma + 1}{2} \right)^{\alpha}
\]

Before we apply Bürmann’s theorem, we rearrange Eq. (3) such that
\[
\varepsilon^2 = \phi(M) = M \zeta \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right]^{-\alpha}
\]

In the above, \(\phi(M) \) constitutes an analytic function over the closed region associated with the subsonic branch of solution, \(0 \leq M \leq 1 \). To ensure that an expansion is valid in this region, we examine the behavior of the function and its first derivative as \(\varepsilon \to 0 \). We identify, in particular, the point \(M_0 = 0 \) where
\[
\phi(0) = 0 \quad \text{and} \quad \phi'(0) \neq 0
\]

Since \(\phi(M_0) \) is finite and the derivative is non-zero, Bürmann’s theorem can indeed be applied in this situation. We subsequently define \(f(M) = M \) and use \(M_0 \) as the anchor point to construct
\[
\psi(M) = \frac{f(M) - f(M_0)}{\phi(M) - \phi(M_0)} = \frac{M}{\phi(M)}
\]

Given \(\psi(M) \), a straightforward application of the theorem leads to
\[
f(M) = f(M_0) + \sum_{m=0}^{n} \frac{\phi^{m+1}(M)}{(m+1)!} \left[\frac{dF}{dM} \frac{d^m \psi^{m+1}(M)}{dM^m} \right]_{M=M_0} + R_{n+1}
\]

where \(R_{n+1} \) represents the truncation error remaining at that order. Substituting Eq. (7) into Eq. (8) yields
\[
f(M) = \sum_{m=0}^{n} \frac{\varepsilon^{m+1} \phi^{m+1}(M)}{(m+1)!} \left[\frac{d^m \psi^{m+1}(M)}{dM^m} \right]_{M=M_0} + O(\varepsilon^{n+1})
\]

whence
\[
f(M) = \sum_{m=0}^{n} \frac{\varepsilon^{m+1}}{(m+1)!} \left[\frac{d^m \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right]^{-(m+1)\alpha}}{dM^m} \right]_{M=0} + O(\varepsilon^{n+1})
\]

Evaluating the first three terms of the summation renders
\[
f = \frac{\varepsilon^2}{11\zeta^3} \left\{ \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha \right\} + \frac{\varepsilon^2}{21\zeta^2} \left\{ \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha \right\}' + \frac{\varepsilon^2}{31\zeta} \left\{ \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha \right\}'' + \ldots \quad (11)
\]

Each member of this series may be separately determined from the limit of the corresponding derivative at \(M_0 \). We get, for the first, zeroth-order member,

\[
\lim_{M \to 0} \varepsilon^2 \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha = \varepsilon^2 \left(\frac{2}{\gamma + 1} \right) \quad (12)
\]

Similarly, the second member gives

\[
\lim_{M \to 0} \frac{\varepsilon^3}{2!\zeta^2} \left\{ \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha \right\}' = \lim_{M \to 0} \frac{\varepsilon}{2\zeta^2} \left\{ 2\alpha \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha - (\gamma - 1)M \right\} = 0 \quad (13)
\]

It may be easily proved that all terms containing whole powers of \(\varepsilon \), \(\varepsilon^2 \), \(\varepsilon^3 \), \ldots disappear identically.

Finally, the cubic term may be calculated from

\[
\lim_{M \to 0} \frac{\varepsilon^3}{3!\zeta^3} \left\{ \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha \right\}'' = \lim_{M \to 0} \frac{\varepsilon^3}{6\zeta^3} \left\{ 3\alpha \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^\alpha - 3\alpha - 1 \right\} = \varepsilon^3 \left(\frac{2\gamma - 1}{(\gamma + 1)^2} \right) \quad (14)
\]

Higher-order terms may be readily extracted using symbolic programming of Eq. (10). At length, the subsonic solution to order \(O(\varepsilon^2) \) may be arrive at, specifically

\[
M^{(3)}_{\text{sub}} = \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \varepsilon^2 + \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 5}{2(\gamma - 1)}} \varepsilon^2 + \left[\frac{2^{5\gamma - 1}}{(\gamma + 1)^{2\gamma - 2}} \right] \left(\frac{3\gamma + 2}{\zeta^2} \right) \varepsilon^2 + O(\varepsilon^2) \quad (15)
\]

Equation (15) compares quite well with the numerical solution. For most propulsive applications, the three terms retained above are quite sufficient for engineering accuracy. The attending error remains smaller than 5% up to \(\varepsilon = 0.77 \) or an area ratio of 0.88. Nonetheless, should further supplementary terms be required, Eq. (10) may be slightly modified to generate a solution to arbitrary order of precision viz.

\[
M^{(n)}_{\text{sub}} = \sum_{i=0}^{n} \frac{\varepsilon^{i+1} \zeta^{(2i+1)\alpha}}{(2i+1)!} . \left(\frac{d^{2i}}{dM^{2i}} \left[1 + \frac{1}{2}(\gamma - 1)M^2 \right]^{(2i+1)\alpha} \right)_{M=0} + O(\varepsilon^{n+\frac{1}{2}}) \quad (16)
\]

