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In this work, we present two simple mean flow solutions that mimic the bulk gas motion
inside a full-length, cylindrical hybrid rocket engine. Two distinct methods are used. The
first is based on steady, axisymmetric, rotational, and incompressible flow conditions. It
leads to an Eulerian solution that observes the normal sidewall mass injection condition
while assuming a sinusoidal injection profile at the head end wall. The second approach
constitutes a slight improvement over the first in its inclusion of viscous effects. At the
outset, a first order viscous approximation is constructed using regular perturbations in
the reciprocal of the wall injection Reynolds number. The asymptotic approximation is
derived from a general similarity reduced Navier–Stokes equation for a viscous tube with
regressing porous walls. It is then compared and shown to agree remarkably well with
two existing solutions. The resulting formulations enable us to model the streamtubes
observed in conventional hybrid engines in which the parallel motion of gaseous oxidizer
is coupled with the cross-streamwise (i.e., sidewall) addition of solid fuel. Furthermore,
estimates for pressure, velocity, and vorticity distributions in the simulated engine are
provided in closed form. Our idealized hybrid engine is modeled as a porous circular-
port chamber with head end injection. The mathematical treatment is based on a stan-
dard similarity approach that is tailored to permit sinusoidal injection at the head
end. �DOI: 10.1115/1.4002397�
Introduction
The substitution of hybrid propellants in propulsive applica-

ions is gradually gaining popularity as demonstrated in the effec-
ive use of a nitrous oxide/HTPB combination for the main engine
f the 2004 SpaceShipOne suborbital vehicle. Having been initi-
ted in the early seventies, research devoted to enhancing hybrid
ngine performance continues to receive attention today in both
cademic and commercial sectors. In this vein, one may cite Chia-
erini, Knuth, Karabeyoglu, Kuo, Krier, and others �1–7� whose
otable achievements have been reflected in the design and testing
f innovative chamber and propellant configurations. However,
ost of these studies have been experimentally focused and the
athematical models used to obtain hybrid regression rate corre-

ations have often assumed one-dimensional gaseous motion
bove the grain surface. The need for more elaborate analytical
ormulations, such as those required to approximate the velocity
eld above the propellant boundary, has been recently identified in
survey by Kuo and Chiaverini �8� as one of the impediments

onfronting the development of future hybrid models. Thus given
n idealized representation of a cylindrical hybrid chamber with
xial symmetry, it is the purpose of this study to investigate the
uitability of two approximations of increasing order of accuracy
hat may be used to describe the attendant two-dimensional flow
eld.
In a typical hybrid, an inert solid fuel grain burns in the pres-

nce of a gaseous or liquid oxidizer �see Fig. 1�. The resulting
iffusion flame resembles that of a household candle: While the
ot reacting gases compel the fuel to pyrolyze and vaporize, the
xidizer and fuel particles combust along the exposed port areas
n several layers of decreasing fuel concentration. This process is
llustrated in Fig. 2 where stacked layers of decreasing fuel frac-
ions are shown to separate the oxidizer from the solid fuel grain.
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In 1966, a simple analytical solution was proposed by Culick
�9� for describing the mean gaseous motion in a solid rocket mo-
tor �SRM�. His solution was derived under the contingencies of
steady, incompressible, rotational, axisymmetric, and inviscid
�high Reynolds number� flow. It coincided with Taylor’s 1956
solution obtained in a different physical context �10,11�. The re-
sulting profile was scrutinized in subsequent studies, including
computational �12–14�, experimental �14–17�, and theoretical in-
vestigations �18–23�; it was found to be quite adequate for mod-
eling the mean flow in a full-length cylindrical motor. To this date,
Culick’s profile remains at the foundation of several theoretical
studies, especially, those concerned with acoustic instability
�24–26�. Despite its simplicity and dismissal of SRM physico-
chemistry, it has proven to be quintessential in investigating sev-
eral performance-related mechanisms that are germane to rocket
motor internal ballistics �17,19,20,27�.

