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Explicit Inversion of Stodola’s
Area-Mach Number Equation
Stodola’s area-Mach number relation is one of the most widely used expressions in
compressible flow analysis. From academe to aeropropulsion, it has found utility in the
design and performance characterization of numerous propulsion systems; these include
rockets, gas turbines, microcombustors, and microthrusters. In this study, we derive a
closed-form approximation for the inverted and more commonly used solution relating
performance directly to the nozzle area ratio. The inverted expression provides a com-
putationally efficient alternative to solutions based on traditional lookup tables or root
finding. Here, both subsonic and supersonic Mach numbers are obtained explicitly as a
function of the area ratio and the ratio of specific heats. The corresponding recursive
formulations enable us to specify the desired solution to any level of precision. In closing,
a dual verification is achieved using a computational fluid dynamics simulation of a
typical nozzle and through Bosley’s formal approach. The latter is intended to confirm the
truncation error entailed in our approximations. In this process, both asymptotic and
numerical solutions are compared for the Mach number and temperature distributions
throughout the nozzle. �DOI: 10.1115/1.4002596�
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1 Introduction
The design of a supersonic nozzle may be viewed as an opti-

mization study in which the exit Mach number plays the role of a
target variable defined by mission requirements. In this vein, a
wide variability exists as virtually any smooth curve can be used
in the subsonic region so long as the concavity of the contracting
section does not prompt flow separation. In the throat section,
curvature is minimized to promote the establishment of a uniform
choking plane. Downstream of the throat, the flow is accelerated
to supersonic levels across an expanding section. In this region,
proper contouring becomes critically important as discontinuities
in the Prandtl–Meyer angle can cause undesirable shocks and ex-
pansions. In the vicinity of the exit plane, the curvature is re-
straightened to reduce flow divergence losses. While traditional
techniques such as the method of characteristics can be employed
to arrive at an optimal nozzle shape, computational fluid dynamics
�CFD� can also be used as a modern alternative.

In addition to the geometric optimization challenges, thermal
protection issues arise in practical nozzle manufacture. These are
often associated with the temperature distribution and heat fluxes
resulting at the walls. On the one hand, enhancing performance
and payload capability entails reducing weight and tapering edges.
On the other hand, thermal protection against exhaust gases re-
quires strong materials and optimally designed cross sections. To
gradually straighten the flow out of the nozzle, a relatively long,
slowly sloping skirt is required to the extent that choosing a suit-
able length becomes an optimization process in its own right,
specifically, one that gauges weight constraints, geometry, and di-
vergence losses. It can thus be seen that the initial design phase of
a nozzle relies on an iterative process in which a multitude of
calculations are required and where isentropic tools can be readily
employed due to their ease and relative accuracy.

During this iterative process, several isentropic flow approxi-
mations in converging-diverging nozzles may be used, connecting
the Mach number to the nozzle area ratio and gas properties. Since
its inception in 1903 by Stodola �1�, this key expression has led to

a substantial leap in our understanding of supersonic nozzle be-
havior �2,3�; today, it can be found in most fundamental textbooks
on the subject �3–7�.

Stodola’s relation has been verified both experimentally �1� and
more recently via CFD �8,9�. It is used in compressible flow simu-
lations of the internal flowfield in solid rocket motors by Cheng et
al. �10�, Jackson et al. �11�, and Stewart et al. �12�. It appears in
one segment of ROCFLU, a compressible Navier–Stokes solver in-
tended for simulating rocket internal ballistics �11–14�. It is also
used in characterizing turbomachinery �15–17�, scarfed and
contoured-plug nozzles �18,19�, pulse detonation engines �20,21�,
and magnetohydrodynamic systems �22�. More recently, it has
been employed in applications of constructal theory by Bejan �23�
and in modeling microthrusters and microcombustors by Leach
�24� and Tosin et al. �25�. Its popularity as a simple design tool
lies in its ability to predict the area ratio needed to produce a
desired exit flow Mach number. This feature is, however, not ana-
lytically invertible due to the transcendental nature of the Mach
number dependence. At present, one must resort to tabulation or
root finding in the process of estimating the expected exit Mach
number for fixed area ratio and specific gas properties. In this
study, we overcome this difficulty through the use of asymptotics.

