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 This work introduces a closed-form analytical solution for the transverse vorticoacoustic 

wave in a circular cylinder with headwall injection.  This particular configuration mimics 

the conditions leading to the onset of traveling radial and tangential waves in a simple liquid 

rocket engine (LRE).  In order to model the showerhead into a simulated LRE thrust 

chamber, two injection profiles are considered: a top-hat, uniform flow and a bell-shaped, 

sinusoidal profile that satisfies the no-slip physical requirement along the circumference of 

the injector faceplate.  Assuming a short cylindrical chamber with an injecting headwall, 

regular perturbations are used to linearize the problem’s mass, momentum, energy, ideal 

gas, and isentropic relations.  A Helmholtz decomposition is subsequently applied to the 

first-order disturbance equations, thus giving rise to a compressible, inviscid, acoustic set 

that is responsible for driving the unsteady motion, and to an incompressible, viscous, 

vortical set that is driven by virtue of coupling with the acoustic mode along solid 

boundaries.  While the acoustic mode is readily recovered from the wave equation entailed 

in this analysis, the induced vortical mode is resolved using boundary layer theory and a 

judicious expansion of the rotational set with respect to a small viscous parameter, δ.  After 

some effort, an explicit formulation is arrived at for each of the uniform and bell-shaped 

injection profiles.  The two solutions are then presented and compared at fixed spatial 

locations within the chamber.  The penetration depth of the unsteady boundary layer is also 

characterized.  Unlike the solution based on uniform headwall injection (that permits slip at 

the sidewall), the vorticoacoustic wave based on the bell-shaped mean flow is found to be 

more realistic, being capable of securing the no-slip requirement at both headwall and 

sidewall boundaries.  It may hence be viewed as an improved physical representation of the 

transverse wave motion in a circular enclosure that idealizes the unsteady flowfield in a 

simulated liquid rocket engine. 

Nomenclature 

0a  = speed of sound of incoming flow, 
1 2

0( )TR  

, ,r ze e e  = unit vectors in , ,r   and z  directions 

L  = chamber length 

bM  = average blowing/burning Mach number at headwall 

OF  = overshoot factor 

p  = pressure 

Pr  = Prandtl number, ratio of kinematic viscosity to thermal diffusivity 

, ,r z  = radial, tangential, and axial coordinates 

R  = chamber radius 

aRe  = acoustic Reynolds number, 0 0( )a R 
 

bRe  = blowing Reynolds number at the headwall, 0( )bU R 
 

S  = Strouhal number, 0( )mn b bK M R U
 

pS  = effective penetration number
 

t  = time 

T  = temperature 
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u  = total velocity vector 

( )bU r  = blowing velocity profile at the headwall 

U  = mean flow velocity vector 

wV  = propagation velocity of vortical waves in the axial direction 

,p py z  = penetration depth of rotational elements in the y  and z  directions, respectively 

OSz  = locus of unsteady velocity overshoot 

 

Greek 

  = viscous parameter, 1
a

Re  

d  = dilatational parameter, 0 0 4 3     

  = wave amplitude 

  = ratio of specific heats 

  = bulk viscosity 

  = spatial wave length
 

  = dynamic viscosity 

  = kinematic viscosity,    

  = density 

  = unsteady vorticity 

0  = non-dimensional circular frequency 

  = mean vorticity 

 

Subscripts 

0  = mean chamber properties 

 

Superscripts 

*  = dimensional variables 
  = unsteady flow variable 

  = steady flow variable 

 

I. Introduction  

OMBUSTION instability has long been recognized as one of the most challenging problems plaguing large 

scale combustors.  In fact, it is considered as one of the chief obstacles in the development of liquid rocket 

engines.  Combustion instability was observed as early as the late 1930s both in solid and liquid rocket engines.  

Numerous studies have been conducted to quantify its sources, and these include experimental,1 numerical,2 and 

analytical investigations.3  

In liquid rocket engines, transverse combustion instabilities are identified by large pressure oscillations, in a 

plane perpendicular to the axis of the combustion chamber, and corresponding frequencies that closely match linear 

chamber acoustics.4,5  Experimental observations have often suggested that the instabilities involve large amplitude 

oscillations with steep gradients in the direction of the flow.  For instance, Clayton, Sotter and co-workers6-8 

investigated high amplitude tangential oscillations using a heavily instrumented, laboratory scale, 20  klbf thrust 

engine.  They recorded steep-fronted pressure oscillations with peak-to-peak amplitudes that are one order of 

magnitude larger than the mean chamber pressure.  Although the response rate of their pressure transducers was not 

small enough to accurately capture the resulting waves, their acquired data displayed large amplitude spikes 

followed by long and shallow pressure segments. 

Along similar lines, numerical studies have focused on the characterization of the transverse waves and their 

effects on combustion instability for different rocket configurations.  By way of example, Ando, Inaba and 

Yamamoto9 simulated the generation of transverse waves in a pulse denotation engine and deduced that the strength 

of the blasts increased where transverse waves collided.  Other researchers, such as Chandrasekhar and 

Chakravarthy,10 deduced from their simulations that transverse waves could be induced by wall vibrations to the 

extent of producing longitudinal oscillations. 

The earliest analytical studies of oscillatory waves in a ducted environment with injecting walls were undertaken 

by Hart and McClure,11,12 Culick13 and others.14-18  Their models led to the few analytical formulations describing 

C 
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the behavior of oscillatory flows inside porous walls.  Other researchers applied asymptotic approaches to linearize 

the Navier-Stokes equations and deduce the predicted wave behavior.  This effort was prompted by the long-

standing belief that the presence of a tangential acoustic velocity can give rise to a traveling shear wave.  In 1956, 

theoretical work by Maslen and Moore19 hinted that tangential waves could not steepen as in the case of longitudinal 

waves.  Their study on tangential wave development used a circular cylinder with zero mean flow.  In 1962, Crocco, 

Harrje and Reardon20 used small perturbations and separation of variables to predict the stability limit of liquid 

rocket engines.  Their work showed that the stability of their rocket depended on the radial and tangential modes as 

well as the chamber’s exit Mach number.  Later studies21 took into account the effects of the mean flow on wave 

growth and propagation in a cylinder with transpiring wall, this being the traditional geometry used to simulate a 

solid rocket motor. 