In a simplified model of a hybrid propellant chamber, the mo-
tion of gases ejected along the grain can be assumed to be normal
to the surface, as in the case of SRMs. In fact, a closed-form
analytical approximation, namely, one that will be pursued here,
can be used to describe the gas motion corresponding to this ide-
alized representation of a hybrid chamber. If slip is allowed at the
surface, another solution can be managed, albeit irrotational. In
either of the two cases, the interactions within the flame zone must
be ignored lest an intractable problem is reached at leading order.
Instead, the burning surface will be modeled, as in the case of a
solid propellant, by assuming a porous surface �9�. The difference
here lies in the mass injection across the wall, which will be �an
order of magnitude� smaller than in the case of a solid propellant.
The technique that we consider relies on a conventional similarity
approach. This will be employed in conjunction with Euler’s
equations whose application is justified in view of the �still� ap-
preciable injection Reynolds numbers that accompany this prob-
lem. The goal will be to reconstruct a steady, slightly viscous,
incompressible mean flow solution for a full-length circular-port
hybrid engine. Naturally, the solutions suggested in the past for
SRMs with similar conditions will have to be modified to include

the incoming flow of oxidizer from the head end. This has been
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artly accomplished by Majdalani and Saad �28� in a recent study
f the Taylor–Culick profile with arbitrary headwall injection.
owever, their analysis was strictly focused on the construction of

nviscid series approximations and computational verifications of
he flow field with arbitrary headwall injection. Until more refined

odels become available, the idealization that we seek may be
iewed as a first-cut, far field approximation due to the three main
easons that will be expounded next.

Unlike SRMs, the burning rate of hybrid rocket fuel is very
ensitive to the flow field in the chamber �29,30�. Hence, many
tandard assumptions, such as uniform burning, which can be jus-
ified in SRMs, become less suitable in hybrids.

The validity of the inviscid solution for SRMs has been shown
o be adequate at high injection Reynolds numbers, generally, ex-
eeding 500 �14–17�; this is easily satisfied in SRMs where large
urning rates produce Reynolds numbers in excess of 1000. In
ybrid chambers, the fuel burning rate remains an order of mag-
itude smaller �31�, albeit sufficiently large to justify an
symptotic treatment in which viscosity can be properly incorpo-
ated. The construction of a viscous solution appears to be more
ssential here than in the case of SRMs, especially that viscous
ffects will have a more pronounced impact on pressure than ve-
ocity. With this feature in mind, a viscous rotational approxima-
ion will be provided as a more accurate alternative.

The real challenge of hybrid propulsion stands in the mixing
nd burning of the two streams. However, in seeking a basic de-
cription, no attempts will be made to consider the mixing of the
xidizer and fuel or to model the burning of the two streams.
hese desirable pursuits will be deferred to later studies in which
onuniform burning, mixing, and the effect of particle-mean flow
nteractions may be separately addressed.

Hybrid Model
The basic hybrid engine can be modeled as a cylindrical cham-

er of porous length L and radius a with both a permeable head
nd and a fully open downstream end. The permeable head end
ermits the injection of a fluid at a prescribed velocity profile. A
ketch of the chamber is given in Fig. 3 where r̄ and z̄ are used to
enote the radial and axial coordinates. The field of interest ex-
ends from the head end to the nozzle’s attachment point at the

thermal boundary layer edge
flame zone

combustion port

solid fuel

mixing in post
combustion chamber

ox
id

iz
er

Fig. 1 Schematic of the circular-port hybrid rocket

solid fuel grain

flame zone

vaporized fuel rich zone

boundary layer edge

combustion products

oxidizer stream

oxidizer rich zone

fuel rich zone

ig. 2 Decreasing fuel concentration zones above solid sur-

ace during hybrid grain pyrolysis
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base of the chamber. Downstream of the base, the flow is accel-
erated after expanding through a nozzle whose treatment is not
required here. This mathematical model does not take into account
the three-dimensional complexity of the nozzle attachment, which
will be highly variable depending on specific design shapes and
nozzle types. In this vein, compressibility effects are discounted
with the flow being controlled by conditions established upstream
of the nozzle location. Using the present study as a starting point,
a more elaborate model can be later constructed that would in-
clude nozzle effects, interactions with the flame sheet, etc.

At the head end, an oxidizer stream is injected into the chamber
at a maximum centerline speed equal to U0. This incoming oxi-
dizer merges with the peripheral flux caused by uniform mass
addition at the porous sidewall. The sidewall injection velocity Uw
is used to represent the solid fuel regression rate. Clearly, Uw can
be appreciably smaller than U0 due to typical rates of fuel pyroly-
sis. This condition can be later exploited in seeking an asymptotic
approximation of higher order. The current analysis seeks to cap-
ture the essential features of the ensuing flow field using a sinu-
soidal head end injection profile, namely,

ūz�r̄,0� = U0 cos� 1
2�r̄2/a2� �1�

The corresponding motion arises naturally due to the developing
rotational flow field in a porous tube with normal sidewall mass