The inversion of a Mach number relation via asymptotics is not
a novel concept. In similar context, the Prandtl–Meyer function
has been treated by a number of researchers such as Probstein �26�
who introduced an analytical inversion of the Prandtl–Meyer
function for particular values of the specific heat ratio. Day �27� is
also known for developing a hybrid inversion using a mix of
analytical and computational tools. While these methods vary
from those employed here, they lend support to the usefulness of
analytical approximations for problems that arise in similar physi-
cal settings. The present relation will be derived with a sufficient
degree of accuracy to serve as a direct and practical design alter-
native. Not only will this solution increase our repertoire of
known approximations for compressible flow models but it will
also provide a simple alternative to tabulation and root finding.

2 Formulation
For isentropic flow through a converging-diverging nozzle with

throat area At, a transcendental equation relates the area ratio, �
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=At /A, and the Mach number M at any cross section of surface
area A. We are particularly interested in the so-called nozzle ex-
pansion ratio for which A corresponds to the maximum area Ae in
the nozzle exit plane. From an asymptotic perspective, this condi-
tion results in the smallest possible �=�e. In order to calculate the
exit Mach number for a given nozzle design ratio, one can solve
for M using a numerical root finding technique appropriate for

��1 + 1
2 �� − 1�M2���+1�/�2��−1�� − M�1 + 1

2 �� − 1����+1�/�2��−1�� = 0

�1�

In general, � varies between 1.1 and 1.67. In rocket motors, �
varies between 1.1 and 1.4 with an average value of 1.25. For
example, the reusable solid rocket motor �RSRM� has an average
molecular weight Mw=28.46 kg /kmol, constant specific heats
Cp=1966.54 J /kg K and Cv=1674.4 J /kg K, a specific gas con-
stant R=292.14 J /kg K, a mean chamber pressure p0
=6.28 MPa, a ratio of specific heats �=1.17, and an exit area
ratio �e=0.13. The exit Mach number is typically larger than 2
and can, of course, be calculated from Eq. �1�. According to Sut-
ton �7�, the exit value can range from as low as 2.5 to as high as
10, with most being in a 4–6 range. What is important is that in
many applications, the exit area ratio �e varies between 1/3 and
1/25 �7�. For high altitude applications �100 km or higher�, �e
ranges between 1/400 and 1/40; here, the exit areas are increased
to accommodate expansions to lower external pressures. To be
conservative, one may then assume

0.002 � �e � 0.4 �2�

The natural emergence of a small quantity � is the motivation
for using perturbation methods. These permit the construction of
asymptotic solutions for the area-Mach number M=M�� ,�� that
encapsulate both roots of Eq. �1�.

Once the Mach number is determined, it can be used to predict
the spatial evolution of the temperature, pressure, and density
throughout the nozzle. Because Stodola’s equation remains an ide-
alized case, it may be used in conjunction with isentropic relations
such as

T = TC/�1 + 1
2 �� − 1�M2�, p = pC/�1 + 1

2 �� − 1�M2��/��−1�

� = �C/�1 + 1
2 �� − 1�M2�1/��−1� �3�

where pC, TC, and �C stand for stagnation chamber properties.
Clearly, substitution of M=M�� ,�� in the above will give rise, by
direct extension, to T=T�� ,� ,TC�, p=P�� ,� ,pC�, and �
=��� ,� ,�C�.