Studies that followed emphasized the satisfaction of the no-slip boundary conditions and provided viscous and 

rotational corrections to the acoustic field in a solid rocket motor.  On one hand, Brown, Dunlap and 

collaborators22,23 provided experimental data that confirmed the behavior of the longitudinal oscillations in the 

chamber.  Their results showed that the models available at the time failed to satisfy the fluid’s behavior next to the 

wall.  On the other hand, Vuillot and Avalon24 studied the growth of the sidewall boundary layer.  Their analytical 

results predicted a thick boundary layer at the sidewall, specifically one that extended over the entire chamber 

volume for specific Reynolds numbers.  Later analytical pursuits relied on perturbation theory to provide closed-

form solutions to the problem.  Researchers discovered that the behavior of the oscillatory flow and its propagation 

into a rocket chamber depended heavily on the mean flow and injection patterns.14,25-27  Using asymptotic techniques 

such as WKB, Majdalani and coworkers were able to identify the dependence of the rotational boundary layer 

region on the penetration number, a keystone parameter that combines the injection Reynolds and Strouhal numbers 

in a non-intuitive way 2( ).Re / S  

Since the behavior of the waves remains coupled with the mean flow, the proper selection of the latter stands at 

the forefront of a meaningful physical representation of the problem at hand.  In fact, early analytical investigations 

of the combustion instability problem may have inadvertently started with Berman28 who, despite his interest in an 

entirely different industrial application, provided the means to solve for the steady state flowfield in a cylinder with 

injecting sidewall. Later, Yuan and Finkelstein29 produced asymptotic solutions for the large injection and suction 

cases.  Several studies followed, and these have mostly focused on unraveling different mean flows in porous 

enclosures with a variety of injection configurations. 

In hindsight, most of these studies seem to have primarily concentrated on the oscillatory motion within 

elongated solid rocket motors, and much fewer have tackled the liquid rocket engine case.19,20,30  Recently, 

Fischbach, Flandro and Majdalani18 considered the transverse wave propagation in such rockets, with the purpose of 

understanding the mechanism of acoustic streaming.  Albeit a secondary objective of theirs, they also analyzed the 

growth of the vorticoacoustic boundary layer at the headwall.  Their configuration is somewhat analogous to the 

solid rocket motor case, where the sidewall substitutes for the headwall of a LRE. 

In the present investigation, we consider the oscillatory flowfield inside a cylinder of small aspect-ratio and 

injecting headwall.  The mean fluid motion is induced by two injection profiles, either uniform or bell-shaped.  In 

addition to the mean flow, the presence of small-amplitude oscillatory waves is accounted for.  These self-excited 

waves give rise to a complex fluid structure that we wish to describe.  Following the small perturbation approach 

introduced by Chu and Kovásznay,31 the equations of motion are recast into two sets: one controlling the mean flow 

behavior, and the other describing the oscillatory motion.  Then, using a Helmholtz decomposition, the first-order 

fluctuations are separated into a pair of acoustic and vortical fields.  Presently, these techniques will be used to 

derive an improved asymptotic solution for the oscillatory motion in a circular chamber in general, and a simulated 

LRE in particular.  Using a systematic application of boundary layer theory, an alternate mathematical formulation 

will be achieved and compared to previous work on the subject.18  At the outset, the oscillatory flow approximation 

based on the bell-shaped injection pattern will be shown to provide an improved representation of the actual wave 

motion in a simulated thrust chamber. 

II. Formulation 

A. Geometry 

As shown schematically in Fig. 1, the idealized thrust chamber is simulated as a circular cylinder that extends 

vertically from the center axis at * 0r   to the sidewall at *r R .  Horizontally, the domain extends from * 0z   

to L , where the headwall may be viewed as a porous surface across which flow may be injected at a velocity 
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( )bU r .  We also show in Fig. 1 the azimuthal coordinate, ,  and the transverse direction of unsteady velocity 

disturbances, u  and ,ru  which denote the both tangential and radial oscillations.  Given that this study is focused 

on a simulated LRE, the aspect ratio of the chamber under consideration is taken to be small, specifically less than 

or equal to unity, 1L R  . 

B. Normalized System of Equations 

It is helpful to first proceed by normalizing the flow variables according to 
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where reference properties are defined in the Nomenclature.  The normalized governing equations for a viscous 

compressible fluid, with no body forces acting on it, may be expressed as 

Mass: ( ) 0
t





 


u  (2) 

Momentum: 
2 21

( ) ( )dp
t

  


 
             

 

u
u u u u u u  (3) 

Energy: 
2

2

0

1T p
T p T

t t Pr

 




     
         

    
u u  (4) 

State: p T  (5) 

Isentropic relation: p   (6) 

where Pr  is the Prandl number,   is the ratio of specific heats, and the viscous parameters   and d  are given by 

 0 0

0 0

1 4
= ;

3
d

aa R Re

 
  


    (7) 

The bulk viscosity, also known as the dilatational viscosity ,  is taken here at the reference conditions as 0 .  It 

represents viscous shear associated with the volumetric-rate-of-strain, and is approximately set to zero when the 

fluid is incompressible according to the Stokes hypothesis. 

C. Unsteady Disturbance Equations 

As shown by Chu and Kovásznay,31 the normalized flow variables can be decomposed in terms of a mean flow 

and an oscillatory component viz. 

 ; ; 1 ; 1 ; 1bM p p T T             u U u =    (8) 

Substituting the instantaneous variables of Eq. (8) into Eqs. (2)–(6) leads to two sets of equations for the steady 

and unsteady motions.14,25  The next step is to expand all unsteady variables in terms of the primary perturbation 

parameter,  .  Each fluctuation a  may hence be written as 

 
(1) 2 (2) 3 (3) 4( )a a a a         (9) 

Here a  alludes to a generic flow variable, and   denotes the ratio of the superimposed oscillatory pressure 

amplitude to the traditionally larger mean chamber pressure.  After some algebra, the governing equations may be 

separated at first order in   and rearranged as: 

 
 

(1)
(1) (1)

(1)
(1) (1) (1) (1) 2 (1) 2 (1)

(1) (1) 2
(1) (1) 2 (1)

(1) (1) (1) (1) (1)

1

1

;

b

b d

b b

M
t

p M
t

T p
M T M p T

t t Pr

p T p




 


 



 


        


                     

    
         

   


  

u U

u
U u U u u

U U

  
 (10) 

Equation (10) is often referred to as the set of interaction equations in which the influence of the mean flowfield, ,U  

on the unsteady disturbances, 
(1) ,u  is clearly seen. 
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D. Headwall Injection Pattern 

It may be instructive to note that the system of first-order interaction equations encapsulated above is strongly 

dependent on U , the steady stream of incoming fluid across the headwall.  In practice, the injection process at the 

faceplate can be somewhat complex, specifically when taking into account the multitude of possible injector 

configurations and showerhead patterns. Nonetheless, it is routinely assumed that a streamtube motion quickly 

develops, especially for conventional thrust chambers.32  Bearing these factors in mind, only low-order 

representations of the incoming jet will be considered here.  In the interest of simplicity, two types of injections will 

be employed.  The first corresponds to a uniform, top-hat, plug flow along the chamber length, and the second 

implements a self-similar, bell-shaped, half-cosine that is often attributed to Berman.28  The latter has been 

frequently used in theoretical studies of propulsive systems with headwall injection.  Examples abound and one may 

cite, for example: Culick,21 Brown et al.,22 Proudman,33 Beddini,34 Chedevergne, Casalis and Féraille,35 Griffond and 

Casalis,36 Saad and Majdalani,37 and Majdalani.38  The two test cases may be represented in non-dimensional form 

using 

Uniform profile: (0) (0) (1)r z  U e e e  (11) 

Berman (bell-shaped) profile:  21
2

(0) (0) cosr zr   U e e e  (12) 

In what follows, the vorticoacoustic transverse wave will be modeled in the presence of an oscillatory pressure 

disturbance and a mean flowfield corresponding to Eqs. (11)–(12). 

