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University of Tennessee Space Institute, Tullahoma, TN 37388  

In this study, an exact solution is derived for the bidirectional vortex field in a right-

cylindrical chamber. The cyclonic motion is assumed to be axisymmetric, steady, inviscid 

and incompressible, with no accounting for reactions or heat transfer. Our approach is 

based on the Bragg-Hawthorne equation (BHE), which can be solved in our situation under 

conditions leading to linearity. Using separation of variables, we are able to identify a set of 

eigensolutions that may be associated with this problem. The linearity of the resulting BHE 

enables us to superimpose these eigensolutions while making use of orthogonality to the 

extent of accommodating different injection configurations that may be imposed at the open 

boundaries. By way of confirmation, the extended formulation is used to regenerate physical 

configurations corresponding to five different analytical models found in the literature. The 

results illustrate how the present idealization may be applied to a variety of incompressible 

representations of cyclone-driven industrial flow separators, vacuum chambers, furnaces, 

plasma generators, and liquid rocket engines. 

Nomenclature 

iA  = inlet area 

a  = chamber radius 

B  = tangential angular momentum, ru  

b  = chamber outlet radius 

C  = swirl momentum constant  

D  = tangential surface parameter 

H  = stagnation pressure head 

L  = chamber length 

l  = chamber aspect ratio, /L a  

iQ  = inlet volumetric flow rate 

, ,r z
 

= radial, tangential, and axial coordinates 

U  = mean tangential (inflow) velocity 

0( )U r  = arbitrary axial velocity at the headwall 

( )LU r  = arbitrary axial velocity at the endwall 

ru  = dimensional radial velocity 

u  = dimensional tangential velocity 

zu  = dimensional axial velocity 

Symbols 

  = tangential inflow parameter, 
1(2 )l 
 

n  = nth zero of 1J , the Bessel function of the first kind 

  = swirl number 

  = separation constant 

  = stream function 

  = overbars denote a non-dimensional variable 
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I. Introduction 

ESIDES their emergence in naturally occurring phenomena, cyclonic motions arise in a variety of industrial and 

propulsion related applications. These swirl-induced patterns are connected to meteorological events such as 

tornadoes, hurricanes and typhoons, as well as astronomical activities such as cosmic spirals and galactic pinwheels. 

The bidirectional type of motion is also employed in industrial processes involving cyclonic separators, combustors, 

and furnaces. Our main interest here is tied to the cyclonic motion that is engendered in the vortex-fired engine class 

of propulsion devices. This class encompasses several innovative internal combustion devices and thrust chambers 

such as the Vortex Hybrid Engine introduced by Gloyer, Knuth and Goodman,
1
 the Vortex Injection Hybrid Rocket 

Engine conceived by Knuth et al.,
2
 the Vortex Combustion Cold-Wall Chamber developed by Chiaverini et al.,

3
 and 

the Reverse Vortex Combustor invented by Matveev et al.
4
 

 Given the shortage of purely analytical models of axisymmetric cyclonic flows, an Eulerian-based solution was 

developed by Vyas, Majdalani and Chiaverini
5-7

 using a right-cylindrical Vortex Combustion Cold-Wall Chamber 

model. Their effort set the pace for a laminar boundary layer treatment of the viscous core. Shortly thereafter, the 

extension to the hybrid vortex configuration was conceived and carried out by Majdalani and Vyas,
8
 and later 

generalized by Majdalani
9
 for the case involving sidewall mass addition. As for the sidewall boundary layers, they 

were resolved under laminar conditions by Vyas and Majdalani
10

 and then, for the axial and radial orientation, by 

Batterson and Majdalani.
11,12

 The latest investigation by Majdalani and Chiaverini
13

 formalized the analysis of the 

tangential boundary layers in a bidirectional vortex, specifically those forming at the core and the sidewall of a 

swirl-driven cyclonic chamber. A piecewise representation of the problem leading to a Rankine-like vortex was also 

developed by Maicke and Majdalani.
14

 Solutions for other cyclonic flows were obtained by Zhao and Abrahamson
15

 

who investigated gas cyclones with flow patterns associated with industrial flow separators. 