The pressure and temperature are of chief interest because the
pressure determines, in part, how the nozzle performs for a given
geometry, and the construction of the nozzle is dependent, in part,
on the wall temperature distribution and its induced thermal gra-
dients. To illustrate these effects, Fig. 1 is used to describe the
pressure and temperature distributions in an isentropic nozzle. In
this graph, the subsonic pressures and temperatures are seen to
exhibit qualitatively similar shapes, starting at a maximum value
and decreasing as the flow enters the converging section of the
nozzle. The temperature decreases rather gradually as the accel-
eration in the subsonic region builds progressively. After the flow
crosses the throat at �=1, the pressures and temperatures continue
to decrease. In the case of the pressure, the supersonic branch
appears to mirror its subsonic counterpart, with the slight asym-
metry being caused by the location of the critical pressure at the
throat, here shown for �=1.4. The temperature, however, experi-
ences visibly dissimilar trends. As the flow enters the supersonic
region, the temperature steadily decreases, for ��1, and then
drops precipitously as the area ratio approaches zero. This behav-
ior can be attributed to the thermal-to-kinetic energy conversion
and its sensitivity to the degree of area expansion. For small val-

ues of �, the substantial gain in Mach number is seen to translate
into appreciable temperature differentials, specifically in the
nozzle exit section.

3 Analysis
For a fixed area ratio, two Mach numbers are possible depend-

ing on whether the axial position is located upstream or down-
stream of the throat section. In what follows, the asymptotic
analysis leading to each of these roots is described.

3.1 Subsonic Solution. Using � as our perturbation param-
eter, an explicit series approximation for the subsonic Mach num-

ber M̄=M̄�� ,�� can be pursued. The subsonic series approxima-
tion can be obtained using regular perturbations. To begin, Eq. �1�
can be written in subsonic notation. In the interest of clarity, it is
helpful to define two constants and a variable,

� � 1
2 �� + 1�/�� − 1�, � � � 1

2 �� + 1���, ��M̄� � 1
2 �� − 1�M̄2

�4�

These transform Eq. �1� into

M̄ =
1

�
��1 + ��M̄��� �5�

Equation �5� represents the reduced relation that needs to be

solved for M̄. First, one may express M̄ in a series of diminishing
terms, specifically

M̄ = x0 + �x1 + �2x2 + �3x3 + �4x4 + �5x5 + �6x6 + O��7� �6�

Second, by inserting Eq. �6� into Eq. �5�, one may expand and
segregate terms of the same order. At the outset, one finds that
terms of even order must strictly vanish:
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Fig. 1 Sensitivity of the pressures and temperatures to the
nozzle expansion ratio at �=1.4
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x0 = x2 = x4 = x6 = 0 �7�

In view of Eq. �7�, the expansion of M̄ will be accurate to O��7�
when the first three nonzero corrections are retained. The effective
expansion reduces to

M̄ = �x1 + �3x3 + �5x5 + O��7� �8�

Subsequently, one may substitute Eq. �8� into Eq. �4� to retrieve a
series expression for �,

� = 1
2�2x1

2�� − 1� + �4x1x3�� − 1� + O��6� �9�

One may also use the binomial expansion of Eq. �5� to evaluate

�1 + ��� = 1 + �� + 1
2!��� − 1��2 + 1

3!��� − 1��� − 2��3 + ¯

�10�

and so

�−1��1 + ��� = �−1��1 + �� + 1
2!��� − 1��2 + 1

3!��� − 1��� − 2��3

+ ¯� �11�

The binomial expansion in Eq. �11� will be valid for ���= 1
2 ��

−1�M̄2	1, an expression that remains true in the subsonic case.
This is especially true when considering that the ratio of specific
heats varies between 1.1 and 1.4 in most propulsive applications.
This ensures that ���
1, which, in turn, prompts the swift conver-
gence of the series. The left-hand side of Eq. �5� can now be

replaced by the perturbed form of M̄ such that

�−1�1 + ��� = �x1 + �3x3 + �5x5 + O��7� �12�

The final step is to insert Eq. �11� into Eq. �12�. Collecting terms
of the same order yields