After some effort, a recursive relation may be seen to exist, thus permitting the direct extraction of the subsonic solution to any desired order of accuracy:

\[
M^{(n)}_{\text{sub}} = \sum_{i=0}^{n} \frac{(\gamma - 1)^i \varepsilon^{i+1} (2i)! \prod_{j=0}^{i-1} \left[(2i+1)\alpha - j \right]}{i!2^i (2i+1)! \zeta^{2i+1}} + O(\varepsilon^{n+\frac{1}{2}}) \quad (17)
\]

As shown in Fig. 2, this expression is virtually indiscernible from the numerical solution of the problem. A three-term approximation is more than adequate for the subsonic Mach number, even for large \(\varepsilon \). For operational area ratios up to \(A_1 / A = 0.47 \) and an extreme case of \(\gamma = 1.7 \), only one term needs to be retained in order to obtain a practical approximation that accrues a less than 5% error. The range of \(\varepsilon \) increases as more terms are retained or as \(\gamma \) is lowered.
B. Supersonic Treatment Based on Successive Approximations

It seems that all regular and non-regular perturbation attempts will fail in extracting the supersonic root directly from Eq. (2). Instead, we find it necessary to elevate Stodola’s equation to the power of \(\alpha^{-1} = 2(\gamma - 1) / (\gamma + 1) \). The exponent-inverted form becomes

\[
e^{-\frac{2}{\gamma-1}} \left[1 + \frac{1}{2} (\gamma - 1) M^2 \right] - M^{\frac{2(\gamma-1)}{\gamma+1}} \left[\frac{1}{2} (\gamma + 1) \right] = 0
\]

The resulting expression may then be multiplied by 2 and rearranged into

\[
(\gamma + 1) M^{\frac{2(\gamma-1)}{\gamma+1}} - (\gamma - 1) e^{\frac{2}{\gamma-1}} M^2 - 2 e^{\frac{2}{\gamma-1}} = 0
\]

or

\[
(\gamma + 1) M^{2\kappa} - (\gamma - 1) e^{\kappa} M^2 - 2 e^{\kappa} = 0; \quad \kappa = (\gamma - 1) / (\gamma + 1)
\]

Figure 2. Comparison between numerical and asymptotic solutions for \(\gamma = 1.4 \).
Equation (20) is a keystone relation that can be managed to produce the supersonic root, albeit equivalent to Eq. (2). In what follows, we apply the Successive Approximation Method to obtain the first three terms of the solution from which a recursion formula may be deduced. We also recognize that $1 \leq \gamma \leq \frac{5}{3}$ and so $0 \leq \kappa \leq \frac{1}{4}$. Then for $M > 1$, the members in Eq. (20) may be presented in descending order, with the largest and smallest terms corresponding to $(\gamma + 1)M^{2\kappa}$ and $2\varepsilon^\kappa$, respectively. Assuming $M = M_0 + o(M_0)$ one gets, at leading order:

$$(\gamma + 1)M_0^{2\kappa} - (\gamma - 1)\varepsilon^\kappa M_0^2 - 2\varepsilon^\kappa = 0$$

(21)

In view of $M_0 > 1$ and $\kappa < 1$, the last term may be ignored, being of higher order. This enables us to achieve balance between the first two terms by setting

$$(\gamma + 1)M_0^{2\kappa} = (\gamma - 1)\varepsilon^\kappa M_0^2$$

or

$$M_0 = \left(\frac{\kappa\varepsilon^\kappa}{2(\gamma - 1)}\right)^{\frac{1}{\gamma + 1}} = \left[\frac{\gamma + 1}{(\gamma - 1)\varepsilon^\kappa}\right]^\frac{1}{\gamma + 1} = \frac{1}{(\gamma - 1)\varepsilon^{\frac{1}{\gamma - 1}} + 1}$$

(22)

Next, we let $M = M_0 + M_1 + o(M_1)$ and expand Eq. (21) into

$$(\gamma + 1)M_0^{2\kappa} \left(1 + 2\kappa\frac{M_1}{M_0}\right) - (\gamma - 1)\varepsilon^\kappa M_0^2 \left(1 + 2\frac{M_1}{M_0}\right) - 2\varepsilon^\kappa = 0$$

(23)

where a binomial series is used. This enables us to extract the first order correction from

$$2\kappa(\gamma + 1)M_0^{2\kappa}M_1 - 2(\gamma - 1)\varepsilon^\kappa M_0M_1 - 2\varepsilon^\kappa = 0$$

(24)

whence

$$M_1 = \frac{\varepsilon^\kappa M_0}{\kappa(\gamma + 1)M_0^{2\kappa} - (\gamma - 1)\varepsilon^\kappa M_0^2} = \frac{1}{(\gamma - 1)(\varepsilon^{-\kappa} M_0^{2\kappa - 1} - M_0)}$$

(25)