In this paper, we consider the Bragg-Hawthorne equation with assumptions leading to linear source terms. 

Subsequent analysis based on separation of variables will be employed to uncover three possible types of solutions.  

After showing that one type is a special case, the remaining two are explored and shown to produce eigensolutions 

that can be combined linearly.  Their superposition leads to a Fourier-like series that, when used in concert with the 

orthogonality concept to give rise to exact inviscid solutions that can accommodate a specified flow profile at the 

endwalls. The superposition of these solutions is plausible in our case due to the linearity of the equation being 

B 

a)             b)      

 

Figure 1.  Schematic of the cylindrical bidirectional vortex chamber showing a) geometric and b) flowfield characteristics. 
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solved. The mathematical framework thus developed enables us to model the flow with realistic inlet and outlet 

conditions. 

II. Formulation 

A. Mathematical Model 

As we study the axisymmetric bidirectional vortex in a chamber with circular cross-section, cylindrical 

coordinates are used. Our intent is to solve the applicable equations of motion with the aim of constructing analytical 

solutions for a user-prescribed set of boundary conditions.  Our model is sketched in Fig. 1 where a schematic 

diagram of the physical problem is provided along with its flowfield characteristics. Note that an inlet section is 

located near z L  to permit the injection of fluid with arbitrary velocity. 

As usual, the incompressible momentum equations for a steady axisymmetric inviscid flow can be written as 

   
1z z

z r

u u p
u u

z r z

  
  

  
 (1) 

   
2

1r r
z r

uu u p
u u

z r r r





  
   

  
 (2) 

   0r
z r

u u u u
u u

z r r

   
  

 
 (3) 

with the attending continuity equation 

   
1 ( )

0z ru ru

z r r

 
 

 
 (4) 

 Using the streamfunction  , such that 1

zu r r    and 1

ru r z    , the above set may be transformed 

into a single expression known as the Bragg-Hawthorne equation (BHE), 

   
2 2

2

2 2

1 d d

d d

H B
r B

r rz r

  

 

  
   

 
 (5) 

Here 21
2

/H p u   and B ru  represent the total pressure head

 

and tangential angular momentum, respectively.  

In the absence of friction and heat addition, our model may be taken to be isentropic.  This ensures that the total 

pressure head will remain constant along a streamlines where one may set d / d 0.H     

To further simplify the problem, we follow the approach used by Majdalani
16

 and take the second term on the 

right-hand-side (RHS) of Eq. (5) to be a linear function of  .  Thus using C to define the dimensional, swirl 

momentum constant, we put 

   
2d

d

B
B C 


  (6) 

and collect 

   
2 2

2

2 2

1
0C

r rz r

  


  
   

 
 (7) 

Equation (7) can be solved using separation of variables assuming a rigid sidewall with 

   (0, ) 0ru z   (8) 

   ( , ) 0ru a z   (9) 

Furthermore, arbitrary endwall injection may be accounted for by setting 

   0( ,0) ( )zu r U r        and       ( , ) ( )z Lu r L U r  (10) 

where 0( )U r  and ( )LU r  can be user-specified to capture realistic flow patterns that observe the mass conservation 

principle.  Substituting ( , ) ( ) ( )z r Z z R r   into Eq. (7) leads to 

   
2 2

2

2 2 2

01 d ( ) 1 d ( ) 1 d ( )

( ) ( ) ( ) drdz dr

Z z R r R r
C

Z z R r rR r 


     


 (11) 

 Clearly, three cases may be identified and promptly classified as 

Type 0 with RHS 0 : 

        1 2 3 1 4 1( , )r z r C z C C J Cr C Y Cr       (12) 

Type I with 
2RHS   : 
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          2 2 2 2

1 2 3 1 4 1( , ) sin cosr z r C z C z C J r C C Y r C              
 (13) 

Type II with 
2RHS   : 