x1 = � 1
2 �� + 1��−�, x3 = 1

4 �� + 1�x1
3, x5 = 1

32�� + 1��3� + 7�x1
5

�13�

The corresponding Mach number may be obtained to arbitrary
order from

M̄n = �
i=0

n

�2i+1x2i+1 + O��2n+3�

= �
i=0

n

�2i+1 �2i�!
i!2i

�� − 1�i

�2i + 1�!�2i+1	
j=0

i−1

��2i + 1�� − j� + O��2n+3�

�14�

By way of example, a three-term subsonic series approximation
becomes

M̄2 = �x1 + �3 1
4 �� + 1�x1

3 + �5 1
32�� + 1��3� + 7�x1

5 + O��7�

�15�

It may be later shown that this expression is virtually indiscernible
from the numerical solution of the problem. In fact, for opera-
tional area ratios up to �=0.47 and �=1.7, only one term needs to
be calculated and still secure a practical approximation that ac-
crues a less than 5% error. Table 1 catalogs the maximum value of
� for which the error will remain bracketed under 5% at different
values of � and the first three asymptotic orders. Note that the
range of validity broadens when more terms are retained or when
� is lowered. The range extends to �=0.50 for the lowest value
reported, �=1.1. Using a two-term correction, the maximum op-
erational range increases to 0.64���0.79 for 1.1���1.7, with
the largest � corresponding to the smallest �. From an engineering
perspective, Eq. �15� mirrors the exact solution because its error
remains smaller than that associated with the governing equation
itself; the latter is attendant on the isentropic flow idealization.
Hence, by virtue of the physical range defined in Eq. �2�, a one-

term approximation is sufficient to provide an accurate approxi-
mation up to �=0.40, ∀�. This key result is

M̄ 
 �� 1
2 �� + 1����+1�/�2��−1�� + O��3� �16�

Note that � is not limited to the nozzle expansion ratio. It may
correspond to any cross section so long as the inverted ratio with
the throat area remains small.

3.2 Supersonic Solution. Using the method of successive ap-
proximations, an explicit series expansion for M=M�� ,�� may be
obtained. Successive approximations may be applied to polynomi-
als and transcendental relations in which roots are not deducible
from a regular expansion, namely, from a predetermined sequence
of gauge functions �28�. The ensuing linearization may be
achieved by striking a balance in Stodola’s equation between
terms that dominate for M�1. To this end, we rewrite Eq. �1� in
supersonic notation by introducing the three constants �, , and
�.

� � �� + 1�/�� − 1�,  � �1
2 �� − 1�, � � �1/�/�1 + 2

�17�

These may be substituted into Eq. �1� to render the simple form

�2�1 + 2M2� = M2/� �18�

Next, M must be expanded carefully. In identifying the leading
order part of Eq. �18�, we substitute M0=X0 into Eq. �18� and
write

X0
2/� − �22X0

2 − �2 = 0 �19�

A scaling analysis reveals that the first two members of Eq. �19�
dominate with the third member representing a secondary contri-
bution. This behavior can be confirmed through the use of a nu-
merically calculated root. For the supersonic case at �
0.1, the
Mach number is O�1�. When substituting the ordered quantities
back into Eq. �19�, the first member will be seen to carry the
largest contribution. Along similar lines, the second member will
exhibit a non-negligible, albeit smaller contribution, owing to its
coefficient �2=�2/�, multiplying its X0

2�1 part. The third member
in Eq. �19� contains an �2/� term only; as such, it can be viewed as
a higher order quantity. It is important to note that by balancing
the first two members, a different leading order equation is
achieved. At leading order, the two largest terms will balance
when

X0 = ����/�1−�� + O����−1�/2� �20�

Successive expansions of M may be similarly undertaken by set-
ting M1=X0+X1. Backward substitution into Eq. �18� leads to a
solution for X1 bearing a truncation error of O��4��−1�/��+1��. For
all approximations past X0, a recurrence relation may be written
for Xi in terms of Xi−1:

Table 1 Maximum nozzle area ratio with less than 5% relative
error at increasing asymptotic orders