E. Flowfield Decomposition 

In comparable studies leading to analytical solutions of wave motions, first-order fluctuations are invariably 

separated into an acoustic and a vortical field.39,40  On the one hand, the acoustic part produces a potential motion 

that is compressible, irrotational, inviscid and isentropic.  On the other hand, the vortical part gives rise to an 

incompressible, rotational, and viscous field.27  At the onset, the potential solution, being inviscid, proves incapable 

of satisfying the velocity adherence condition at solid boundaries.  Both physically and mathematically, a correction 

is required, namely in the form of a vortical wave.  The latter is generated at the boundary in such a manner as to 

offset the acoustic part at the wall.  Using a circumflex to denote the pressure-driven potential part, and a tilde for 

the boundary-driven vortical component, the unsteady flow variables may be once more decomposed into: 

 
(1) (1) (1) (1) (1) ˆˆˆ ˆˆ; ; ; ;p p p T T T          u u u =    (13) 

r* R

z*

r*

U
b

u’

a)

u
r
’

L
 

r* R

z*

r*

U
bb)

z*

R

0

UbL
 

Figure 1.  Chamber geometry and coordinate system showing a) uniform flow and b) bell-shaped profile. Also shown is a 

front view depicting the coupled tangential and radial wave motions that together dictate the transverse mode shapes. 
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Substituting Eq. (13) into Eq. (10) yields two independent sets of equations that remain coupled by virtue of the 

no-slip requirement that must be fulfilled along the headwall.40 These are: 

Acoustic set: 

 
ˆ ˆ 1

ˆ ˆ ˆ ˆˆ;

ˆ ˆ1ˆ ˆ

ˆ ˆ ˆˆ ˆ;

b b

b b

M p M
t t

T p
M T M p

t t

p T p










 

 
               



   

         

   

u
u U U u u

U U



 (14) 

Vortical set: 

   2 2

2
2

1
0;

1

b d
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p M
t

T p
M T M p T

t t Pr

p T
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


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                    



   

           

  

u
u U u U u u

U U

  

 (15) 

F. Boundary Conditions 

The fundamental disparities between acoustic and vortical fields warrant the use of two dissimilar sets of 

boundary conditions.  In the case of the acoustic wave, a closed boundary must be maintained, as usual, along all 

solid surfaces, including the injection site (i.e., at 1,r   0z   and /z L R ).  In the case of the rotational wave, the 

no-slip condition at the headwall must be secured first and foremost, being the counterpart of the sidewall boundary 

in the inverted analog of an axially traveling wave within an elongated porous cylinder.18,40  In both geometric 

configurations, the velocity adherence constraint is imposed at the injecting surfaces, and these correspond to either 

the headwall or the sidewall of the simulated LRE and SRM, respectively.  Along the non-injecting surface 

(sidewall), slip may be allowed in the vortical wave formulation.  At the downstream end of the chamber, /z L R , 

the vortical wave must remain bounded and, being sufficiently removed from the headwall, its rotational effects are 

expected to have died out.  Naturally, with the attenuation of the unsteady vorticity component, the vorticoacoustic 

wave reduces to its potential form.  A summary of the physical constraints entailed in the resulting model is given in 

Table 1. 

III. Solution 

This section describes the boundary layer approach that we follow to reduce the time-dependent vortical system 

into a more manageable set.  The ensuing formulations are provided for both mean flow profiles.  However, because 

the vortical field is engendered by the acoustic wave, the latter must be considered first. 

A. Acoustic Formulation 

Although Eq. (14) consists of an assortment of five equations, it can be systematically reduced to a single 

equation that represents a modified form of the wave equation.  Using a well-established manipulation of the 

acoustic set, the time derivative of the acoustic mass conservation may be subtracted from the divergence of the 

corresponding momentum equation to arrive at an extended form of the wave equation:18 

      
2

2 2

2

ˆ
ˆ ˆˆ ˆ

b

p
p M p

tt
 

  
            

U u u U  (16) 

Note that Eq. (16) incorporates the effects of the mean flow, albeit at the order of the blowing Mach number.  At 

this juncture, it may be useful to recall that the inlet or blowing Mach number is usually smaller than unity 

 0.3 1bM  .  As such, it may be used as a secondary perturbation parameter.  This enables us to expand the 

acoustic pressure in successive powers of ,bM  namely, 

Table 1.  Boundary conditions for the acoustic and vortical fields 

 Boundary 

 1r   0z   z L R  

Acoustic field ˆ 0p n  ˆ 0p n  ˆ 0p n  

Vortical field no condition imposed 0r zu u u
      bounded 
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(0) (1) 2 (2) 3ˆ ˆ ˆ ˆ ( )b b bp p M p M p M     (17) 

Forthwith, backward substitution into Eq. (16) renders, at leading order, 

 
2 (0)

2 (0)

2

ˆ
ˆ

p
p

t


 


 (18) 

We thus recover the classical wave equation in three dimensions.  The solution of this partial differential equation 

(PDE) may be readily extracted using separation of variables.  One gets 

        (0)ˆ , , , cos cosmniK t

m mn lp t r z e J K r m K z 
  (19) 

where m , n  and l  are positive integers that refer to the tangential, radial, and longitudinal mode numbers, 

respectively.  In the same vein, mnK  designates the transverse wave number that depends on the joint tangential and 

radial modes, m  and n .  In practice, it is deduced numerically by solving   0m mnJ K   and generating, in 

successive fashion,18 the first radial, first tangential, first radial and tangential modes, etc., according to: 

 

01 10 11

02 20 22

12 21

3.831 705 97 1.841183 78 5.331 442 77

7.015 586 67 3.054 236 93 9.969 467 82

8.536 316 37 6.70613319 .

K K K

K K K

K K etc

  


  
  

 (20) 

To simplify the forthcoming analysis, we note that for a short cylindrical enclosure in general, or a simulated 

LRE in particular, the tangential and radial oscillations tend to dominate over their longitudinal counterpart, mainly 

due to the short length of the chamber.  Hence, in our effort to emphasize the contribution of the transverse modes, 

and given that  cos lK z  remains close to unity for small ,z  the axial wave number lK  is deliberately set to zero.  

