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Having established the framework for biglobal hydrodynamic instability of an incompressible mean
flowfield in Part 1 of this two-paper series, the present focus is turned towards applications. To this end,
the instability of the bidirectional vortex motion is analyzed using the biglobal approach. Three distinct
mean flow profiles are considered, specifically, the complex-lamellar, linear, and nonlinear Beltramian motions.
Their spectral characteristics and eigensolutions are computed and compared to one another, as well as to the
one-dimensional local nonparallel (LNP) approach. Our findings suggest that hydrodynamic waves produce
visible oscillations around the mean flow streamlines. Their amplitudes are fairly insignificant in the case of
axisymmetric oscillations but can become quite pronounced in the asymmetric cases. Overall, we find this
class of helical flows to be quite stable, especially with successive increases in swirl intensity (or reductions in
the inflow parameter κ). Nonetheless, regions that are most susceptible to instabilities seem to occur where
shearing is most appreciable, for instance, where streamline curvatures are abrupt. The region near the
headwall is thus identified as a site that may potentially exhibit flow breakdown. Several parametric cases
are examined, and these show that increasing the swirl intensity of the injected stream reduces the number
of unstable modes. We also find that the aspect ratio can influence the stability spectra and that an aspect
ratio of L/R = 1.5 may be near-optimal. Most simulations are carried out for N = 50, given CPU runtime
limitations. From a practical design perspective, suppressing unstable modes in the vortex engine may be
realized by tightly securing an axisymmetric flow configuration both geometrically and dynamically.

Nomenclature

Ai j = the operator matrix
Bi j = the right-hand-side coefficient matrix of a matrix pencil
DN = the Chebyshev pseudo-spectral derivative matrix of size N
d = weight coefficients for pseudo-spectral derivative matrices
IN = the identity matrix of size N
l = chamber aspect ratio
M = baseflow component
M̃ = instantaneous flow component
m = general amplitude function
m̂ = acoustic fluctuation
m̆ = hydrodynamic fluctuation
m′ = general fluctuation
m̃ = vortical fluctuation
P = baseflow pressure
P̃ = instantaneous flow pressure
p = pressure amplitude function
p̆ = hydrodynamic pressure fluctuation
p̂ = acoustic pressure fluctuation
p′ = general pressure fluctuation
p̃ = vortical pressure fluctuation
q = azimuthal integer wave number
r = radial nondimensional coordinate
Re = Reynolds number, Ua/ν
TN = Chebyshev polynomial of the first kind
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U = baseflow velocity vector, Urer + Uθeθ + Uzez

Ũ = instantaneous flow velocity
U = average tangential inlet velocity (dimensional)
u = velocity amplitude function
ŭ = hydrodynamic velocity fluctuation
û = acoustic velocity fluctuation
u′ = general velocity fluctuation
ũ = vortical velocity fluctuation
V = vortex Reynolds number, V = 2πκ/ε
z = nondimensional axial coordinate

Greek
α = longitudinal wave number
β = normalized outlet radius, b/a
∇ = gradient operator
δ = characteristic boundary layer thickness
ε = 1/Re
η = streamwise Chebyshev variables mapped between [−1, 1]
κ = inflow parameter, (2πσl)−1

ω = frequency of oscillation, ωr + ωi

σ = swirl number
θ = nondimensional tangential coordinate
ν = kinematic viscosity
ξ = radial Chebyshev variables mapped between [−1, 1]

Subscripts
ii = a diagonal matrix or diagonal element
i j = a matrix
N = Chebyshev polynomial order/number of collocation points

Superscripts
n = order of the derivative
¯ = dimensional variables

Abbreviations
DNS = direct numerical simulation
LNP = local nonparallel
LNS = linearized Navier-Stokes
NPR = nonparallel ratio
ODE = ordinary differential equation
PDE = partial differential equation

I. Introduction

Mathematical solutions to the fully three-dimensional bidirectional vortex flowfield were first conceived by Vyas
and Majdalani. 1 This model was developed under the assumptions of steady, inviscid, axisymmetric, and

incompressible flow. These researchers followed a procedure similar to that used by Culick 2 who derived an analogous
model for the idealized mean gas motion in a solid rocket motor. In brief, their work of the streamfunction was applied
to the vorticity transport equation, and the tangential vorticity was assumed to be linearly related to the streamfunction.
Their analysis resulted in a complex-lamellar flowfield where, by definition, the velocity field is orthogonal to the
vorticity field. 3 By virtue of its inviscid nature, this exact Eulerian solution possessed a core singularity. In fact,
its tangential velocity exhibited a singularity at the centerline and, together with the axial velocity, could not satisfy
the no-slip condition at the sidewall. Later, uniformly valid asymptotic solutions were constructed to resolve these
deficiencies in the tangential 4 and axial velocities. 5
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a) Re = 2000 b) Re = 10000

Figure 1. Comparison of the asymmetric spectrum for the semi-inviscid (with no sidewall boundary layer) versus the viscous complex-
lamellar solution with κ = 0.1, q = 1, and l = 2.