�

Subsonic Supersonic

n

0 1 2 0 1 2

1.1 0.495 0.794 0.889 n/a 0.948 0.987
1.2 0.491 0.670 0.885 n/a 0.767 0.999
1.3 0.486 0.664 0.883 n/a 0.729 0.962
1.4 0.482 0.658 0.881 0.00631 0.746 0.940
1.5 0.478 0.653 0.879 0.01890 0.773 0.931
1.7 0.470 0.644 0.875 0.06470 0.820 0.930
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Xi = ��Mi−1��Mi−1
2/� − Mi−1

2 �2�2 + �Mi−1
2+2/�2�2��2 − 4� + 4�

− Mi−1
2 �22�4 + Mi−1

4/��2� − 3� + 2Mi−1
2/��2�2 − ���1/2�, i � 1

�21�
where

� =
1

2Mi−1
2/��� − 2� + Mi−1

2 �22�2 �22�

The higher order solutions may be sequentially obtained from the
straightforward sum

Mn = X0 + X1 + ¯ + Xn �23�
Table 1 also lists the area ratios for which the relative error in

Eq. �23� will reach 5% at different perturbation orders. To main-
tain a less than 5% error, a two-term approximation is clearly
necessary as the validity of one-term expressions is limited. Using
M1=X0+X1, the relevant range of area ratios extends to 0.73–
0.95, depending on the value of �. When three terms are held, the
valid range is extended to 0.99 at �=1.2. Considering that practi-
cal nozzles do not exceed �=0.4, a two-term approximation of the
form M�M1 may be relied on.

Before leaving this section, it may be interesting to note that the
�-dependence differs in behavior between the subsonic and super-
sonic solutions. In the former, the range of validity in � improves
at lower values of �. In the latter, more than one local minimum
can appear due to the nonlinearity of the supersonic formulation.
For M=M1, a local minimum appears in the middle of the feasible
range of �, occurring approximately near �=1.3. The correspond-
ing range of validity in � subsequently expands as ��−1.3� is
increased.

4 Comparison and Order Verification

4.1 Numerical Verification. The approximation for Mn is
compared in Fig. 2 to MN, the numerical solution of Eq. �1�, at
increasing asymptotic orders n=0,1 ,2. Both MN and Mn are
shown in subsonic and supersonic regimes at a representative
value of �=1.4. These trends remain unchanged at other �. The
inset in Fig. 2 enhances the differences between numerics and
asymptotics in the transonic region. In the meaningful range of
��0.4, the visible discrepancies become indiscernible when us-
ing either the one-term subsonic or the two-term supersonic ap-
proximations. This behavior concurs with the relative error pre-
dictions �reflecting a less than 5% deviation� furnished in Table 1

for M̄0 and M1. In the vicinity of �=1, the discrepancies do not
pose a concern as they only denote impractically small nozzle
divergences.

4.2 CFD Verification. An inviscid, axisymmetric, density-
based, double precision, finite volume solver is employed to simu-
late the motion of an ideal gas in a fully flowing supersonic
nozzle. The nozzle has inlet and outlet area ratios of 2.42 and
5.44, respectively. Given an overall nozzle length of L=0.3 m,
the computational domain is resolved using a mesh comprised of
26,801 quadrilateral cells, as shown in Fig. 3. The nozzle contour
consists of a simple three-point spline. Using air as the working
fluid, two separate validation runs are undertaken. The first trial
uses a low pressure, low temperature flow with TC=300 K, while
the second simulates a higher chamber pressure and a temperature
of TC=2200 K. The thermodynamic properties specific to each
trial are posted in Table 2.