The leading-order acoustic pressure becomes 

       (0)ˆ , , , cosmniK t

m mnp t r z e J K r m 
  (21) 

The corresponding acoustic velocity may be deduced by integrating the momentum equation and evaluating  

 (0) (0)1
ˆ ˆ dp t


  u  (22) 

A complete leading-order acoustic solution may hence be realized, specifically 

 

       

   

ˆ ˆcos ; cos

ˆ ˆsin ; 0

mn mn

mn

iK t iK t

m mn r m mn

mn

iK t

m mn z

mn

i
p e J K r m u e J K r m

K

i m
u e J K r m u

K r


 





 




 



  


 (23) 

In Eq. (23) and what follows, a prime implies differentiation with respect to the radial coordinate, r  .  

For the reader’s convenience, the four parts of Fig. 2 are used to illustrate the instantaneous pressure distribution 

in our cylindrical chamber at four sequential mode numbers.  These correspond to four zeroes of mJ   that are 

enumerated in Eq. (20).  Everywhere, the pressure contours represent snapshots taken in a polar plane at 

0.01 s, ,t z  where red and blue colors (online) denote high and low values, respectively.  It is interesting to note 

the evolution of the nodal lines going from a) to d), thus giving rise to double-D and alternating cross patterns that 

characterize the acoustic modes shapes.  In a) and b), the first and second radial modes are featured along with the 

first tangential mode where alternating double-D contours appear either a) once or b) twice, with the second set 

brushing along the outer periphery.  In c) and d), the second tangential configuration is depicted at the first and 

    

Figure 2.   Pressure contours in a polar slice for transverse oscillations corresponding to: a) K11, b) K12, c) K21 and d) K22. 

a) d) b) c) 
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second radial modes.  The last contour clearly captures the symmetrically alternating wave structure in both 

tangential and radial directions. 

B. Vortical Formulation 

Before proceeding with the solution of the vortical disturbance, it may be useful to clarify the origin of the 

driving mechanisms for the waves in question, while paying special attention to the reason for the decoupling of the 

incompressible continuity and momentum equations from the remaining members in Eq. (15).  To this end, we recall 

that the acoustic wave is driven by the pressure differential in the chamber but remains uninfluenced by the no-slip 

requirement at the boundaries or the mean flow at the leading order in .bM   In contrast, the vortical waves are 

driven by the acoustic motion at the boundaries and appear only as a dissipating correction to the latter that is 

impacted by the chamber’s geometry, the mean flow, and the acoustic field.  It may hence be argued that the ensuing 

vortical pressure differential may be dismissed in view of the pressure differential being mainly provided by the 

acoustic field.  This assumption enables us to ignore p  as a first approximation in the momentum equation and 

reduce the remaining set into14 

 
  2

0

bM
t



 



            

u

u
U u U u  

 (24) 

Interestingly, the system in Eq. (24) becomes over-determined, being comprised of four equations with three 

unknowns: the three velocity components, ,   and r zu u u .  A solution based on any three equations has the 

propensity to generate a large error in the fourth equation, depending on which three are chosen.  To mathematically 

close the system, one can retain the small vortical pressure wave p  in the momentum equation.  The amended set 

becomes:  

 
  2

0

1
bp M

t




 



              

u

u
U u U u  

 (25) 

In seeking an ansatz for u , we note that in Eq. (25), the rotational velocity disturbance stands as a function of 

time and three spatial variables. Moreover,  , , ,t r zu  must be chosen in a manner to identically cancel the acoustic 

motion at the headwall, t .  The time dependence of the vortical field must therefore match that of the acoustic 

motion at the headwall.  This can be achieved when the unsteady vortical wave exhibits the form:  

  , ,mniK t
e f r z

u     or     , ,mniK t

mn mniK e f r z iK
t


   



u
u  (26) 

This ansatz will be later used to secure a closed-form vortical approximation. 

C. Uniform Mean Flow 

The transverse wave subject to a uniform mean flow has been briefly explored by Fischbach, Flandro and 

Majdalani18 in their investigation of the acoustic streaming mechanism in a simulated LRE.  The present approach 

applies a regular perturbation expansion to a well-established variant of the conservation equations.  For the case of 

a uniform mean flow, Eq. (25) may be expanded in scalar notation to produce 

 

22 2 2
2

2 2 2 2

2 22
2

2 2 2 2

1
0

1 1 1 1

1 1 1 1

r r z

r r r z
mn r b

r r
mn b

uu u u

r r r z

u uu u u up
iK u M

z r r r r zz r r

u u u u uu up
iK u M

z r r r r rr r z r



 

    





  


   

 
   
  

     
         

        

    
         

      

2

22 2 2
2

2 2 2

1

1 1 1 1 1

z

z r r z z z
mn z b

u

r z

uu u u u u up
iK u M

z z r z r z r z r rr r






  







    
   


       
          

          

 (27) 

Recognizing that the vortical wave is dominant near the boundaries, Eq. (27) may be transformed using 

boundary layer theory, with the no-slip boundary condition being enforced at the headwall.  Because the vortical 

wave can grow or decay in the axial direction, we rescale the axial variable using a stretched inner coordinate 
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z




  (28) 

The next step is to perturb the vortical variables that appear in Eq. (27) with respect to the viscous parameter using  

 
(0) (1) 2 (2) 3 (3) 4( )a a a a a         (29) 

Collecting terms of the same order in   and rearranging leads to two vortical sets that must be solved successively. 

1. Leading-Order Solution 

At (1) , Eq. (27) begets 

 

(0)

0
u







 (30) 

 
(0) 2 (0) (0)

(0)

2

1b r r
mn r

M u u p
iK u

r  

  
    

 
 (31) 

 
(0) 2 (0) (0)

(0)

2

1b
mn

M u u p
iK u

r

 


   

  
    

 
 (32) 

 
(0)1

0
p

 





 (33) 

From one angle, solving Eq. (33) yields an axially invariant 
(0)p  that is only a function of the radial, tangential 

and time variables.  The axial propagation of the vortical wave is thus driven solely by the no-slip condition at the 

headwall. At this order, the vortical pressure does not affect the wave generated and must be set equal to zero to 

preserve the physicality of the case at hand.  Similarly, Eq. (30) leads to a vanishing leading-order axial velocity 

contribution.  We collect: 

 
(0) (0)0; 0p u   (34) 

From another angle, the solutions of Eqs. (31) and (32) may be straightforwardly extracted. The radial now-

homogeneous partial differential equation (PDE) precipitates 

    1 2(0)