          2 2 2 2

1 2 3 1 4 1( , ) sinh coshr z r C z C z C J r C C Y r C              
 (14) 

 When imposing the centerline condition defined by Eq. (8), it may be realized that 4 0C   will eliminate the 

singularity for 0r   in 1( )Y Cr , 
1
22 2

1[ ( ) ]Y r C   and 
1
22 2

1[ ( ) ]Y r C  .  The solution set reduces to 

   

   

     
     

1 2 1

2 2

1 2 1

2 2

1 2 1

                                                   (type 0)

( , ) sin cos            (type I)

sinh cosh        (type II)

r K z K J Cr

r z r K z K z J r C

r K z K z J r C

   

  





     

    

 (15) 

where 1 1 3K C C  and 2 2 3K C C .  At this point one may apply Eq. (9), the rigid wall requirement on the radial 

velocity, to extract two sets of eigenvalues: 

    2 2

1 0J a C          or       2 2 2/n nC a          (type I) (16) 

    2 2

1 0J a C          or       * 2 2 2/n n a C          (type II) (17) 

where (3.83171,7.01559,10.1735,13.3237,...)n   designates the set of roots connected with the Bessel function of 

the first kind.  In what follows, the multivalued nature of n  warrants the use of both expressions for n  and 
*

n .  In 

the type 0 formulation, the streamfunction remains independent of  , a situation that leads to a less general solution, 

in which C  remains single-valued, as prescribed by Eq. (6).  A more comprehensive framework may be achieved by 

summing over all n  and putting, for the type I and type II solutions, 

   

     

     

1 2 1

0

* *

1 2 1

0

sin cos /           (type I)

( , )

sinh cosh /       (type II)

n n n n n

n

n n n n n

n

r K z K z J r a

r z

r K z K z J r a

  



  










   


 
  

 




 (18) 

and, for the corresponding axial velocity, 

   

   

   

1 2 0

0

* *

1 2 0

0

sin cos           (type I)

sinh cosh       (type II)

n n
n n n n

n

z

n n
n n n n

n

K z K z J r
a a

u

K z K z J r
a a

 
 

 
 









  
     

 
 

        




 (19) 

  

 

 

At this junction, an arbitrary velocity profile may be imposed at the endwalls by specifying 0( ,0) ( )zu r U r  and 

( , ) ( )z Lu r L U r  as per Eq. (10).  Using the orthogonality function, we recall that 

      
 

0 0 2 210
02

0;
d

;

a m n
rJ mr J nr r

a J ma m n


 


  (20)

 
Then through backward substitutions, the two constants 1nK  and 2nK  may be extracted and written as 

   

 

   

 
   

0

2

0

1 *

0

2 *

0

cos

sin

cosh

sinh

L n

n n n

n

L n

n n n

I L I

aJ L
K

I L I

aJ L



  



  





 





    and    
 

 

0

2

0

2

0

2

0

n n

n

n n

I

aJ
K

I

aJ

 

 





 



 (21) 

In the above, the source terms may be determined from  

    0 0 0
0

2 ( ) / d
a

nI U r rJ r a r      and     0
0

2 ( ) / d
a

L L nI U r rJ r a r   (22) 

Inserting these relations back into Eq. (18) and differentiating, general expressions for the axial and radial velocities 

may be returned. These are  
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 

 

 

   
 

 
 

 
   

 

0 0
02 2

0 0 0

* *

0 *0
02 2*

0 0 0

cos sin
cos           (type I)

sin

cosh sinh
cosh     (type II)

sinh

L n n n n
n

n nn n n n

z

L n n n n
n

n n n n nn

I L I z I
z J r

L a aaJ aJ

u
I L I z I

z J r
a aaJ aJL

   


   

   


   









    
    

    
 

   
   
   
 








 (23) 

and 

  

 

   
 

 
 

 
   

 
 

 