L

fu
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bu
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in
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rf
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e

a

z
r

U0 cos( π r2/a2)1
2

Fig. 3 Sketch of the rotational full-length hybrid model depict-
ing mass addition along both sidewall and endwall boundaries.
Here the oxidizer injection at the head end corresponds to a
sinusoidal profile.
addition �10,32�.
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2.1 Equations. A nonreactive flow can be considered,
rompted by the low volumetric heat release that accompanies
iffusion flames. Furthermore, the basic flow can be assumed to
e �i� steady, �ii� incompressible, �iii� rotational, and �iv� axisym-
etric. Based on these assumptions, the Navier–Stokes equations

ecome

1

r̄

��r̄ūr�
� r̄

+
� ūz

� z̄
= 0 �2�

ūr

� ūr

� r̄
+ ūz

� ūr

� z̄
= −

1

�

� p̄

� r̄
+ �� �2ūr

� z̄2 +
�

� r̄
�1

r̄

��r̄ūr�
� r̄

�� �3�

ūr

� ūz

� r̄
+ ūz

� ūz

� z̄
= −

1

�

� p̄

� z̄
+ �� �2ūz

� z̄2 +
1

r̄

�

� r̄
�r̄

� ūz

� r̄
�� �4�

ote that the effect of the wall regression on the mean flow is
eglected in most analyses of SRMs �19,20�. It can be safely
gnored in the case of hybrids due to their relatively slower re-
ression.

2.2 Boundary Conditions. The boundary conditions are due
o symmetry, no slip at the sidewall, and both head end and side-
all injection. Specifically, one can assume

�a� uniform injection along the cylindrical sidewall,
�b� vanishing axial flow in fulfillment of the no slip boundary

condition at the sidewall,
�c� a prescribed injection pattern at the head end and
�d� vanishing radial velocity along the centerline.

These particulars can be written as

	
r̄ = a, 0 � z̄ � L, ūr = − Uw �sidewall injection�
r̄ = a, 0 � z̄ � L, ūz = 0 �no slip at the wall�

z̄ = 0, ∀ r̄, ūz = U0 cos� 1
2�r̄2/a2� �endwall�

r̄ = 0, ∀ z̄, ūr = 0 �no flow across centerline�

 �5�

2.3 Normalization. In seeking a similarity solution, it is help-
ul to normalize all variables and operators. This can follow

z =
z̄

a
, r =

r̄

a
, � = a�̄, p =

p̄

�Uw
2 �6�

ur =
ūr

Uw
; uz =

ūz

Uw
; u0 =

U0

Uw
�7�

ere U0= ūz�0,0� and Uw=−ūr�a , z̄� represent the maximum fluid
njection velocity at the head end and the uniform wall injection
elocity at the sidewall, respectively. The corresponding boundary
onditions reduce to

	
ur�1,z� = − 1

uz�1,z� = 0

uz�r,0� = u0 cos� 1
2�r2�

ur�0,z� = 0

 �8�

t this point, the vorticity transport equation, ��u��=0, may
e solved in conjunction with the constraints granted by Eq. �8�.

2.4 Rotational Solution. For a sinusoidal head end injection
elocity, the vorticity stream function approach can be applied by
ntroducing

ur = −
1

r

��

�z
uz =

1

r

��

�r
�9�
ubstitution into ��u��=0 yields
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��

�z

�

�r
��	

r
� =

��

�r

�

�z
��	

r
�, �	 =

�ur

�z
−

�uz

�r
�10�

This expression will be satisfied when �	 /r=F���. In seeking a
closed-form solution, we insert �	=C2r� into the vorticity equa-
tion and collect

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
+ C2r2� = 0 �11�

Similarly, the boundary conditions may be written for the stream
function. Based on Eq. �8�, we have

	
1

r

���1,z�
�z

= − 1,
1

r

���1,z�
�r

= 0

1

r

���r,0�
�r

= u0 cos� 1
2�r2�,

1

r

���0,z�
�z

= 0
 �12�

Then using separation of variables, we let ��r ,z�= f�r�g�z� and
reduce Eq. �11� into

−
g�

g
=

f�

f
−

1

r

f�

f
+ C2r2 = 
 �2 �13�

One may infer from Eq. �12� that the derivative of g�z� must be a
constant to ensure a linear variation in z. The case of �=0 is
selected, thus leading to f =A cos� 1

2Cr2�+B sin� 1
2Cr2� and g

=C1z+C2. Subsequent application of Eq. �12� produces, system-
atically, A=0, B=C1