Further advancements have been made to these solutions including the effects of multidirectional motion 6,7 and
compressibility. 8,9 Most recently, the Bragg-Hawthorne equation (BHE) 10 has been considered as the opening point
for the discussion of new solutions for the bidirectional vortex. 11 Although the BHE exhibits an apparent resemblance
to that found in the original analysis, the relation that it prescribes between the vorticity and streamfunction differs.
At the outset, it gives rise to solutions of the Beltramian type where the Lamb vector is identically zero. 12 Here the
vorticity and the velocity are directly proportional and are related by the first eigenvalue (ω̄ = λ 0ū). Such behavior
stands in sharp contrast to the original complex-lamellar solution where ω̄ ·ū = 0. Consequently, the Beltramian model
is found to contain solutions that exhibit either linear or harmonic axial dependence. These profound differences
in the Beltramian mean flows lead us to expect equally interesting disparities in their biglobal instability behavior.
In this article, the formulation described in Part 1 of this series 13 will be applied to both complex-lamellar and
Beltramian baseflows. Being of the latter type, our coverage will encompass both linear and harmonic Beltramian
models introduced in 2009. 11 The paper is organized to first introduce the stability of the complex-lamellar mean flow
model, followed by the linear and finally, harmonic, Beltramian models. The respective results are discussed in full,
and key stability characteristics are identified.

II. Implementation

In Part 1 of this series, we have identified the sensitivity of the biglobal stability analysis to the grid resolution and
discretization scheme. 13 These must be properly chosen to resolve the viscous boundary layers that accompany the
baseflow along the wall. Initially, the CPU limitations of available resources posed a concern to us, namely, whether
our resolution of N = 50 was adequate enough. Upon further examination, however, this concern was dispelled. This
point may be verified through Fig. 1 where two spectral plots are provided at relatively lower (Re = 2000) and higher
Reynolds numbers (Re = 10, 000). This figure compares the asymmetric eigenmodes (q = 1) associated with the
complex-lamellar baseflow using both viscous and inviscid models.

It is important to see in Fig. 1 that the inclusion of viscosity in the baseflow has a negligible effect on the spectral
results. Two values of the Reynolds number are used to validate this observation for both thin and thick boundary
layers. We see that even though Fig. 1b considers a Reynolds number that is five times larger than that in Fig. 1a,
no substantial differences arise between the viscous and semi-inviscid models in which sidewall boundary layer
corrections are neglected. Also, the inverse is true for Fig. 1a. Here, sporadic exceptions are identified by circles
in Fig. 1. These exceptions visibly fall below the critical stability line to the extent of being inconsequential. A similar
conclusion may be reached using the one-dimensional local nonparallel stability analysis. Our findings suggest that
the inclusion of a thin sidewall shear layer in the mean flow may not affect the fundamental features that characterize
the biglobal stability of the bidirectional vortex.
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III. Stability of the Complex-Lamellar Motion

This section devotes itself to the results of the biglobal stability analysis for the complex-lamellar bidirectional
vortex. The trigonometric composition of the baseflow separates itself from the two Beltramian solutions. Although
similarities among these various helical models may be expected, particular differences that distinguish this behavior
may be noted as well.

A. Axisymmetric Spectrum

The results in Fig. 2 are intended to overview the general parametric characteristics of the axisymmetric spectrum.
To begin, Fig. 2a shows appreciable variation with κ. Here we see nearly linear spectral structures formed for κ = 0.1
and the complete spectrum coalescing near the origin for decreasing values. Higher values of Re correlate to smaller
diffusive viscosities or higher velocities, and hence, more energetic injection. We see a shift in the overall spectrum
toward damped eigenvalues with a decrease in Re in Fig. 2b. The scatter in eigenmodes is more visible for a Reynolds
number of 1000 when compared to the clean, linear structures for the other two cases. From a stability standpoint, this
may not be important because the scatter occurs well below the critical line. The most amplified eigenmodes appear
at Re = 10000. Figure 2c suggests that only subtle variations occur among chambers of different aspect ratio ranging
between 0.5 and 2.5. One may further infer that shorter aspect ratio chambers induce smaller amplification rates of
undamped eigenvalues at similar circular frequencies. Overall, differences between these spectral results appear to be
relatively small over the majority of the spectrum. It is interesting to see that small aspect ratio chambers (0 ≤ l ≤ 1.5)
share spectral structures that are not displayed at larger aspect ratios (1.5 ≤ l ≤ 2.5). Lastly, there are consistent
changes that characterize the spectrum with multidirectional flow. Though the straight line spectral structures are still
present, successive increases in the number of flow reversals extend these structures to higher circular frequencies,
thus widening the range of undamped eigenmodes. Many of the higher frequency eigenvalues are accompanied by
larger amplification and/or damping, depending on whether they fall above or below the critical line in Fig. 2d.