0 0, , , ,
X X

r r ru A t r e B t r e     (35) 

where 

 
2 2 4 2 4

2 41 4

4 16 161 1 1 1
1 1 1 1 1

2 2 2 2 2 2

b mn b mn mn

b b b

M iK M K K
i

M M
X

M

  

 

  
         
  



   

  (36) 

 
2 2 4 2 4

2 4 42

4 16 161 1 1 1
1 1 1 1 1

2 2 2 2 2 2

b mn b mn mn

b b b

M iK M K K
i

M M M
X

  

 

  
         
  



   

  (37) 

At this juncture, two physical constraints may be brought to bear: the physicality of the solution in the farfield 

and the no-slip requirement at the headwall. First, because the real part of 2X  is positive,  0 , ,rB r t  must be 

suppressed to prevent the unbounded, unphysical growth of the velocity as   tends to infinity.  Equation (35) 

reduces to 

   1(0)

0 , ,
X

r ru A t r e   (38) 

Second, the velocity adherence condition at the headwall ( 0  ) demands that 

    (0) ˆ, , ,0 , , ,0 0r ru t r u t r    (39) 

and so      0 , , cosmniK t

r m mn

mn

i
A t r e m J K r

K
 



    (40) 

or    1(0) cosmniK t X

r m mn

mn

i
u e e m J K r

K

 


    (41) 

 

A similar procedure can be used to solve Eq. (32) with the outcome being 

    1(0) sinmniK t X

m mn

mn

i m
u e e m J K r

K r


 




   (42) 
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2. First-Order Solution 

At ( ) , Eq. (27) yields  

 

(1) (0)(0)
(0)1 1r
r

u uu
u

r r r

 

 

 
   

  
 (43) 

 

2 (0)(1) 2 (1) (1)
(1)

2

1b r r
mn r

uM u u p
iK u

r r



   

  
   

   
 (44) 

 

2 (0)(1) 2 (1) (1)
(1)

2

1 1b
mn

uM u u p
iK u

r r

 


     

  
    

   
 (45) 

 

(0)(1)
(0)1 b

mn

uMp
iK u




   


 

 
 (46) 

The vanishing leading-order axial velocity leads to a null first-order pseudo-pressure.  Subsequently, Eq. (44) 

reduces to 

 
(1) 2 (1)

(1)

2
0b r r

mn r

M u u
iK u

  

 
  

 
 (47) 

The solution of this homogenous PDE is analogous to that of Eq. (38), namely, 

   1(1)

1 , ,
X

r ru A t r e
  (48) 

Here too, the no-slip condition must be fulfilled.  However, since the cancellation of the acoustic velocity has been 

accomplished at the previous order, the leading-order contribution at the headwall must not interfere.  This implies 

  (1) , , ,0 0ru t r    (49) 

Equation (49) results in a vanishing first-order radial velocity.  A parallel procedure applies to the tangential 

component in Eq. (45), which mirrors Eq. (44).  The first-order tangential velocity is also found to be zero.  We 

hence realize 

 
(1) (1) 0ru u   (50) 

At this point, the axial component may be resolved.  By substituting Eqs. (41) and (42) into Eq. (43), we obtain 

    1

(1)

cosmniK t Xmn
m mn

u iK
e e m J K r

  
 







 (51) 

Equation (51) may be integrated and made to satisfy the headwall boundary condition.  This operation involves 

      
1

(1)

1

1

cos , ,mn

X
iK tmn

m mn

iK e
u e m J K r A t r

X



  



   (52) 

and  (1) , , ,0 0u t r       or         1

1

1
, , cosmniK tmn

m mn

iK
A t r e m J K r

X
  




   (53) 

whence     1(1)

1

1
cos 1mniK t Xmn

m mn

iK
u e m J K r e

X


 




   (54) 

D. Bell-Shaped Mean Flow 

It may be argued that the one-dimensional bell-shaped mean flow stands to provide a better physical 

approximation to the real phenomenon. While the uniform profile allows for slippage at the boundary, the bell-

shaped motion overcomes this deficiency by forcing the fluid to slow down to zero at the sidewall.  Through the use 

of a more realistic representation of the mean flow, an improved solution for the transverse oscillations may hence 

be achieved.  In this case, the expansion of Eq. (25) produces 

 
1

0r r zuu u u

r r r z





 
   
  

 (55) 

  
22 2 2

2 21
2 2 2 2 2

1 1 1 1
cos r r r z

mn r b

u uu u u up
iK u M r

z r r r r zz r r

  
  

     
         

        
 (56) 
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  
2 22 2

2 21
2 2 2 2 2

1 1 1 1 1
cos r r z

mn b

u u u u uu u up
iK u M r

z r r r r r r zr r z r

    
  

    

      
           

         
 (57) 

 

   2 21 1
2 2

22 2 2
2

2 2 2

cos sin

1 1 1 1 1

z
mn z b b r

r r z z z

u
iK u M r M r r u

z

uu u u u up

z r z r z r z r rr r



  


  


  



     
         

        

 (58) 

The next step is to invoke boundary layer theory to stretch the axial coordinate and reduce Eqs. (55)–(58) 

asymptotically by perturbing the resulting set with respect to  . 

1. Leading-Order Solution 

Using /z   and a series after Eq. (29), Eqs. (55)–(58) may be expanded and segregated at (1)  into 

 

(0)

0
u







 (59) 

  
(0) 2 (0) (0)

(0) 21
2 2

1
cosb r r

mn r

M u u p
iK u r

r


  

  
    

 
 (60) 

  
(0) 2 (0) (0)

(0) 21
2 2

1
cosb

mn

M u u p
iK u r

r

 
 

   

  
    

 
 (61) 

 
(0)1

0
p

 





 (62) 

The treatment of Eqs. (62) then (59) mirrors the case of uniform injection.  The leading-order pseudo-pressure and 

axial velocity are both determined to be vanishingly small, or 
(0) (0) 0.p u    However, the solution of Eq. (60) 

leaves us with 

    1C 2C(0) , , , ,
X X

r r ru A t r e B t r e
     (63) 

where 

     
1C 2 2 4 2 4 21 1 1

2 2

2 2 4 2

2

4

2 4 4

4 1
( )

cos co

6 161 1 1 1
1

s
1 1 1 1

2 2 2 2 2 co 2s

b mn b mn mn

b b b

X r
r r r

M iK M K K
i

M M M

  

   

  
         
 









 

 

 

 (64) 

     
2C 2 2 2 4 2 4 21 1 1

2 2

2 2 4 2 4

4 4

2

4 1
( )

cos co

6 161 1 1 1
1 1 1

s
1 1

2 2 2 2 2 2cos

b mn b mn mn

b bb

X r
M r r r

M iK M K K
i

M M

  

   

 
      

 
   

 



 



 

 

 (65) 

Because all cosine terms remain positive in the domain of interest, the real part of 2CX  stays positive as well.  