−1, C=�, and C2=C1u0 /�. At length, we re-
cover

� = �z + uh�sin� 1
2�r2�, uh � u0/� �14�

As shown in Fig. 4, increasing the headwall injection parameter

0

0.5

1

r

a) u
h
= 50

0

0.5

1

b) u
h
= 200

2 4 6 8 10
0.98

1

c) u
h
= 200 z

Fig. 4 Rotational streamlines shown for two increasing head
end injection parameters. The inset in part „c… corresponds to a
magnified section of part „b… illustrating the normal sidewall
injection feature.
increases the flow turning severity near the sidewall. Specifically,
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s uh is increased from 50 to 200, the streamlines, which other-
ise resemble those of a solid rocket motor, become dominated
y axial �parallel-flow� motion everywhere except in the neigh-
orhood of the sidewall. This can be clearly attributed to the in-
reased propensity of the axial stream flowing into the chamber.
t larger uh the normally injected stream is met by an overwhelm-

ngly larger axial flow that forces it to rapidly turn and assimilate
ith it. In practice, the values of U0 and Uw can be calibrated to

eproduce the patterns associated with a prototypical hybrid
ngine.

Based on Eq. �14�, other pertinent variables may be evaluated.
or example, one finds

ur = −
1

r
sin� 1

2�r2�, uz = ��z + uh�cos� 1
2�r2�,

�	 = �2�z + uh�r sin� 1
2�r2� �15�

�p

�r
= −

− 1 + �r2 sin��r2� + cos��r2�
2r3 ,

�p

�z
= − �2�uh + z�

�16�

nd, for the pressure drop from the head end, one can put

�p =
− 1 − 2�2r2z�2uh + z� + cos��r2�

4r2 �17�

In Fig. 5, the two velocity components, vorticity and the radial
ressure drop at the head end, are plotted. While the axial velocity
ncreases linearly with the head end injection parameter, the radial
elocity remains unaffected. In fact, the radial component is seen
o be identical to its counterpart in SRMs, namely, that of Culick
9�. In Fig. 5�c�, the vorticity is seen to be largest near the sidewall
here flow is entering perpendicularly to the fuel surface. Away

rom the wall, vorticity decays rapidly; it approaches zero near the
enterline where the flow becomes nearly uniform. As for the
ressure drop, Fig. 5�d� illustrates how �p�r ,0� in the head end
lane can surpass its wall value when

1
2
�2 � r � 1 �18�

n this range, the largest magnitude corresponds to �p=
0.569108. This extremum corresponds to rm=0.861405 and can
e obtained by differentiating Eq. �17� at fixed z. Note that the
adial pressure variation is strongly connected with the radial ve-
ocity shown in Fig. 5�b�. Both experience an unexpected surge in

agnitude immediately after injection, thus exceeding their abso-
ute value at the wall.

Viscous Rotational Solution
Viscous effects can be accommodated, as performed previously

n the context of SRM internal ballistics by Majdalani and co-
orkers �19,20�. To that end, one can start with the reduced
avier–Stokes equation incorporating both viscosity and wall re-
ression speed. Then by putting =0 in Refs. �19,20�, we are left
ith the case corresponding to stationary walls, namely,

2��	
d4F

d	4 + 2
d3F

d	3 � + F
d3F

d	3 −
dF

d	

d2F

d	2 = 0 �19�

here

� =
�̄

a2Uw
= �z + uh�F, ur = −

F

r
, uz =

�z + uh�
r

dF

dr
�20�
he corresponding boundary conditions are

01202-4 / Vol. 132, OCTOBER 2010
dF� 1
2��

d	
= 0, F� 1

2�� = 1, F�0� = 0, lim
	→0

�	
d2F

d	2 = 0

�21�

Note that ��� / �aUw� is the inverted Reynolds number based on
the wall injection velocity.