Although each of the test cases featured in Fig. 2 contains amplified eigenvalues, corresponding eigenvectors
(ur, uθ, uz, p) are found to be small in all directions. This behavior may be attributed to a variety of reasons that are not
well understood. For example, given the dominant axisymmetric swirl component of the velocity field, little room is
left for axisymmetric perturbation. Those are clearly attenuated in the biglobal framework. Interestingly, this important
characteristic could not be captured by one-dimensional analysis. In fact, the behavior of our three-dimensional, swirl-
dominated model stands in stark contrast to studies in which swirl is not considered. These include past analytical 14

and computational research 15 that only focuses on the axisymmetric configuration. Those past investigations either de-
emphasize or entirely dismiss the q ≥ 1 cases. However, given that the majority of work in one and two-dimensional
hydrodynamic instability considers only two-dimensional baseflows (with no u θ component) and/or streamfunction
representations of the stability equations, we suspect that this fundamental contradiction is connected to the absence
of a third, tangential velocity in their momentum formulation. In our configuration, suppression of disturbances for
q = 0 may have an important design value; it may be suggestive that maintaining axisymmetric injection with high
precision can help to mitigate potential instabilities. Axisymmetric injection must hence be ensured both geometrically
and dynamically. To further explore the possibility of amplified eigenvectors, we turn our attention to the most critical
asymmetric mode with q = 1.

B. Asymmetric Spectrum

In this section, our spectral parametric study is extended to compute asymmetric (q = 1) solutions. At first glance,
the distribution of eigenmodes given in Figs. 3–4 may appear to bear similar characteristics to those of the q = 0
configuration. However, despite the lingering presence of spectral clusters, the distribution no longer retains linear
trends. The most drastic difference is shown with the smallest value of κ for which all corresponding eigenvalues
overlap in the direct vicinity of the vertical line, ω r = 0. Next, in Fig. 4, a large variation in the spectrum may be seen
with respect to the Reynolds number. The low Reynolds number cases for which viscous effects are highest exhibit
undamped eigenvalues near the origin, but these do not extend into the higher frequency range of ω r as the larger cases
do (see Fig. 4). It seems apparent that friction has a damping effect and that larger Reynolds numbers can cause the
spectrum of undamped modes to persist farther into the high frequency domain. Arguably, the value of κ = 0.01 may
be a more physical choice, being closer to the value calculated for the NASA/ORBITEC engine (κ ≈ 0.006). 1 This
parameter quantifies the relative size between the tangential and the axial/radial velocities by giving a measure of the
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a) Variation with the inflow parameter b) Variation with the Reynolds number

c) Variation with the aspect ratio d) Variation with the mantle mode number

Figure 2. Axisymmetric parametric study for several input parameters. Here, q = 1, l = 2, Re = 10, 000, and κ = 0.1 unless varied on the
graph.

swirl intensity. As κ decreases, the swirl intensity increases, and the overall flowfield becomes more swirl dominated.
It could then be anticipated that intensification of swirl would stabilize the flow through increased centrifugal action
that serves to inhibit vortex generation and promote a crisper definition of the mean flow. For this reason, a second
parametric study is conducted at a reduced value of κ. This is shown in Fig. 4b where the effects of varying Re are re-
examined for κ = 0.01. As one would expect, the differences with respect to the κ = 0.1 case are substantial. First, we
observe that the spectral data remains confined to lower frequencies. Furthermore, nearly all computed eigenvalues
fall below the stability line. The growth of several outliers may be spotted in the undamped region, but these are
surrounded by many damped eigenvalues that appear at adjacent circular frequencies. The overall effect is a stable
prediction for all values of Re.

Along similar lines, Fig. 5 illustrates the effect of changing the aspect ratio, l, on the spectrum using κ = 0.1 and
0.01 in parts Fig. 5a and 5b, respectively. Each case for κ = 0.1 is characterized by similar spectral structures and
pseudo-continuous spectral lines along which eigenmodes are seen to cluster. This plot also seems to suggest that the
small aspect ratio chamber will be more susceptible to temporal instability than its longer counterparts. Given the
unique spectral structures for l = 0.5, it could also be insinuated that the stability of chambers with aspect ratios less
than unity may behave differently from those that are more elongated.