Consequently, one must set  , , 0rB t r    to mitigate the exponential growth of 
(0)

ru  as    at the outer edge of 

the boundary layer region.  This implies 

   1(0)

0 , ,
X

r ru A t r e   (66) 

Lastly, prevention of slippage at the headwall enables us to deduce  0 , ,rA t r   and, therefore, 

    1C(0) cosmniK t X

r m mn

mn

i
u e e m J K r

K

 


    (67) 

A nearly identical procedure leads to the identification of the tangential component, specifically 

    1C(0) sinmniK t X

m mn

mn

i m
u e e m J K r

K r


 




   (68) 

2. First-Order Solution 

The first-order expansion of Eqs. (55)–(58) precipitates 

 

(1) (0)(0)
(0)1 1r
r

u uu
u

r r r

 

 

 
   

  
 (69) 
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  
2 (0)(1) 2 (1) (1)

(1) 21
2 2

1
cosb r r

mn r

uM u u p
iK u r

r r




   

  
   

   
 (70) 

  
2 (0)(1) 2 (1) (1)

(1) 21
2 2

1 1 1
cosb

mn

uM u u p
iK u r

r r

 
 

     

  
    

   
 (71) 

  
(0)(1)

(0) 21
2

1
cosb

mn

uMp
iK u r



 
   


 

 
 (72) 

By virtue of 
(0) 0u  , Eq. (72) can be solved to obtain 

(1) 0.p    The outcome may be substituted into Eq. (70) 

to arrive at a second-order homogeneous PDE in 
(1)

ru , namely, 

  
(1) 2 (1)

(1) 21
2 2

cos 0b r r
mn r

M u u
iK u r

  

 
  

 
 (73) 

The physical solution of Eq. (73) mirrors its counterpart at leading order with 
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Consistently with the uniform flow case, we can deduce that 
(1) (1) 0ru u  .  Lastly, to extract the axial 

correction, Eqs. (67) and (68) may be inserted into Eq. (69) to retrieve 
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where 
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Recalling that  1
u  must also vanish at the headwall, Eq. (75) may be integrated with respect to   and simplified 

into 
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Figure 3 showcases the unsteady velocity vectors in a chamber cross-section taken at 0.01 st   and an axial 

distance of 410z   from the headwall.  The four parts correspond to the same representative cases and mode 

numbers used to describe the acoustic pressure in Fig. 2.  As one would expect, the rich vorticoacoustic wave 

structures that emerge are strongly influenced by the acoustic mode shapes.  The nodal lines appear to be at either 90 

or 45 degree angles with respect to the pressure, thus leading to horizontal (instead of vertical) symmetry in parts a) 

and b) where 1,m   and straight crosses (instead of oblique crosses) in parts c) and d) where 2.m    In comparison 

to the acoustic pressure distribution displayed in Fig. 2, the nodal lines of the vorticoacoustic waves are shifted by a 

phase angle of (2 ).m  

    
Figure 3.  Vorticoacoustic velocity vectors in a polar slice taken at z=10

-4
 and a transverse mode number corresponding 

to: a) K11=5.3314, b) K12=8.5363, c) K21=6.7061 and d) K22=9.9695. 

a) d) b) c) 
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IV. Results and Discussion 

The analytical approximations obtained heretofore can be collected into two sets of expressions for the 

vorticoacoustic velocity and pressure distributions.  The significance of these results and the behavior of their 

corresponding waves will now be discussed.  Furthermore, the wave behavior associated with each of the two mean 

flow profiles will be compared and contrasted.   

To start, a summary of the vorticoacoustic wave components will be provided through the superposition of 

potential and rotational contributions.  The resulting unsteady disturbances are given by: 

Uniform injection: 
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 (78) 

 

Bell-shaped injection: 
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For the sake of illustration, Figs. 4, 5 and 6 are used to display the behavior of the radial, tangential and axial 

disturbances versus the axial coordinate at decreasing values of the inlet Mach number. This is achieved at 0t  , 

0.4r  , 1
3

  , 0.000647   and a thrust chamber whose aspect ratio is equal to unity ( exit 1z L R  ).18  The 

corresponding plots capture the oscillatory motion for the first tangential mode using 10K .  Furthermore, Figs 4, 5 

and 6 display the unsteady velocities at two inlet Mach numbers, 0.3bM   and 0.003bM  . 

A. Wave Characterization 

It should be noted that the expressions for unsteady radial and tangential velocities in Eqs. (78) and (79) are 

nearly identical. The effect of specific mean flow motion is manifested through the axial constants 1X  and 1CX ; 

except for this mean flow dissimilarity, the two sets in the radial and tangential directions would have been identical.  

The corresponding spatial distributions are hence expected to behave similarly, with minor shifts that are caused by 

differences in their mean flow speeds.  This observation is confirmed by the plots in Figs. 4 and 5.  For example, at 
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Figure 4.  Unsteady radial velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003.  
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0.4r  , the mean flow velocity is constant at unity for the uniform flow and 0.9686  for the bell-shaped profile.  

This small difference may explain the slower downstream propagation of the unsteady traveling wave associated 

with the bell-shaped profile relative to the solution connected with the uniform mean flow. 

Interestingly, an inspection of the asymptotic orders reveals that the radial and tangential vortical velocities 

appear at order 2  (hence, of order 1

aRe  ).  This is an important observation since, in classical fluid dynamics, the 

normalization and subsequent analysis are traditionally based on the reciprocal of the Reynolds number, a quantity 

that is often taken as the primary perturbation parameter in lieu of the viscous parameter,  .  In short, it can be 

shown that these two velocity corrections skip every odd order and, therefore, appear only at even powers of  .  

Then one may argue whether their derivation could have been achieved using the more traditional expansion, using 

the reciprocal of the Reynolds number.  The answer is negative, owing in large part to the behavior of the axial 

vortical expansion.  Unlike ru  and u , the expansion of the axial vortical velocity zu  is shifted by an order of   

from its tangential and radial counterparts, as one may infer from Eqs. (78) and (79).  This may also justify the 

strategy used in the present approach, including the coordinate transformation that entails stretching the axial 

coordinate using the viscous parameter instead of the inverse of the Reynolds number. 

Concerning the vortical pseudo-pressure, it may be instructive to note that, although it was not dismissed at the 

onset from the rotational momentum equation, it has been carefully derived and shown to be strictly zero for the first 

two orders in .   We can therefore project that the vortical wave will only affect the acoustic pressure distribution 

starting at order 2.   This observation confirms the analogous treatment of the longitudinal wave problem in a 

simulated SRM, where the vortical pressure is discarded throughout the analysis.14,40  Here, its negligible 

contribution is formally demonstrated. 