To determine $O(M_1)$ and, with it, the order of leading order truncation error, we evaluate

$$M_1 \approx \frac{1}{(\gamma - 1)}\varepsilon^\kappa M_0^{1-2\kappa} = \frac{\varepsilon^{\frac{\gamma + 1}{\gamma - 1}}}{(\gamma - 1)} \left[\frac{(\gamma + 1)^{\frac{\gamma + 1}{4}}}{(\gamma - 1)^{\frac{\gamma + 1}{4}}} \varepsilon^{\frac{\gamma}{(\gamma - 1)}}\right] = \frac{\varepsilon^{\frac{\gamma + 1}{\gamma - 1}}}{(\gamma - 1)^{\frac{\gamma + 1}{4}}} = O(\varepsilon^{\frac{\gamma}{(\gamma - 1)}})$$

(26)

Repeating once more, we substitute $M = M_0 + M_1 + M_2 + o(M_2)$ into Eq. (21) and collect

$$(\gamma + 1)(M_0 + M_1)^{2\kappa} \left(1 + 2\kappa\frac{M_2}{M_0 + M_1}\right) - (\gamma - 1)\varepsilon^\kappa (M_0 + M_1)^2 \left(1 + 2\frac{M_2}{M_0 + M_1}\right) - 2\varepsilon^\kappa = 0$$

(27)

The second order correction may thus be retrieved. We obtain

$$M_2 = \frac{2\varepsilon^\kappa - (\gamma + 1)(M_0 + M_1)^{2\kappa} + (\gamma - 1)\varepsilon^\kappa (M_0 + M_1)^2}{2\kappa(\gamma + 1)(M_0 + M_1)^{2\kappa - 1} - (\gamma - 1)\varepsilon^\kappa (M_0 + M_1)}$$

(28)

An asymptotically expanded form of the above may be expressed as

$$M_2 \approx -\frac{M_1^2}{2} \left[(\gamma - 1)\varepsilon^\kappa - (\gamma + 1)\kappa(2\kappa - 1)M_0^{2\kappa - 2}\right] = \frac{M_1^2}{2} \left[\frac{(\gamma - 1)\varepsilon^\kappa - (\gamma + 1)\kappa(2\kappa - 1)M_0^{2\kappa - 2}}{M_1^2 - \varepsilon^\kappa}\right]$$

(29)

The corresponding order may be retrieved using binomial expansions and simplifications leading to the identification of

$$M_2 \approx \frac{1}{2}(\gamma - 1)M_1^2 = O(\varepsilon^{\frac{\gamma}{(\gamma - 1)}})$$

(30)

It is clear that for $i \geq 1$, a recursive relation exists for M_i in terms of M_{i-1} from which all terms beyond M_0 may be extrapolated. Higher order approximations may hence be realized by adding each successive correction to the sum.
\[
M_{\text{sup}}^{(n)} = M_0 + \sum_{i=1}^{n} M_i; \quad M_i = \frac{2\varepsilon^\kappa - (\gamma + 1)\left[M_{\text{sup}}^{(i-1)}\right]^{2\varepsilon^\kappa} + (\gamma - 1)\varepsilon^\kappa \left[M_{\text{sup}}^{(i-1)}\right]^2}{2\kappa(\gamma + 1)\left[M_{\text{sup}}^{(i-1)}\right]^{2\varepsilon^\kappa - 1} - 2(\gamma - 1)\varepsilon^\kappa M_{\text{sup}}^{(i-1)}}; \quad M_{\text{sup}}^{(i-1)} = \sum_{j=0}^{i-1} M_j \quad (31)
\]

Results displayed in Fig. 2 are taken with expansions up to \(n = 2 \) so both the supersonic and subsonic solutions will contain three terms. The selected area in part a) is magnified in part b) to illustrate the degree of agreement with increasing asymptotic orders as \(\varepsilon \to 1 \). We note a substantial agreement with the use of three terms, even at large \(\varepsilon \).

III. Concluding Remarks

In this study, two asymptotic formulations are presented as numerical equivalents to the traditional area-Mach number relationship that is ubiquitously used in rocket nozzle analysis. The first is derived from Bürmann’s Theorem and the second, using the Method of Successive Approximations. Both techniques unravel the explicit dependence of the Mach number on the nozzle area ratio and the ratio of specific heats. The tacit relations that we arrive at allow for swift and robust computation of essential flowfield properties in a De Laval nozzle under either subsonic or supersonic operation. This is accomplished by granting the use of selectively controlled recursive formulations that produce the desired branch of solution to any degree of accuracy. Compared to other studies on the subject, the present work leads to simple and novel recursions with well prescribed truncation orders. These increase our repertoire of engineering approximations for compressible flows and enable us to compute the subsonic and supersonic Mach numbers at any cross-section and to an arbitrary degree of precision. In practice, a maximum of three non-zero terms in each approximation may be sufficient to yield a satisfactory level of precision.

Acknowledgments

This work was completed with the support of the National Science Foundation through Grant No. CMMI-0928762.

References