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In this article, a biglobal stability approach is used in conjunction with direct
numerical simulation (DNS) to identify the instability mode coupling that may be
responsible for triggering large thrust oscillations in segmented solid rocket motors
(SRMs). These motors are idealized as long porous cylinders in which a Taylor–Culick
type of motion may be engendered. In addition to the analytically available steady-
state solution, a computed mean flow is obtained that is capable of securing all of
the boundary conditions in this problem, most notably, the no-slip requirement at
the chamber headwall. Two sets of unsteady simulations are performed, static and
dynamic, in which the injection velocity at the chamber sidewall is either held fixed or
permitted to vary with time. In these runs, both DNS and biglobal stability solutions
converge in predicting the same modal dependence on the size of the domain. We
find that increasing the chamber length gives rise to less stable eigenmodes. We
also realize that introducing an eigenmode whose frequency is sufficiently spaced
from the acoustic modes leads to a conventional linear evolution of disturbances that
can be accurately predicted by the biglobal stability framework. While undergoing
spatial amplification in the streamwise direction, these disturbances will tend to
decay as time elapses so long as their temporal growth rate remains negative. By
seeding the computations with the real part of a specific eigenfunction, the DNS
outcome reproduces not only the imaginary part of the disturbance, but also the
circular frequency and temporal growth rate associated with its eigenmode. For radial
fluctuations in which the vorticoacoustic wave contribution is negligible in relation
to the hydrodynamic stability part, excellent agreement between DNS and biglobal
stability predictions is ubiquitously achieved. For axial fluctuations, however, the DNS
velocity will match the corresponding stability eigenfunction only when properly
augmented by the vorticoacoustic solution for axially travelling waves associated
with the Taylor–Culick profile. This analytical approximation of the vorticoacoustic
mode is found to be quite accurate, especially when modified using a viscous
dissipation function that captures the decaying envelope of the inviscid acoustic wave
amplitude. In contrast, pursuant to both static and dynamic test cases, we find that
when the frequency of the introduced eigenmode falls close to (or crosses over) an
acoustic mode, a nonlinear mechanism is triggered that leads to the emergence of a
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secondary eigenmode. Unlike the original eigenmode, the latter materializes naturally
in the computed flow without being artificially seeded. This natural occurrence may
be ascribed to a nonlinear modal interplay in the form of internal, eigenmode-to-
eigenmode coupling instead of an external, eigenmode pairing with acoustic modes. As
a result of these interactions, large amplitude oscillations are induced.

Key words: absolute/convective instability, aeroacoustics, vortex shedding

1. Introduction
Large segmented solid rocket motors (SRMs) are known to exhibit thrust oscillations

that can be induced by inevitable disturbances that develop in motor cavities. Efforts
to understand and predict the onset of these oscillations continue to receive attention
in the propulsion community, particularly in the framework of the P230 programme,
the primary booster for the European Ariane 5 launcher (see Fabignon et al. 2003).
Although resonant combustion and, primarily, acoustic instabilities such as those
studied by Culick (1968) and Kuentzmann (1991) were originally believed to be
the only causes of thrust oscillations, hydrodynamic instabilities of the flow inside the
motor have also been shown to provide additional sources of perturbations.

The earliest contributions in this direction include those by Varapaev & Yagodkin
(1969), Beddini (1986), Vuillot (1995), Lee & Beddini (1999, 2000), and others.
However, these endeavours have rested on the one-dimensional normal mode approach
with perturbations in the streamfunction. Subsequent studies by Casalis, Avalon &
Pineau (1998) and Griffond & Casalis (2001) have extended the one-dimensional
investigations with the addition of experimental measurements and theoretical solutions
based on perturbing the primitive variables. The latter are formulated along the lines
of the local non-parallel (LNP) approach, in which all of the non-zero components
of the basic flow are retained in the Navier–Stokes equations. In this vein, Casalis
et al. (1998), Griffond, Casalis & Pineau (2000) and Griffond & Casalis (2000, 2001)
have applied the LNP approach to injection-driven fluid motions in porous channels
and tubes using the planar and axisymmetric steady flow profiles of Taylor (1956)
and Culick (1966), respectively. These are used to mimic the bulk gaseous motion in
slab and circular-port rocket motors. Corresponding experimental facilities that utilize
a cold gas simulation are referred to as VECLA and VALDO. Other related studies
include those on parietal vortex shedding and its connection to intrinsic instability by
Lupoglazoff & Vuillot (1996), Couton, Doan-Kim & Vuillot (1997), Ugurtas et al.
(1999) and Avalon, Casalis & Griffond (1998). The destabilizing effects of headwall
injection are also considered by Abu-Irshaid, Majdalani & Casalis (2007) in modelling
cylindrically shaped solid and hybrid rocket chambers.