Figure 4 describes the evolution of the velocity vectors and
corresponding Mach numbers for the low temperature trial. The
velocity scatter and Mach number contours characterize the flow
magnification through the converging-diverging nozzle �Figs. 4�a�
and 4�b��. Downstream of the throat section, in the supersonic
acceleration stage, the particles at the wall outrun the centerline
particles. This can be attributed to the absence of friction at the

wall and the enhanced radial and axial expansions near the wall
due to nozzle divergence; these exceed the centerline expansion
that is limited to axial acceleration alone. Being expanded both
axially and radially, the flow near the wall experiences increased
values of the local Mach number. Conversely, the axially domi-
nated centerline motion undergoes no radial acceleration and, as
such, remains limited to a relatively smaller increase in its local
Mach number.

The wall, centerline, and average Mach numbers obtained at
different stations in the nozzle are compared in Fig. 4�c� to the
three-term analytical approximations. This comparison is carried
out point-by-point and shows that the 1D analytical model lies
between the wall and centerline curves, thus providing excellent
agreement with the average computed Mach number at any given
station. This agreement holds everywhere except in the close vi-
cinity of the throat, where the solution begins to diverge as the
area ratio approaches unity. This region can be further shrunk by
including more corrective terms, despite the fact the three-term
approximation remains adequate over the vast majority of the
nozzle.

Figures 5 and 6 display the thermal data for the low and high
chamber temperature runs. As expected, the spatial distribution of
the temperature isolines are qualitatively comparable to the Mach
number contours, both for the cold �Fig. 5� and hot �Fig. 6� simu-
lations. The temperatures undergo a constant decline as the fluid is
accelerated throughout the nozzle, owing to the continual thermal-
to-kinetic energy conversion. Figures 5�b� and 6�b� compare both
trials to the present study using the isentropic relation in Eq. �3�.
As with the Mach number, the asymptotic approximations are
seen to provide an excellent average throughout the nozzle, with
small discrepancies being detected in the neighborhood of the
throat. The resulting expressions can thus be used as analytical
alternatives to CFD computations in simplified thermal analyses
of the nozzle. For example, both Stodola’s and CFD solutions
predict the occurrence of the maximum heat flux just upstream of
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Fig. 2 Comparison between numerics and asymptotics in
both subsonic and supersonic regimes for �=1.4; the selected
area in „a… is magnified in „b… to showcase the degree of agree-
ment at increasing asymptotic orders as ε\1
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the sonic point �where the centerline velocity first reaches the
speed of sound�. This behavior is consistent with available experi-
mental data �7� and may be seen in Fig. 7, where the normalized
heat flux indicator, defined as q=T / �2�r�, is plotted over the
length of the nozzle using Stodola’s numerical solution, the
present approximation, and CFD predictions. Also shown on the
same graph is the spatial variation of the Mach number obtained
from Stodola’s 1D model previously described in Fig. 4.

4.3 Asymptotic Error Verification. To verify the order of the
error associated with the subsonic and supersonic perturbation ex-
pansions of M, one may apply Bosley’s graphical technique �29�.
Accordingly, one may confirm that the expansion is asymptoti-
cally valid by showing that its absolute error exhibits, in some
range of �, a constant logarithmic rate. For that purpose, the ab-
solute error may be defined as

En��,�� = �Mn − MN�, Ēn = �M̄n − M̄N� �24�

In either of the subsonic or supersonic cases, if the truncation
error appears at order r, one can put

En��,�� = C�r �25�
Graphically, the order of a given approximation can then be in-
ferred from the log-log plot of En versus � at constant �. Accord-
ing to Bosley �29�, it is important for the error to approach zero at
the correct rate �i.e., r→const� as �→0.

Forthwith, graphs of log En versus log � are given in Fig. 8
over a practical range of nozzle area ratios and a representative
value of �=1.4. Corresponding asymptotic slopes are obtained
using linear least-squares and are posted in Table 3, including
those for �=1.2. It is gratifying to note that all slopes approach
constant rates, thus reflecting an “error-free” analysis.

In the subsonic case, the best fit slopes obtained from least-
squares match quite closely the order of the theoretical truncation
error given by Eq. �14�.