Returning to the wave velocity, the behavior of the vortical component in the axial direction deserves particular 

attention.  Recalling that the acoustic component of the axial wave is discounted here (assuming a short chamber), 

the unsteady axial wave, zu , becomes confounded with the vortical part, .zu   The latter is needed to compensate for 

the more dominant tangential and radial components and, thus, ensure that continuity is fully satisfied.  Figure 6 

illustrates the behavior of zu  for three injection Mach numbers.  In these snapshots, the average unsteady velocity 

appears to be negative in the uniform injection case. Although the same average for the bell-shaped injection profile 

also proves to be negative, it exhibits a smaller absolute value.  This behavior may be attributed to the speed of the 
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Figure 5.  Unsteady tangential velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003. 
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Figure 6.  Unsteady axial velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003. 
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mean flow at 0.4,r   where the bell-shaped pattern, in comparison to the uniform motion, possesses less energy to 

sustain the traveling wave motion.  It is thus accompanied by faster attenuation. 

To further confirm this point, an inspection of the axial constant 1CX  in Eq. (64) shows that, at the centerline, 

the cosine yields a value of unity that matches the uniform flow case.  Moreover, as we move away toward the 

sidewall, the cosine function approaches zero.  In close proximity of the sidewall, the axial constant tends to 

negative infinity, having a negative real part.  It may therefore be seen that at the sidewall, Eq. (79) collapses into  
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Equation (80) shows that through the use of a bell-shaped mean flow, the ensuing transverse wave motion can 

intrinsically satisfy the no-slip requirement, not only at the headwall but at the sidewall as well.  This is true for the 

dominant component of the wave, ru  and the axial component zu .  As for the contribution of the tangential 

component ,u  its value at the sidewall is the same as that of the acoustic component, since the vortical contribution 

vanishes locally.  It may hence be argued that the ability of this model to satisfy the physical requirements along all 

boundaries grants it more generality than its predecessor with uniform headwall injection. 

B. Penetration Number and Rotational Layer Thickness 

Figures 4, 5 and 6 illustrate the dependence of the wave’s boundary layer thickness on the injection Mach 

number.  It is apparent that the viscous forces dominate over the inertial forces as the injection Mach number is 

reduced.  Conversely, when the injection Mach number is increased, the boundary layer is blown off the headwall.41  

It is noted that the faster decay of the wave due to the lower Mach number results in a lower propagation 

wavelength, measured by the peak-to-peak distance. 

Physically, the behavior of the propagation wavelength may be attributed to the wave’s Strouhal number, or 

dimensionless frequency, defined by mn bS K M .  A decrement in the injection Mach number and its 

corresponding increment in the Strouhal number lead to a larger number of reversals per unit time.  Furthermore, the 

increased frequency results in a higher interaction rate between fluid particles, and the increased friction between 

shear layers leads to a more rapid attenuation of the wave amplitude. 

Mathematically, the same behavior may be deduced by rewriting the axial decay terms 1X  and 1CX  of Eqs. (36) 

and (64) in terms of the Strouhal number and another dimensionless parameter.  A two-term Maclaurin series 

approximation of 1X  and 1CX  is required to capture the amplitude (real) and oscillatory (imaginary) components.  

These are 
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Figure 7.  Different penetration depths at a) δ = 0.000647 and b) injection Mach number 0.03. 
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where the effective penetration number pS  emerges in the form 
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This parameter, first discovered by Majdalani,42 played a key role in the characterization of the boundary layer 

thickness of the longitudinal vorticoacoustic wave in a simulated solid rocket motor.  Note that an increase in pS  

leads to a deeper penetration of the wave.  From a physical standpoint, the penetration number gauges the balance 

between two basic forces: unsteady inertia and viscous diffusion of the radial and tangential velocities in the axial 

direction.  For the radial velocity, pS  may be viewed as the ratio of 
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In the present study, the wave expressions can be recast using the Strouhal and penetration numbers. For the 

bell-shaped injection profile, the (real) magnitudes of the waves in Eq. (79) are seen to be governed by 
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where 
21

2
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A simple inspection of Eqs. (85)–(87) reveals that, at the sidewall, the radial and axial components vanish, while 

the tangential component scales with  m mnJ K ; this behavior is consistent with the observations of the previous 

section.  The rotational boundary layer can also be deduced from Eqs. (85) and (86).  The penetration of rotational 

elements is traditionally defined as the distance from the injecting boundary to the point where the contribution of 

the vortical wave becomes negligible, traditionally taken at 1% of the acoustic wave.41  Since the axial component of 

the potential field vanishes in the farfield, the penetration depth may be deduced for the radial and tangential 

components by taking: 
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where   corresponds to 1%  and pz  denotes the axial thickness of the rotational boundary layer.  Rearranging Eq. 

(88) renders 
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Figure 7 correlates the thickness of the vorticoacoustic boundary layer to the injection Mach number and viscous 

parameter.  In conjunction with the expression in Eq. (89), Fig. 7 shows that the boundary layer is thick for large 

injection Mach numbers, exceeding by far the length of the chamber.  When this case occurs, the linear oscillations 

have no time to decay before exiting the chamber, which would be entirely subject to transverse waves.  On the 

other hand, in the case of a small injection Mach number, the oscillations would take their toll almost entirely in the 

injector zone before fading out elsewhere.  A balance between both is required to deduce the effect of the wave on 



17 

American Institute of Aeronautics and Astronautics 

 

the chamber.  Moreover, the dependence on the injection pattern is apparent in the expression of the penetration 

depth.  The boundary layer thickness reaches its peak at the centerline, where disturbances are convected into the 

chamber at the largest headwall velocity and then depreciates precipitously to zero at the sidewall where the mean 

flow is forced to rest. 

Figure 8 compares the dependence of the boundary layer’s thickness on the penetration number in the axial 

(SRM) and transverse (LRE) cases.  The effects of the different injection mechanisms are reflected in these plots.  In 

a solid rocket motor, particles injected radially at the sidewall must turn before merging in the longitudinal direction 

parallel to the chamber axis.  This causes the penetration depth to increase in the direction along which unsteady 

vorticity is convected by virtue of the mean flow.  Conversely, in the liquid rocket engine, injection takes place at 

the headwall and remains unaffected by the downstream convection of unsteady vorticity.  The thickness of the 

boundary layer is thus dependent only on the speed of injection.  Throughout the chamber, a linear correlation, given 

by Eq. (89), prescribes the depth of penetration.  Unlike the axially dominated wave problem for which the wall-

normal depth of penetration py  approaches a maximum inviscid upper limit as pS  , the axial depth of 

penetration, ,pz  will continue to grow linearly with pS  up to the point where the injection bM  would have 

exceeded the physical limitations of the model. 