To overcome the limitations of the LNP approach in relation to the problem in
cylindrical, axisymmetric geometry (e.g. Griffond et al. 2000), a biglobal stability
approach has been implemented by Chedevergne & Casalis (2005, 2006a) and
Chedevergne, Casalis & Féraille (2006). Thus by expressing the disturbance amplitude
as a function of two spatial coordinates, radial and axial, the biglobal approach is no
longer restricted to a purely exponential form in prescribing spatial amplification or
attenuation. In consequence, intrinsic instabilities of the mean flow field are succinctly
identified as the primary source of pressure fluctuations (Chedevergne et al. 2006).
According to Chedevergne & Casalis (2006a), biglobal instability predictions compare
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favourably with live subscale SRM measurements obtained by Prévost & Godon
(2005). They also agree satisfactorily with the large collection of data acquired through
VALDO, the cold gas experimental facility operated by Avalon & Josset (2006). In
particular, the unstable frequencies reported in the experiments are found to match
the circular frequencies recovered from the biglobal stability analysis. Moreover, the
biglobal theory is proved to be quite accurate in delineating the frequency paths
arising in actual SRMs.

In the present article, some unresolved issues in previous studies are clarified
through the use of direct numerical simulation (DNS) investigations. For example,
DNS results will be used to: (a) verify the dependence of the temporal growth
rate on the domain size; (b) reproduce the same frequencies and growth rates
predicted by the stability eigensolver; and (c) confirm the nonlinear coupling
between stability eigenmodes and acoustic modes, a mechanism that leads to the
emergence of secondary eigenmodes in the flow. Additionally, the oscillatory velocity
components obtained through DNS will be shown to match the corresponding stability
eigenfunctions when properly augmented by the vorticoacoustic solution of Majdalani
& Van Moorhem (1998), and a properly modelled viscous dissipation function that
must be applied to the inviscid acoustic amplitudes.

The paper is organized as follows. Before exploring the details of the direct
numerical simulation, the first part will be devoted to the biglobal stability equations
used to capture the intrinsic instabilities of the flow field. In the process, the
unresolved issues of this approach will be pointed out. Next, the procedure used
to set up the DNS computations will be described along with the steps needed to
evaluate the steady-state motion. This is followed by an overview of the theoretical
techniques leading to the assessment of unsteady flow disturbances, including both
hydrodynamic instability eigenmodes and pressure-driven vorticoacoustic modes. Our
theoretical predictions will be thoroughly verified through comparisons to DNS data
obtained using both a static and a dynamic chamber configuration in which the
injection velocity at the sidewall is permitted to vary with time. The latter will
enable us to continuously change the eigenmode frequency until crossing with the
chamber’s fundamental acoustic mode occurs. At the outset, the effect of acoustic and
hydrodynamic modal crossing will be captured and discussed.

2. Problem configuration
2.1. Equations of motion

The configuration used to represent the flow inside a simulated SRM is delineated by a
solid boundary at the headwall and a porous, semi-infinite cylindrical surface of radius
R that we call the sidewall. Furthermore, we assume that a non-reactive, cold gas is
injected uniformly and perpendicularly to the sidewall at a characteristic speed of Vinj

as illustrated in figure 1. The regression of the propellant grain during rocket firing is
modelled by the time evolution of R and Vinj.