0 0
12 2

0 0 0

* *
0 * * *0

12 2*
0 0 0

cos
cos sin           (type I)

sin

cosh
cosh sinh   (type II)

sinh

L n n n
n n n

n nn n n n

r

L n n n
n n n

n n n n nn

I L I I
z z J r

L aaJ aJ

u
I L I I

z z J r
aaJ aJL

  
  

   

  
  

   









    
     

   
 

   
    

   











 (24) 

As for the tangential velocity u , we can start with Eq. (6) and integrate 2d dnB B C     to obtain 

   
2 2 2B C D      or    1 2 2u r C D    (25) 

where D  may be dubbed the tangential surface parameter as it can be specified by the wall boundary condition 

imposed on u .  Then by inserting   into Eq. (25), an expanded form of u  may be arrived at, specifically 

 

 

 

 

   
 

 
 

 
   

 

1
22

02 0
12 2

0 0 0

* *

02 *0
12 2*

0 0 0

cos sin
cos           (type I)

sin

cosh sinh
cosh

sinh

L n n n
n

n nn n n n

L n n n
n

n n n n nn

I L I z I
C r z J r D

L aaJ aJ

ru

I L I z I
C r z J r

aaJ aJL



  


   

  


   









     
             



  
 
  





1
22

    (type II)D






   
            

 (26) 

Note that C  appears outside the summation due to nonlinearity in the relation between u  and .   It therefore 

retains a unique value irrespective of the eigensolutions that are being superimposed in the angular momentum 

expression given by Eq. (26). 

B. Consolidated Solution 

At first glance, the two types of solutions captured in Eqs. (23), (24), and (26) appear dissimilar.  Upon further 

scrutiny, however, we find that one may be restored from the other for 
2 2 * 2( )n ni   or 

*( ).n ni    This is due to 

the trigonometric identities  

   
cosh cos( )

sinh sin( )

x ix

x i ix




 
       or       

* *

* *

cosh cos( ) cos

sinh sin( ) sin( ) sin( )

n n n

n n n n

i

i i i ii i

  

   

  


      

 (27) 

These are needed to switch from type II to type I representation, or conversely, through 

   
cos cosh( )

sin sinh( )

x ix

x i ix




 
       or       

*

* *

cos cosh( ) cosh( )

sin sinh( ) sinh( ) sinh( )

n n n

n n n n

i

i i i ii i

  

   

  


      

 (28) 

These identities enable us to confirm by inspection the equality of the two types of solutions obtained for u  and 

.zu   In the interest of clarity, we show how this can be performed for ru .  By substituting 
*

n ni    into the second 

member of Eq. (24) and using both    cosh cosn ni z z   and    sinh sinn ni z i z  , we have 

 

 

 

 

 
 

 
   0 0

12 2
0 0 0

cosh
cosh sinh

sinh

L n n n
r n n n

n nn n n n

I i L I i I
u i z i i z J r

i L aaJ aJ

  
  

   





     
        

   
  

   

 

   
 

 
   0 0

12 2
0 0 0

cos
cos sin

sin

L n n n
n n n

n nn n n n

I L I i I
z i i z J r

i L aaJ aJ

  
  

   





   
     

  
  (29) 

The outcome is of course identical to the type I representation.  

Given that n  can vary from 3.8317 to   while C  remains fixed, the sign of 
2 2 2/nC a  can be either positive 

or negative.  Then using the subscript indicial k  to denote the largest Bessel root to satisfy k aC  , one may 

identify two subsets that exhibit the following properties 
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2 2 2 2

* 2 2 2 2
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
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 (30) 

In each of these subsets, n  and *

n  remain essentially positive real numbers.  Then owing to the identity of the type 

I and type II expressions, a consolidated formulation may be constructed with no imaginary parts.  This is 

accomplished by taking 
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  (31) 

Similarly, zu , ru  and u  may be expressed as: 
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 (33) 

and 
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



2

 (34) 

 