Conversely, when κ = 0.01, much smaller differences in the spectral content may be seen to accompany geometric
variations in the aspect ratio. We hence find the aspect ratio to become less influential than other parameters when κ
is small. By considering the overall growth at discrete circular frequencies, we find that when ω r = 90, the average
growth rate returns a slightly undamped value of 0.0428 for l = 2.5; such behavior is indicative of slow linear growth
in wave amplitude about this frequency. In fact, this particular combination of physical parameters may be the only
one shown in Fig. 5 to induce positive wave growth. This character is contrary to the κ = 0.1 case featured in Fig. 5a
for which over 100 undamped eigenfrequencies have been collected. The present observation clearly supports the
hypothesis that increasing swirl helps to stabilize the flow.

Moving on to the multidirectional flows with multiple mantles, it seems apparent from Fig. 6 that a larger number of
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Figure 3. Asymmetric parametric study for several values of κ. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with the Reynolds number for κ = 0.1 b) Variation with the Reynolds number for κ = 0.01

Figure 4. Asymmetric parametric study for several input parameters. Here q = 0, l = 2, and Re = 10, 000.

flow reversals will adversely impact the biglobal stability. This effect could be in the form of higher initial amplitudes,
faster wave growth, or both. Figure 6 clearly shows that higher amplitude waves could be expected for successive
increases in flow reversals. Similar spectral structures appear in both the m = 2 and m = 4 cases with the continued
spread of eigensolutions to higher frequencies, regardless of whether they belong to the damped or undamped category.
Decreasing κ, as usual, confines the eigenvalues to the neighborhood of the critical line and increases stability. For
m = 0, no instability is expected. However, increasing the reversal mode number to two and four leads to successive
increases in the number of unstable circular frequencies.

In order to better understand the behavior of the amplified eigenvectors, representative plots of the unsteady
velocity or pressure waves induced by hydrodynamic instability are examined using select values of the undamped
frequencies. For example, when q = 1, l = 2, κ = 0.1, and Re = 10, 000, we pick the first undamped eigenmode
of ω = 0.218 + 0.294i from our N = 50 computed spectrum. Corresponding perturbations in u z and p are extracted
and displayed in Fig. 7 in the form of contour curves. Also provided in Fig. 7a are the streamlines associated with
the baseflow under investigation. The overlay of complex-lamellar streamlines over hydrodynamic wave contours
is quite interesting to observe. It suggests that when κ is large (swirl is small), the hydrodynamic wave becomes
composed of highly structured fluctuations about the streamlines of the baseflow. Another inherent characteristic is
the formation of strong oscillations near the headwall. These high amplitude oscillations also coincide with the region
in the chamber where streamline curvatures are most pronounced. The onset of hydrodynamic instability waves near
the headwall where flow turning is most abrupt is therefore consistent with established theory on the inception of mean
flow breakdown. 16 Here an internal vortex funnel may be seen, marked by the dashed line in Fig. 7a, around which
oscillations seem to form and then gradually diminish in the direction of the exit plane. Initial observations suggest
that this region coincides with the forced core vortex of the tangential velocity. Even with the clear fluctuations in
the velocity profiles, the pressure perturbation shown in Fig. 7b remains quite negligible in the body of the chamber
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a) Variation with the aspect ratio for κ = 0.1 b) Variation with the aspect ratio for κ = 0.01

Figure 5. Asymmetric eigenvalues for several aspect ratios. Here q = 1 and Re = 10, 000.

a) Variation with multiple mantles, κ = 0.1 b) Variation with multiple mantles, κ = 0.01

Figure 6. Asymmetric parametric study for multidirectional flow. Here q = 1, l = 2, and Re = 10, 000.

and manifests some undulatory presence along the centerline. Here we see longitudinal fluctuations of p extending
from the headwall to the endwall with peak amplitudes near the middle of the chamber and weaker values near the
endpoints of the domain.

For κ = 0.01, the wave distribution changes character quite noticeably. As shown in Fig. 8a, the hydrodynamic
wave no longer oscillates about the streamlines of the baseflow in Fig. 8 as we saw in Fig. 7a. Here, the axially invariant
tangential velocity is so large that it overshadows the radial and axial velocity contributions. The corresponding
streamlines in the r − z plane become secondary and no longer influence the hydrodynamic wave distribution within
the chamber. We also see an order of magnitude reduction in wave amplitude in the axial velocity along with a
substantial reduction in the pressure wave amplitude, as may be inferred from Fig. 8b.

IV. Stabilty of the Linear Beltramian Motion

In this section, our parametric study is repeated for the linear Beltramian vortex. We can expect slightly different
and unique hydrodynamic breakdown, given the notable difference in the vorticity profile between the Beltramain
vortex baseflows and the complex-lamellar profile. Dissimilarities include the axial dependence (or lack thereof) in
the tangential velocity and the region in each flow where vorticity is concentrated.