Equation �19� may be solved asymptotically by first setting F
=F0+�F1+O��2� and then inserting the expanded form back into
Eq. �19�. At the leading order, one retrieves

F0
d3F0

d	3 −
dF0

d	

d2F0

d	2 = 0 �22�

where F0=sin 	 represents a suitable outcome. The first order
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Fig. 5 Description of „a… axial and „b… radial velocities in addi-
tion to „c… vorticity and „d… pressure drop at the chamber’s head
end. Both axial velocity and vorticity are shown at a fixed axial
position.
equation becomes
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d3F1

d	3 sin 	 −
d2F1

d	2 cos 	 +
dF1

d	
sin 	 − F1cos 	 = − 2	 sin 	

�23�

o solve Eq. �23�, one can apply the variation of parameters ap-
roach twice in succession. To this end, a homogenous solution is
ntroduced in the form of F1h=C�	�cos 	, where C�	� is a variable
oefficient. Through backward substitution into Eq. �23�, one col-
ects

C� sin 	 cos 	 − 2C� sin2 	 − C� = 0 �24�

hence

C�	� = K0 tan 	 + K1	 + K2 �25�

ith C�	� in hand, the homogenous part becomes

F1h = K0 sin 	 + K1	 cos 	 + K2 cos 	 �26�

t this point, the method of variation of parameters is applied a
econd time by permitting K0, K1, and K2 to vary in space. Con-
equently, Eq. �26� is rewritten as

F1�	� = K0�	�sin 	 + K1�	�	 cos 	 + K2�	�cos 	 �27�

hen using Eq. �23�, one recovers

K0� sin 	 + K1� 	 cos 	 + K2� cos 	 = 0 �28�

K0� cos 	 + K1��cos 	 − 	 sin 	� − K2� sin 	 = 0 �29�

nd

− K0� sin2 	 − K1��2 sin2 	 + 	 cos 	 sin 	� − K2� cos 	 sin 	

= 4 cos 	 − 2	 sin 	 �30�

he ensuing set of coupled, first order ordinary differential equa-
ions �ODEs� may be solved to obtain

K0 = − 2 csc 	 − sin 	 − 	 cos 	 − S�	� + C0 �31�

K1 = 2 csc 	 + S�	� + C1 �32�

K2 = − cos 	 + 	 sin 	 − 2	 csc 	 − S1�	� + C2 �33�

here

S�	� =
0

	

� csc � d� = 	 + �
k=1

�
2

�2k��
n=1

�
1

n2k� �1 − 21−2k�
�2k + 1�

	2k+1

�34�

S1�	� =
0

	

�2 csc � d� =
1

2
	2 + �

k=1

� ��
n=1

�

n−2k� �1 − 21−2k�
�k + 1��2k 	2k+2

�35�

hus, by combining the leading and first order solutions, a com-
lete viscous approximation may be expressed as

F = sin 	 + ��− 3 + �	 cos 	 − sin 	�S�	� − S1�	�cos 	 + C0 sin 	

+ C1	 cos 	 + C2 cos 	� �36�

here

C0 = 3 + S� 1
2��, C1 = − 6�−1 − 1 − S� 1

2�� + �2/��S1� 1
2��,

C2 = 3 �37�

y inspection, it can be seen that, if viscosity is set to zero in Eq.
36�, the inviscid form given by Eqs. �14� and �15� will be recov-
red. In summary, the viscous approximation for the rotational

odel comprises

ournal of Fluids Engineering
� = �z + uh��sin 	 + ��− 3 + �3 + S� 1
2�� − S�	��sin 	

− cos 	�S1�	� − 3 + 	�1 + 6�−1 + S� 1
2�� − S�	�

− 2�−1S1� 1
2������ + O��2� �38�

ur = −� �

2	
�sin 	 + ��− 3 + �3 + S� 1

2�� − S�	��sin 	

− cos 	�S1�	� − 3 + 	�1 + 6�−1 + S� 1
2�� − S�	�

− 2�−1S1� 1
2������ + O��2� �39�

uz = ��z + uh��cos 	 + ��− 	 + 2�1 − 2�−1 + �−1S1� 1
2���cos 	

+ �S1�	� − 3 + 	�1 + 6�−1 + S� 1
2�� − S�	�

− 2�−1S1� 1
2����sin 	�� + O��2� �40�

As for the corrected pressure drop, it can be obtained by integrat-
ing from the centerline to any radius. One gets

�p� � p�0,z� − p�	,z� = ���F	 + 1
4	−1F2 − �F	�0��

= 1
4�	−1 sin2 	 + ���cos 	 − 1 − 3

2	−1 sin 	�
+ 1

4	−1�3 + S� 1
2�� − S�	� + cos�2	��S�	� − S� 1

2�� − 3��
+ 1

4sin�2	��S�	� − S� 1
2�� − 1 − 6�−1 + 2�−1S1� 1

2��
+ 	−1�3 − S1�	��� + O��2� �41�

In like fashion, the pressure drop in the flow direction can be
estimated from

�p� � p�	,0� − p�	,z�

= − �2z� 1
2z + uh��2��	F			 + F		� − �F	�2 + FF		�

= �2z� 1
2z + uh��1 + �2�/���2� − 6 + 4�C − 7��3��� + O��2�

�42�

where C= 1
2S� 1

2���0.91596559 is Catalan’s constant, and ��3�
�1.2020569 is the Riemann zeta function defined by ��x�
=�k=1