Equations (32), (33) and (34) constitute the apex of this study and are, therefore, marked as such.  To employ this 

formulation, the arbitrary axial profiles ( )LU r  and 0( )U r  may be defined based on realistic flow conditions.  The 

specification of zu  at the endwalls leads to the full determination of the source integrals ( 0I , lI ).  These affect the 

expression for u .  Nonetheless, two additional parameters remain available to control u  and enable us to mimic a 

realistic tangential velocity at entry.  The tangential velocity may be hence prescribed by specifying the constants C  

and D  in a manner to match a given injection function at the endwall.  For example, when 0D  , a special family 

of Trkalian flows may be engendered in which no slippage is permitted at the sidewall.  Conversely, when 0D  , 

an essential singularity ascribed to swirl-dominated inviscid flows appears at the centerline.  Once C , 0I  and lI  are 

determined, both zu  and ru  become known throughout the entire domain.  Evidently, any velocity pattern imposed 

at  0,z L  will have to satisfy volume conservation viz.  

      
0

2 , ,0 d 0
a

z zr u r L u r r      (35) 

C. Normalization 

 Using standard reference values, one may introduce 
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2 2 2 2

,  ,  ,  ,  , ,  ,  ,  ir z
r z i

u Qr z u u D
r z u u u Q D C Ca

a a U U U Ua Ua U a





          (36) 

where D  and C  represent the non-dimensional forms of the tangential surface parameter and swirl momentum 

constant, respectively. Implementing the above normalization into our equations, the streamfunction and velocity 

expressions become 
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and, for the tangential component,  
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Here the normalized source integrals may be computed from 
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 (41) 

where 
2 2 2

n nC    and 
* 2 2 2( ) .n n C     It may be instructive to note that the foregoing solution can 

accommodate arbitrary headwall and endwall velocity patterns, ( ,0)zu r  and ( , )zu r l , so long as the imposed 

profiles remain observant of the mass conservation principle.  Otherwise, the solution initiated with an incongruent 

model will be self-corrected in the resulting series representation that produces a distribution which, when evaluated 

at the endwalls, will generate a velocity profile that is different from the one originally imposed.  The altered profile 

at the boundary will strongly resemble the one prescribed as an input except for some minor differences that cause it 

to gracefully satisfy mass conservation.  Conversely, when a physical solution that observes continuity is imposed at 

the endwalls, the resulting series summation will return the same profile as the input source.  Such self-correcting 

behavior is quite interesting to note in the present model.  It may be ascribed to the series solution being analytic, 

continuous and infinitely differentiable, in addition to being consistent with mass conservation throughout the entire 

chamber.  These properties instill in our solution an aversion towards unphysical jumps, especially at its boundaries.  

III. Results and Discussion 

Several analytical models for the cold bidirectional vortex engine can be found in the literature. The most prominent 

of these are listed in Table 1. Note that none of these models incorporate fuel injection at the headwall.  In order to 
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mimic the no-fuel injection scenario in our model, the headwall velocity 0 ( )U r  will be set to zero.  Conversely, the 

endwall velocity ( )LU r  will be set equal to the axial profile at the inlet boundary of the model to be examined. 

A. Axial Velocity 

Our procedure consists of using the boundary conditions at the endwalls to fix the inlet and outlet axial 

velocities, before selecting the independent parameters, C  and D , in such a way to reproduce, as closely as 

possible, the desired tangential velocity at z l .  The resulting formulation can then be employed to evaluate the 

axial velocity over the entire chamber domain, including the endwall boundaries, where a verification of the input 

profile imposed initially may be undertaken.  To illustrate this process, the Beltramian and Trkalian profiles posted 

in Table 1 are chosen as benchmarks.  Using their endwall values at z l  as inflow requirements in Eq. (38), the 

ensuing description for zu  may be readily obtained.  Corresponding results are displayed in Fig. 2a for 0   and 

Fig. 3a for / 2 ,L   at several axial stations extending from the headwall to the endwall.  The axial solutions 

produced directly from Majdalani
16

 without series summations are shown on the right-hand-side parts (b) of the 

same graphs.  These happen to be identical for the Beltramian and Trkalian configurations obtained for each of 