C. Wave Properties 

In addition to the penetration depth, three properties must be investigated to complete our characterization of the 

vorticoacoustic wave behavior.  These consist of the spatial wavelength,  , the unsteady velocity overshoot factor, 

OF , and its spatial locus, OSz .  Since the radial and tangential components have similar expressions, the following 

analysis is performed using the radial component only.  Nonetheless, the upcoming procedure is applicable to both 

waves. 

1. Spatial Wavelength 

The spatial wavelength,  , defines the distance traveled by a wave during one period.  It is also referred to as 

the distance between two consecutive peaks.  To calculate  , the wave propagation speed in the axial direction must 

be determined.  The radial component of the vortical wave in Eq. (79) can be rewritten as 
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where F  represents the amplitude of the wave.  With the propagation of the wave in the axial direction being our 

primary concern, differentiation of the axial component is required to find the corresponding velocity. We have 
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Knowing that the period of oscillation is 2 mnK  , the spatial wavelength is retrieved as 
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Consistent with classic theory of periodic flows, we note that the velocity of propagation is dependent only on 

the medium and conditions, i.e. the injection Mach number and the radial distance from the centerline.  Moreover, 

the wavelength depends on the mode number, which is embedded in the Strouhal number.  Higher modes reduce the 
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peak-to-peak distance between oscillations, as one would expect.  An important characteristic of this model is the 

dependence of all properties on the radial distance from the centerline.  Accordingly, oscillations in the vicinity of 

the sidewall propagate at a much slower rate than those located near the chamber core. 

2. Unsteady Velocity Overshoot 

The presence of the Strouhal number argument in the vortical solution controls the phase difference between the 

strictly acoustic and vortical waves.  Due to their phase difference, the two waves will periodically couple at nearly 

the same phase, thus resulting in an overshoot of the unsteady velocity that can reach, in some cases, twice the 

acoustic wave amplitude.  This overshoot was first discovered by Richardson43 who realized that maximum 

velocities in reciprocating flows occurred in the vicinity of the sidewall, rather than the centerline of his resonator 

tubes.  The overshoot was later dubbed ‘Richardson’s annular effect.’ 

Knowing that the overshoot takes place when both waves travel in phase, this condition corresponds to 

   , , exp ,r mnu F r z iK t    according to Eq. (90); the locus of the overshoot can thus be deduced to be 
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Since the problem and its corresponding solution are normalized, the induced overshoot factor can be determined 

by combining the axial contribution of the vortical correction to that of the acoustic wave.  The overshoot factor OF  

can be extracted from Eq. (79) and (82) by evaluating the amplitude of the vorticoacoustic velocity at OSz z . 

Starting with 
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Figure 9.  Overshoot factor and locus of overshoot at a) 0r  , b) 0.5r  , c) 0.75r   and d) 0.95r  . 
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Figure 9 quantifies the overshoot factor and its locus for different control parameters.  Note that on one hand, 

OF  depends on the Strouhal number, the distance from the centerline and the average chamber viscosity; the latter 

is accounted for through the blowing Reynolds number at the headwall, 0abb bRe Re =UM R  .  On the other 

hand, the different figures and their families of curves dramatically collapse into single lines (shown in Fig. 10a) 

when plotted versus the product of the Strouhal and penetration numbers.  Figure 10a shows that the strength of the 

overshoot decreases as we move away from the chamber centerline and increases at higher values of pS S , i.e. with 

larger injection velocities or smaller frequencies.  However, the locus of the overshoot depends solely on the 

Strouhal number and the distance from the centerline.  For all physical values of the Strouhal number, the overshoot 

takes place in a region smaller than 25 percent of the chamber radius in the neighborhood of the headwall.  Recalling 

that faceplate injectors protrude inwardly, they can be subject to oscillations reaching twice the strength of the 

predicted acoustic waves, even in the linear range.  Additionally, it appears that the distance from the centerline 

affects the overshoot and its properties.  The slower injection rate near the sidewalls leads to a smaller overshoot 

factor.  Furthermore, as one may infer from Eq. (93) and Fig. 10b, OSz  decreases while moving away from the 

centerline to the extent of vanishing along the sidewall.  This behavior shifts the line of maximum wave amplitude 

closer to the headwall as the sidewall is approached.  In the case of a liquid rocket engine, these spatial excursions of 

peak transverse amplitudes serve to amplify shearing stresses on the injectors, where coupling between modes can 

lead to further steepening and shock-like behavior. 

V. Conclusions 

In this study, asymptotic expansion tools are used to capture small-to-moderate amplitude oscillations that are 

dominated by their transverse motion in a short circular cylinder that mimics the cold flow environment of a simple 

liquid rocket engine.  Two particular formulations are advanced, and these correspond to either uniform or bell-

shaped cosine-like injection at the chamber headwall.  After decomposing the unsteady wave into potential and 

rotational fields, the latter is resolved using a boundary layer formulation that relies on a small viscous parameter, 

 .  This parameter corresponds to the square root of the inverted Reynolds number based on viscosity and the speed 

of sound.  At the outset, several fundamental flow features are unraveled including the radial, tangential, and axial 

velocities of the time-dependent vortical field.  The pseudo-pressure associated with the rotational motion is also 

determined rigorously and shown to be immaterial to the present analysis.  The penetration number, a keystone 

parameter that controls the so-called depth of penetration of unsteady vorticity, is also identified.  It is found to be 

nearly identical to its counterpart arising in the longitudinal wave analog encountered in the treatment of oscillatory 

motion in solid rocket motors.14,40  The advent of this parameter enables us to fully characterize the depth of 

penetration in the direction normal to the injecting surface.  Furthermore, our formulation for the unsteady motion 

connected with uniform headwall injection is found to be consistent with a previous study aimed at investigating 

acoustic streaming effects in a similar geometric setting.18  The zeroth-order injection model, however, leads to a 

transverse wave solution that allows slip along the sidewall.  An improved formulation is herein produced based on 

a bell-shaped injection profile that gives rise to a more suitable representation of the oscillatory field.  The latter is 

shown to satisfy the no-slip boundary at both headwall and chamber sidewall for the radial and axial components.  It 

is hoped that the mathematical strategy presented here can be later used to target higher order models of three-

dimensional traveling and standing waves in various geometric settings. 
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Figure 10.  Effect of radial distance on a) the wave overshoot factor and b) its locus. 
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With the vorticoacoustic solution at hand, fundamental wave propagation properties are carefully extracted and 

discussed.  These include the depth of penetration and Richardson’s overshoot factor of the transverse waves.  These 

are found to be strongly dependent on the Strouhal and penetration numbers; the latter represents a keystone 

parameter that seems to recur whenever oscillatory wave motion is considered above an injecting surface.  The locus 

of peak wave amplitude, in particular, is found to be smaller than a quarter radius, thus placing the maximum 

shearing stresses resulting from transverse wave motion in the close vicinity of the headwall.  In future work, the 

steepening of these waves will be examined. 
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