� k−x. Hence, one can put �p� ��2z� 1
2z+uh��1+2.15123��

+O��2�. Finally, the shear stress �or vorticity� can be calculated
from

� =
�̄

�Uw
2 = − �� = �z�2�3/2�	F		 = − �z�2�3/2�	sin 	 + �O�2�

�43�

At the wall, one is left with �w=−�z�2+O��2�.
The viscous solution presented above is the result of a similar-

ity transformation in space and time. Results, obtained using this
approach, are illustrated in Fig. 6 at several Reynolds numbers
ranging from 5 to � �for inviscid conditions�. The three parts in
Fig. 6 correspond to the main characteristic function F, as well as
both axial and radial velocities. Note that the influence of viscous
damping is most pronounced near the centerline, as reflected in
the flow smoothening or laminarization affecting the axial veloc-
ity in Fig. 6�b�. This may also explain the steeper top-hat profiles
associated with the inviscid solution. The characteristic function F
and the radial velocity undergo a similar, albeit less appreciable
flattening process.

In Fig. 7, the first order correction function F1 is compared with
two existing solutions developed, first, by Yuan and Finkelstein
�33� and, second, by Terrill and Thomas �34�. These are derived in
the context of a porous cylinder with stationary walls. For the

Yuan–Finkelstein expression, we have
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here k1=−1.3253. For the Terrill–Thomas model, a similar ex-
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where �1=−k1 /�. Given that Fig. 7 is focused on F1 only, one
may infer that these solutions, which share the same leading order
part F0, agree remarkably well irrespective of �. This comparison
concludes our presentation of the first order viscous mean flow
analysis for this problem. It is hoped that the approximation fur-
nished here could be used as a starting point in modeling internal
burning hybrid cylinders.

4 Conclusions
In this study, a rotational model is presented as a means to

describe the basic gas dynamics in a full-length hybrid engine
with circular bore. Our idealization is based on slightly viscous,
rotational, and incompressible motion in conjunction with a har-
monic injection profile at the chamber head end. The mean flow
emerging from sidewall and endwall mass addition is rotational
and satisfies the no slip condition at the wall. The solution may be
helpful to point out, especially that its parameters, U0 and Uw, can
be suitably adjusted to mimic the bulk gas motion reported in
some hybrid geometry. It can also permit the investigation of hy-
drodynamic instability of the mean flow with head end injection.
Finally, a formulation that incorporates viscosity is discussed and
shown to compare favorably with the regularly perturbed solu-
tions for the nondeformable porous cylinder obtained by Yuan and
Finkelstein �33� and Terrill and Thomas �34�. Overall the effects
of viscosity are found to be small except near the centerline. In
hindsight, the models presented here constitute a first approxima-
tion to the bulk gaseous motion that arises in hybrid chambers
exhibiting a circular port. In the past, only uniform �parallel� flows
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Fig. 7 Comparison between the present solution and those
obtained by Yuan and Finkelstein †33‡ and Terrill and Thomas
†34‡
were used to describe the streamtube motion above the propellant
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urface. The rotational, two-component, axisymmetric models can
e used to represent the so-called outer field in a more compre-
ensive study that seeks to account for thermal effects. The advent
f progressively more accurate outer flow approximations, such as
he ones presented here, can thus be essential in the treatment of
hermal boundary layers forming above the propellant surface.
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omenclature
a � chamber radius
p � normalized pressure, p̄ / ��Uw

2 �
Re � wall injection Reynolds number, Uwa /�

r � normalized radial coordinate, r̄ /a
u � normalized velocity �ūr , ūz� /Uw

U0 � head end injection velocity, ūz�0,0�
u0 � normalized injection velocity, U0 /Uw
uh � head end injection parameter, U0 / ��Uw�

Uw � wall injection velocity, −ūr�a , z̄�
z � normalized axial coordinate, z̄ /a
� � viscous parameter, 1 /Re=� / �Uwa�
� � kinematic viscosity, � /�
� � density

� � vorticity, ��u

ubscripts and Symbols
h � property at the head end
r � radial component or partial derivative

w � property at the sidewall
z � axial component or partial derivative
– � overbars denote dimensional variables
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