In the supersonic case, the slope begins at a modest rate of
descent that can be approximated by 1

2 ��−1�. It then increases
rapidly as more terms are added. By retaining two terms, the
asymptotic order in M1 jumps to 4��−1� / ��+1�. Being almost
quadrupled in comparison to the leading order, M1 is accompa-
nied by a less than 5% error for practical values of � and up to
0.73���0.95 �Table 1�. In the supersonic case, the order in-
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Fig. 3 CFD nozzle geometry and mesh selection „a… showing
enlarged inset in „b…

Table 2 Parameters used in the low and high temperature
simulations with air as the working fluid

Parameter Cold Hot

Chamber pressure �Pa� 101,325 506,625
Outlet pressure �Pa� 3,740 50,660
Chamber temperature �K� 300 2,200
Ratio of specific heats 1.4 1.4
Exit area ratio �At /Ae� 0.184 0.184

(a)

(b)
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Fig. 4 Cold flow simulation results depicting „a… the velocity
vector distribution, „b… the Mach number contours, and „c… a
comparison of the wall, centerline, and average CFD predic-
tions to the present three-term analytical approximation over
the length of the nozzle. Here, air is used with TC=300 K and
�=1.4.
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creases with �. In every case, the slope approaches a constant
value with a higher correlation coefficient at higher values of n
and in ranges of smaller �. The slopes shown in Table 3 are
evaluated in the �� �0.001–0.01� domain. Their agreement with
the theoretical orders only improves in ranges of smaller �.

5 Conclusions
In this work, two asymptotic approximations are presented as

practical equivalents to the numerically-inverted area-Mach num-
ber relation. The present analysis provides the explicit dependence
of the Mach number on the nozzle area ratio and ratio of specific
heats. This dependence illuminates the influence of each of these
parameters on the maximum achievable Mach number for isentro-
pic motion. They also facilitate the efficient evaluation of thermo-
dynamic properties while carrying out a performance analysis of a
De Laval nozzle. The present results are hoped to be further used
in deriving closed-form expressions of other related parameters in
compressible flow studies, which often assume inviscid motions.
Were viscous effects included in the analysis, they would have
resulted in a reduced average velocity, especially near the wall
where the flow would be decelerated. If such were the conditions,
then Stodola’s relation could still provide a good approximation
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x/L(b)

Fig. 5 Cold flow simulation results depicting „a… the thermal
map in K and „b… a comparison of the wall, centerline, and av-
erage CFD predictions to the present three-term analytical ap-
proximation of the temperature over the length of the nozzle.
Here, air is used with TC=300 K and �=1.4.
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Fig. 6 Hot flow simulation results depicting „a… the nozzle
thermal map in K and „b… a comparison of the wall, centerline,
and average CFD predictions to the present three-term analyti-
cal approximation of the temperature over the length of the
nozzle. Here, air is used with TC=2200 K and �=1.4.
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Fig. 7 Normalized heat flux obtained from Stodola’s equation,
the present approximation, and CFD predictions using the hot
flow simulation; the spatial evolution of Stodola’s Mach num-
ber is also shown on the right
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Fig. 8 Asymptotic error entailed in supersonic En and sub-
sonic Ēn shown for �=1.4

Table 3 Asymptotic slopes in EnÈεr using the method of
least-squares

� �subsonic� Ē0 Ē1 Ē2

1.2 3 5 7
1.4 3 5 7

� �supersonic� E0 E1 E2

1.2 0.120 0.361 0.929
1.4 0.210 0.635 1.518
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for the Mach number and corresponding temperature distributions
near the centerline, where viscous effects are least significant.
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Nomenclature
A � cross-sectional area
At � throat area
� � perturbation parameter, At /A
� � ratio of specific heats

Mn � Mach number with n+1 terms
MN � numeric value of the Mach number
En � absolute error between MN and Mn

Subscripts and Symbols
e � condition at the exit
n � level of the asymptotic sequence
t � condition at the nozzle throat
− � an overbar denotes a subsonic term
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