A. Axisymmetric Spectrum

Figure 9 compiles the computed spectra for several key parameters for the linear Beltramian model. Many
similarities exist with the complex-lamellar results. For instance, variations with κ have a large influence on the overall
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a) Biglobal axial velocity wave for the complex-lamellar model

b) Biglobal pressure wave for the complex-lamellar model

Figure 7. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2178 + 0.2940i, of the complex-lamellar bidirectional vortex with
N = 50, q = 1, l = 2, Re = 10, 000, and κ = 0.1.

a) Biglobal axial velocity wave for the complex-lamellar model

b) Biglobal pressure wave for the complex-lamellar model

Figure 8. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.3443 + 0.4257i, with N = 50, q = 1, l = 2, Re = 10, 000, and
κ = 0.01.

spectrum. Furthermore, eigenvalues seem to precipitate along nearly straight, pseudo-spectral lines that emanate from
the origin. The orientation angles of these straight line structures appear to overlap with the previous model except
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a) Variation with the inflow parameter b) Variation with the Reynolds number

c) Variation with the aspect ratio d) Variation with the mantle mode number

Figure 9. Axisymmetric parametric study for several input parameters. Here, q = 1, l = 2, Re = 10, 000, and κ = 0.1 unless varied on the
graph.

for their extension into the high frequency domain for large κ. Once again, increasing the Reynolds number leads to a
wider scattering of the spectrum below the critical line. And while changing the aspect ratio brings about slight changes
in the amplification, nearly no change in circular frequency occurs for many of the eigenvalues. Finally, multiple
mantle solutions produce coherent line-like structures that are vastly stretched over the frequency domain compared
to the complex-lamellar model. As before, the u and p waveforms that stem from the axisymmetric configuration
(q = 0) are found to be vanishingly small in all vector directions. Naturally, higher tangential mode numbers need to
be explored for the sake of elucidating the character of the eigenvectors associated with this mean flow model.

B. Asymmetric Spectrum

Variations with respect to κ are shown in Fig. 10. Being analogous to the complex-lamellar case, the linear
Beltramian spectrum is most densely populated near the origin. Eigenmodes for larger values of κ persist further
into the high frequency domain and form interesting spectral structures around the abscissa. Changing the Reynolds
number in Fig. 11a leads to a greater degree of spectral disparity among the test cases. We also see that smaller
Reynolds numbers shift the spectrum to a lower frequency domain. The corresponding study for κ = 0.01 is
shown in Fig. 11b. Similar trends identified in the complex-lamellar solutions are also seen here. Decreasing
κ reduces the number of unstable eigenvalues significantly. Potentially unstable circular frequencies appear near
ωr = 100, 150, and 185 for Re = 10, 000. The other two cases of Re = {5000, 1000} do not show any unstable
frequencies. Finally, as the Reynolds number decreases, the spectrum of eigenmodes moves closer to the origin where
the majority of damped frequencies seem to congregate.

The effect of varying the chamber aspect ratio remains an interesting parametric study. Figure 12 shows a
less amplified overall spectrum for an aspect ratio of 1.5. As for the remaining two cases featured on the graph,
their spectral distributions seem to overlap. As usual, reducing κ improves the stability by reducing the number
of unstable eigenvalues. Upon closer examination, it may be determined that unstable modes are possible near
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Figure 10. Asymmetric variation with κ. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with Re for κ = 0.1 b) Variation with Re for κ = 0.01

Figure 11. Asymmetric variation with the Reynolds number. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with l for κ = 0.1 b) Variation with l for κ = 0.01

Figure 12. Spectral results for several values of the aspect ratio. Here q = 1 and Re = 10, 000.

ωr = 100, 130, and 185 for l = 2.5, although few sporadic unstable modes appear for the other two cases. Interestingly,
the number of unstable eigenvalues diminishes from l = 2.5 to 1.5 and then increases again for l = 0.5. This
behavior reinforces the observation that short chambers (l < 1) may behave differently from longer chambers. While
a comprehensive parametric investigation of the chamber aspect ratio may be very interesting to pursue, it is beyond
the scope of this exposition.

As we turn our attention to examining the effect of multiple mantles on stability, we produce the results displayed in
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a) Variation with multiple mantles for κ = 0.1 b) Variation with multiple mantles for κ = 0.01

Figure 13. Spectral results for several values of multidirectional flow. Here q = 1, l = 2, and Re = 10, 000.

Fig. 13 at κ = 0.1 and 0.01. Straightaway, a substantial increase in spectral scattering may be observed in comparison
to the complex-lamellar configuration. The largest concentration of eigenvalues appears near the centerline. So while
spectral structures are still present, they appear to be much more spread out. Although not easily conclusive from
Fig. 13, augmenting the number of flow reversals increases the amplification of the undamped frequencies. This is
consistent with the behavior displayed by the previous flow model. An expected increase in disorganization of the
hydrodynamic wave accompanies successive increases in flow reversals, despite the small initial amplitudes captured
here relative to the complex-lamellar model. Moreover, the multidirectional flow configuration exhibits continual
oscillations in the streamwise direction, a behavior that is not evident in the strictly bidirectional motion.