0   (Fig. 2b) and / 2L   (Fig. 3b), respectively.  It can be seen that the present model regenerates the same 

outcome as before in both flow configurations.  The striking resemblance observed in these illustrations may be 

attributed to the two analyses being based on analogous approximations and assumptions at their points of departure, 

including their reliance on a linear BHE and a consistent set of physical requirements.  Furthermore, the eigenvalue 
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Figure 2.  Comparison between axial velocities corresponding to a) Eq. (38) and b) the linear Beltramian and Trkalian 

formulations obtained by Majdalani
16

 with  = 0.  Here l = 1. 

Table 1.  Various analytical models for the bidirectional vortex in a confined cylindrical chamber 

Model Velocity Profile 

Beltramian model ( 0  ) 
1 0 0 1 0 0 0 0( ) ( ) ( )r zc J r c zJ r c zJ r         e e e  

Trkalian model ( 0  ) 2 2 2 2 2 2

1 0 0 1 0 0 0 0

1
( ) 1 ( ) ( )r zc J r c r z J r c zJ r

r
          e e e  

Beltramian model ( 1
2

/ L  ) 1 1 1
1 0 0 0 02 2 2

cos( / ) ( ) sin( / ) ( )r zc z l J r c l z l J r        e e  

2 2 21 1
0 1 02 2

1 4 / sin( / ) ( )c l z l J r        e  

Trkalian model ( 1
2

/ L  ) 1 1 1
1 0 0 0 02 2 2

cos( / ) ( ) sin( / ) ( )r zc z l J r c l z l J r        e e  

2 2 2 2 2 2 2 21 1
0 1 04 2

1
1 ( ) ( )sin ( / )c l r J r z l

r
       e  

Complex-Lamellar model 2 2

2 2

sin( ) 1 cos( )

2 sin( ) sin( )
r z

r z r

rl l


 

   
  e e e  
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0  used by Majdalani
16

 in defining the aforementioned cases belongs to the subset of eigenvalues that are built into 

the generalized framework developed here. 

To further visualize the behavior of Eq. (38), zu  is presented in Fig. 4 where it is compared to the complex-

lamellar counterpart constructed by Vyas and Majdalani.
17

  Unlike the Vyas-Majdalani motion in which the axial 

velocity along the centerline (or sidewall) increases (or decreases) linearly with the distance from the headwall, the 

acceleration associated with the present model is spatially variant.  As it may be inferred from Fig. 4a, the axial 

variation of zu  follows a nonlinear trend, in contrast to the linear behavior of the complex-lamellar solution.  This 

may be attributed to the latter originating from a different BHE formulation than the one utilized here. 

Returning to Fig. 4b, a fixed locus of the mantle may be seen at 0.707r  , a key characteristic of the complex-

lamellar model, irrespective of the axial position.  Conversely, the location of the series approximation in Fig. 4a is 

seen to slightly shift along the axis of the chamber, starting from 0.707r   at z l , where the simulated profile is 

imposed, to a value approaching 0.63 that is characteristic of both Beltramian and Trkalian solutions. 

B. Tangential Velocity 

The tangential velocity at z l  is dependent on the choice of ( , )zu r l .  The two constants C  and D  lend us 

two degrees of freedom by providing two parameters that can be adjusted to the extent of accounting for different 

tangential velocity profiles at the endwalls.  To demonstrate the flexibility of our solution, we consider the 

Beltramian and Trkalian axial profiles by Majdalani
16

 for / 2L  , where each model features a different 

tangential velocity at the inlet. 