As we shift our focus to Fig. 13b, it is clear that a smaller κ reduces the number of unstable eigenvalues. While all
cases of m contain unstable eigenvalues, the number of amplified circular frequencies increases with increasing flow
reversals, as do the expected growth rates.

Waveforms for the first amplified eigenvalue captured through the spectral analysis are depicted in Fig. 14. These
solutions bear familiar characteristics to those of the complex-lamellar profile. In particular, the hydrodynamic
oscillations appear to occur about the streamlines of the baseflow as noted by the solid streamlines. As for the
pressure fluctuations, they appear to form and propagate along the centerline but vanish elsewhere. Interestingly,
the regions and amplitudes of highest oscillations coincide for the two solutions. For example, the funnel shaped
contour of the inner vortex about the centerline appears concretely in Fig. 14a. Furthermore, the initial amplitude of
these oscillations emerges at a lower order than the axial velocity. At the outset, the instantaneous velocity in the
regions of high amplification remains weakly affected by the emergence of hydrodynamic waves.

Lastly, Fig. 15 displays the axial and pressure contours for a smaller value of κ. As before, the hydrodynamic
oscillations no longer appear to correlate with the baseflow streamlines. The short, spatially-periodic oscillations may
be connected to increased vorticity generated by the linear variation in the tangential velocity. The pressure oscillations
are again confined to the centerline but have a longer period and smaller amplitude than those shown for κ = 0.1.

V. Stability of the Harmonic Beltramian Motion

Spectral results for the harmonic Beltramian model mirror those of the linear model. There are however, small
differences in the waveforms that will be reported below.

A. Axisymmetric Spectrum

The parametric study for the harmonic Beltramian baseflow in Fig. 16 presents nearly identical results to those of
the linear Beltramian model in Fig. 9. We see significant overlap of the spectral data for variations in κ, and these
show more eigenvalues appearing at higher frequency for large κ. In the case of the Reynolds number, the scatter of
the overall eigenvalues is consistent with previous models. As for the sensitivity of the solution to the aspect ratio and
multiple mantles, the results for this case follow quite closely those of the linear Beltramian model.
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a) Biglobal axial velocity wave for the linear Beltramian model

b) Biglobal pressure wave for the linear Beltramian model

Figure 14. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2312 + 0.1096i, with N = 50, q = 1, l = 2, Re = 10, 000, and
κ = 0.1. See Table 1 for error values.

a) Biglobal axial velocity wave for the linear Beltramian model

b) Biglobal pressure wave for the linear Beltramian model

Figure 15. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.8992 + 0.1617i, with N = 50, q = 1, l = 2, Re = 10, 000, and
κ = 0.01.
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a) Variation with the inflow parameter b) Variation with the Reynolds number

c) Variation with the aspect ratio d) Variation with the mantle mode number

Figure 16. Axisymmetric parametric study for several input parameters. Here, q = 1, l = 2, Re = 10, 000, and κ = 0.1 unless varied on the
graph.

B. Asymmetric Spectrum

In switching to q = 1, Fig. 17 displays variations in the spectrum at decreasing values of κ. The effect of Re is
also captured in Fig. 18 for κ = 0.1 and 0.01. Therein it may be seen that a larger scatter of eigenmodes is realized at
Re = 1000, although this low Reynolds number case is also accompanied by the most damped frequencies. As before,
lower Re solutions tend to be more stable given that the majority of eigenvalues fall below the critical line of ω i = 0.
Along similar lines, the effect of reducing κ in Fig. 18b is consistent with expectations for a strong swirling motion.
The spectrum becomes more stable overall with fewer high frequency eigenvalues and only a handful of sporadic
outliers that appear at rather low frequencies directly above the neutral axis, hence with small values of the growth
rate ωi.

The spectrum in Fig. 19 explores the sensitivity of our temporal solution to the chamber aspect ratio, l, and
the inflow parameter, κ. Since the former appears explicitly in the harmonic Beltramian model, specifically in the
axial dependence, it seems to influence the spectral distribution more appreciably than before. The resulting plot in
Fig. 19 is similar to its counterpart for the linear Beltramian model except for the added sensitivity to l. As for the
stability character of multidirectional motion captured in Fig. 20, we find once again that higher flow reversals have a
destabilizing effect as they tend to promote faster breakdown. Physically, this flow disruption may be attributed to the
increasing steepness of multidirectional streamlines.

Interestingly, although the spectra associated with the two Beltramian models are quite similar, their waveforms
exhibit some dissimilarities. By way of illustration, we show in Figs. 21–22 contours of axial velocity and pressure
disturbances at two values of κ. In Fig. 21, the unsteady waves are seen to follow the mean flow streamlines. However,
in relation to the previously considered cases, the regions most affected by hydrodynamic breakdown seem to be
slightly reduced in size. At the outset, the traditional funnel shape depicted in the core region is not as well defined.
This may be attributed to the relatively larger radial velocity in the headwall region where the crossflow reaches its
peak along with the streamline turning angle. So while we continue to observe oscillations about the streamlines for
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Figure 17. Asymmetric variation with κ. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with the Reynolds number for κ = 0.1 b) Variation with the Reynolds number for κ = 0.01

Figure 18. Asymmetric variation with the Reynolds number. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with the aspect ratio for κ = 0.1 b) Variation with the aspect ratio for κ = 0.01

Figure 19. Spectral results for several values of the aspect ratio. Here q = 1 and Re = 10, 000.
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a) Multidirectional flow for κ = 0.1 a) Multidirectional flow for κ = 0.01

Figure 20. Spectral results for multidirectional flow. Here q = 1 and Re = 10, 000.

a) Biglobal axial velocity wave for the harmonic Beltramian model

b) Biglobal pressure wave for the harmonic Beltramian model

Figure 21. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.0726 + 0.0549i, with N = 50, q = 1, Re = 10, 000, l = 2, and
κ = 0.1. See Table 1 for error values.

κ = 0.1 in Fig. 21a, the influence of r − z velocites become immaterial in Fig. 21b where the tangential component
becomes far more dominant at κ = 0.01. Instead, we see oscillations forming in the downstream portion of the chamber
where vorticity is most prevalent. These trends are consistent with those observed in the previous section.

Similar to the linear Beltramian wave forms, decreasing κ in Fig. 22 shows oscillations forming downstream in the
region of largest vorticity. This behavior is in accordance with the results obtained for the linear Beltramian model.

VI. Closing Remarks

This paper explores the biglobal stability character of the presently known bidirectional vortex solutions. The
axisymmetric results obtained for a zero tangential wave number (q = 0) offer a clear example of how an amplified
eigenvalue accompanied by a zero waveform does not contribute to hydrodynamic breakdown. For this reason, the
axisymmetric simulations are only included for the sake of completeness.
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a) Biglobal axial velocity wave for the harmonic Beltramian model

b) Biglobal pressure wave for the harmonic Beltramian model

Figure 22. Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.1734 + 0.1602i, with N = 50, q = 1, Re = 10, 000, l = 2, and
κ = 0.01.

A. On Upstream/Headwall Instability

In hindsight, the spatial stability analysis by Abu-Irshaid, Majdalani, and Casalis 17 predicted higher growth rates
near the headwall region. At the time, this observation was difficult to justify given the downstream location of spatial
growth in all previous studies. It was expected that since the inner region appears to be a truncated Taylor-Culick flow
with the mantle replacing the transpiring wall, a similar spatial stability regime would exist. The biglobal waveform
confirms that the region exhibiting peak spatial wave amplitudes is indeed near the headwall for large Reynolds number
flows. The behavior projected by Abu-Irshaid, Majdalani, and Casalis 17 is therefore confirmed, qualitatively at least,
given substantial dissimilarities in other flow attributes.

B. On Data Interpretation and Averaging

The dense scatter of eigenvalues, especially near the origin and neutral line of ω i = 0, makes stability predictions
of the flowfield difficult. This will remain a difficult achievement for any analysis in which the streamfunction
formulation, and therefore a significantly less dense spectrum, cannot be used. When considering the effect of
hydrodynamic stability from a combustion instability framework, where solutions are proportional to exp(αt), and
α represents the total growth rate, we are inclined to consider the overall spectral character. By simply averaging the
imaginary component, we find that the spectrum has an overall negative/damped growth rate for all cases considered.
This is merely a qualitative means of discussing the results. While only one eigenvalue needs to be undamped to
trigger instabilities, the cumulative contributions of their imaginary components at discrete circular frequencies make
up the real growth rate. For a densely populated spectrum where several unique circular frequencies overlap or nearly
overlap, the concept of averaging must be carefully considered. In fact, it may be argued that a more precise method of
identifying potentially unstable frequencies is to determine the average growth for all eigenvalues falling over small,
discrete intervals. This would approximate unstable circular frequencies by considering small regions over the domain
of circular frequencies where the overall effect essentially could be that of growth or decay. This idea is motivated
through observations that experimentally driving systems at exactly the unstable frequency is difficult to achieve. In
practice, near-resonance properties are found over a small band of driving frequencies that happen to fall in the vicinity
of the expected values.
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a) Chedevergne’s results with respect to the aspect ratio b) Complex-lamellar results with respect to two aspect ratios

Figure 23. Comparison between data obtained by a) Chedevergne and Casalis15 during their SRM simulation at different chamber lengths
and b) the present solution for the complex-lamellar model.