Figure 5a is based on Eq. (40) using Majdalani’s slip-resistant Trkalian profile in the axial direction.
16

  In this 

case, we set 0D   in the tangential velocity expression in order to ensure that it vanishes at 0r  .  We then adjust 

the parameter C  to match the magnitude of the velocity at the endwall.  Because the inlet tangential speed observes 

the no-slip requirement at the sidewall, the velocity-adherence property is maintained along the entire length of the 

wall.  For example, it can be seen that u  at 1r   vanishes for 0 z l  .  Evidently such will not be the behavior 
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Figure 4.  Comparison between the axial velocities corresponding to a) Eq. (38) and b) the complex-lamellar solution. 
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Figure 3.  Comparison between axial velocities corresponding to a) Eq. (38) and b) the linear Beltramian and Trkalian 

formulations obtained by Majdalani
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 with  = π/(2L).  Here l = 1. 
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under different inlet conditions, especially when using motions that permit slip at the sidewall. 

Our second test case provides an illustration of the latter situation.  Now we use the linearly varying Beltramian 

profile with a slip permitting tangential velocity at z l .  The corresponding ( , )u r l  displays a hyperbolic relation 

with the radial distance, thus causing u  to approach a nonzero value at the sidewall and infinity at the centerline.  

In our effort at matching this free-vortex motion, both C  and D  are carefully selected.  The resulting solution in 

Fig. 5b displays incremental shifts in the tangential velocity at different axial positions.  Such behavior is identical to 

the one reported by Majdalani.
16

 

C. Radial Velocity 

The radial velocity in all of the models considered vanishes at the centerline due to axial symmetry.  

Furthermore, unlike simulated solid or hybrid rocket chambers, the vortex-fired rocket engines do not exhibit any 

radial velocity along the sidewall.  In constructing our solution, the radial velocity profile does not appear explicitly 

in the inflow/outflow integrals of Eq. (39) and, as such, is not specifically imposed at the sidewall.  Nonetheless, our 

results show that the radial velocity predicted by the series approximation along the inlet is strikingly similar to the 

profile that it seeks to mimic. This outcome may be attributed to zu  and ru  being intimately linked through the 

axisymmetric continuity relation, and this connection remains independent of the tangential velocity.  So by 

imposing zu  at the boundary, we are implicitly securing its unique companion ru  at the same location.  Regarding 

size considerations, the magnitude of ru  appears to be small in comparison to the axial and tangential speeds.  It 

peaks as we approach the headwall as shown in Fig. 6 where a larger radial velocity is needed to assist the fluid in 

crossing from the outer vortex into the central core region. 

IV. Conclusions 

This study presents an exact Euler solution for the swirling bidirectional motion confined in a vortex chamber.  

What distinguishes this new set of analytical results stands in the model’s capability to absorb arbitrary flow 
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Figure 6.  Radial variation of the radial velocity corresponding to a) Eq. (39) and b) both Beltramian and Trkalian models 

using  = π/(2L). 

0 0.2 0.4 0.6 0.8 1
0

5

a)  r

u



 z

  

  

  

  

  

  

   

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

b)

u



 r

 z

  

  
  

  

  

  

  

Figure 5.  Radial distribution of the tangential velocity at different axial positions for a) Trkalian and b) Beltramian input 

conditions.  Here l = 1 and κ= 0.125. 
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conditions at the endwall boundaries.  By changing the inlet/outlet conditions, the present formulation enables us to 

reproduce former analytical solutions based on the Brag- Hawthorne equation.  

As it may be anticipated, our axial velocity displays the tendency to reproduce the same profiles imposed at the 

endwalls although its shapes may often shift in the axial direction as the flow changes from its basic configuration to 

the one prescribed at its boundary. 

Concerning the swirl velocity, two keystone parameters, the swirl momentum constant C  and the tangential 

surface parameter D , are calibrated to match the tangential velocity at the boundary.  We find that the choice of C , 

and therefore u  at the endwall, can affect the variation of the axial velocities throughout the domain. 

For the radial velocity, it was shown that by strictly imposing the axial velocity at the inlet, we are indirectly 

setting the radial velocity as well due to these quantities being strongly connected through the continuity equation to 

the extent that specifying one is tantamount to specifying the other. In general, the magnitude of the radial velocity 

remains small compared to other flow components, except near the headwall where the radial velocity peaks and 

both the axial and tangential velocities reach their minima. 
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