C. On Accuracy

When considering the accuracy of the eigensolver, we acknowledge that the first N/3 eigenvalues are accurate for
a single equation problem. This notion allows some data reduction by considering only the first 4N 2/3 eigenvalues.
This number is an extrapolated value given the increase from one equation to four and one coordinate domain to two.
For N = 50, we would consider the first 3000 eigenvalues. This leads to a densely populated grid that is burdened by
the same challenges as the full spectrum. By incrementally reducing the number of eigenvalues considered, we find
that the computed modes emanate from the origin and generate large modulus eigenvalues, presumably least accurate,
that become even larger with successive increases in N. The first eigenvalues, and presumably the most accurate, lie
within a narrow band along the critical line. Furthermore, most of those are damped.

D. On Chamber Length and Frequency Shifts

The streamfunction formulation used in modeling two-dimensional flows requires the definition of an extrapolating
boundary condition in the exit plane. 15,18 The present work makes no such statement. Rather, an acoustically closed
condition is applied here. This difference is significant as to the shape of the wave at the endwall. The extrapolation
expression results in an open, aft-end boundary rather than an acoustically closed/choked condition. We believe the
latter to offer a more suitable approximation for rocket engines. Chedevergne and Casalis 15 showed that, for varying
chamber lengths (or aspect ratios), the amplification (ω i) increases while the frequency remains nearly the same for
all chamber lengths. Their results compared to the axisymmetric, complex-lamellar bidirectional vortex are depicted
in Fig. 23. Note that their spectra shown in Fig. 23a correspond to a long cylindrical chamber with sidewall injection.
Eigenmodes are displayed for exit planes at X f = 6, 8, and 10; they show that the frequencies shift slightly to the
left with successive increases in dimensionless X f and, hence, the temporal growth rate ω i. Even though our general
formulation, physical setting, and endwall conditions are different, the overall conclusion as to the effect of varying
the chamber aspect ratio is similar. We can, in fact, confirm that for axisymmetric oscillations (q = 0), the circular
frequency is largely invariant with changing the chamber length. This may not be a definite statement. The large
amount of overlap and scatter near and around the origin, as well as the collective patches of dense spectral results
in other areas of the domain, make it difficult to confirm this behavior as a universal trend. Similar correlations can
be seen in the asymmetric spectra as well; however, without the linear form of the spectral structures, identifying this
characteristic is much more difficult.
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E. On Tangential Flow Velocity

The inclusion of a tangential velocity may be one of the most unique aspects of this work. High speed swirling
velocity in our problem brings about two physical attributes: a shear layer near the centerline and strong centrifugal
forces. While the new centerline shear layer introduces vorticity near r = 0, the centrifugal forces will act to negate
vortex generation along the sidewall. The ensuing behavior may warrant further investigation and parametrization to
resolve its unique characteristics.

A direct avenue in which to determine the contribution of tangential velocity on the stability is to explore the effect
of the inflow parameter, κ. This parameter is related to the swirl intensity through the modified swirl number, σ.
Increasing values of κ reflect a less swirl-dominated flow. Conversely, decreasing κ intensifies the swirl and, as stated
earlier, increases the magnitude of centrifugal forces and, through them, improves flow stability.

F. On Multidirectional Flows

We recall that the solutions reported for multidirectional flow of the linear Beltramian model in Fig. 13 suggested
an increase in unstable eigenvalues with the flow reversal mode number. Figure 24 identifies the spectrum for two
smaller values of κ than reported previously. In Fig. 24, we see that while decreasing κ to 0.01 is still accompanied
by numerous undamped eigenvalues, the κ = 0.001 case exhibits considerably fewer modes above the neutral lines,
despite the presence of multiple mantles. This feature is consistent with the hypothesis that increasing swirl intensity
will enhance stability even in the presence of multiple reversals.

a) κ = 0.01 b) κ = 0.001

Figure 24. The multidirectional, linear Beltramian model for two values of κ. Here q = 1, Re = 10, 000, and l = 2.

G. On Numerical Error

To verify that our results are accurate, the waveforms described herein have been numerically differentiated and
back-substituted into the governing equations as a means of error checking. Table 1 catalogs the maximum error
incurred by back-substitution for the contour plots shown in their respective sections. The actual error is likely better
than those posted here because back-substitution compounds the error of numerically differentiating the solution on
top of the numeric error already incurred. As one may infer based on Table 1, errors for the contour plots previously
discussed are significantly small and well within acceptable tolerances. This error check is gratifying as it helps to
confirm the precision achieved in our simulations.
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de L’éspace, Toulouse, September 2007.

20
American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.2514/1.14872
http://dx.doi.org/10.2514/3.3709
http://dx.doi.org/10.1063/1.3247186
http://dx.doi.org/10.2514/1.40442
http://dx.doi.org/10.1017/S0022112070002793
http://dx.doi.org/10.1063/1.2160524