For a viscous and incompressible fluid, the velocity U = (Ur,Uθ ,Ux) and pressure P
satisfy the standard Navier–Stokes equations:

∂ρ

∂t
+∇ · (ρU)= 0,

ρ

(
∂U
∂t
+ U ·∇U

)
+∇P= µ1U,

(2.1)
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FIGURE 1. Cylindrical coordinate system (r, θ, x). The gas is normally injected through the
circumferential wall located at r = R with an inward radial speed equal to Vinj. The porous
cylinder is bounded by a solid wall located at x= 0.

where ρ denotes the flow density and µ the dynamic viscosity. Several boundary
conditions may be associated with (2.1), and these correspond to the uniform
wall-normal injection, the no-slip condition at the headwall, and the no-divergence
condition along the axis r = 0:

∀x, θ, t Ur(x,R, θ, t)=−Vinj Uθ(x,R, θ, t)= Ux(x,R, θ, t)= 0,
∀r, θ, t Ur(0, r, θ, t)= Uθ(0, r, θ, t)= Ux(0, r, θ, t)= 0,
∀x, θ, t ‖U(x, 0, θ, t)‖, |P(x, 0, θ, t)| bounded.

(2.2)

Note that a singular point appears at the corner of the domain (x = 0, r = R) where
the radial flow entering the chamber from the sidewall is unable to observe the no-slip
condition at the headwall. This situation is extensively analysed by Kurdyumov (2008)
and will be revisited in § 2.2.2.

The present work is based on a perturbation concept that considers the instantaneous
flow field as being composed of a basic, mean flow component and of two types
of unsteady fluctuations. While the first type of disturbances is driven by the
hydrodynamic instability eigenmodes, the second is due to the acoustic modes in
the chamber. For this reason, the evaluation of the basic flow will be examined before
analysing the unsteady contributions.

2.2. Mean flow evaluation

The classical representation of the mean flow (Ū) in a simulated SRM is based on the
assumption that the motion may be decomposed into a series of steady-state profiles.
As shown by Majdalani, Vyas & Flandro (2002, 2009), the effects of time-dependent
propellant grain regression on the mean flow may be safely dismissed in the context
of linear stability and vorticoacoustic wave analysis. The characteristic frequencies of
these unsteady effects are sufficiently low compared with other flow disturbances to
justify ignoring them. Consequently, the radius R and injection velocity Vinj may be
taken as quasi-steady, even when their values must be updated with each time step
based on data acquired from live rocket firings. Moreover, the analysis of Majdalani
(2007) suggests that compressibility effects in typical SRMs are only important in
chambers with lengths that exceed approximately 40 % of the critical distance needed
for the flow to reach choking conditions in the absence of a converging–diverging
nozzle.

Hence, by assuming incompressible and axisymmetric mean flow conditions, the
system given by (2.1)–(2.2) can be made dimensionless, and written in terms of the
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mean flow streamfunction Ψ and the dimensionless vorticity Ω̄ = Ω̄eθ = ∇ × Ū .
In this process, spatial coordinates, time, velocity components and pressure are
normalized using R, R/Vinj, Vinj and ρV2

inj, respectively. These render
Ω̄ =−LΨ =−

(
∂2Ψ

∂x2
+ ∂

2Ψ

∂r2
− 1

r

∂Ψ

∂r

)
,

∂Ψ

∂r

∂(Ω̄/r)

∂x
− ∂Ψ
∂r

∂(Ω̄/r)

∂x
+ 1

Re

(
∂2Ω̄

∂x2
+ ∂

2Ω̄

∂r2
+ 1

r

∂Ω̄

∂r
− Ω̄

r

)
= 0,

(2.3)

where the Reynolds number Re = ρRVinj/µ depends on the instantaneous radius and
injection velocity. The linear operator L = ∂2/∂x2 + ∂2/∂r2 − r−1∂/∂r connecting the
mean flow vorticity and the streamfunction is used later to define the linear stability
problem in (3.2). At this stage, the physical conditions stemming from (2.2) may be
expressed in terms of Ψ and written as

∀x : ∂Ψ
∂r
(x, 1)= 0,

∂Ψ

∂x
(x, 1)= 1,

∀r : ∂Ψ
∂r
(0, r)= ∂Ψ

∂x
(0, r)= 0,

∀x : ∂
3Ψ

∂r3
(x, 0)= ∂Ψ

∂r
(x, 0)= ∂Ψ

∂x
(x, 0)= 0.

(2.4)

Note that the last three relations are deduced from the axisymmetric conditions along
r = 0, namely, Ūr = 0 and ∂Ūx/∂r = 0. They can also be derived from (2.3) after
expanding Ψ in a Taylor series about r = 0.

2.2.1. Taylor–Culick motion
Similarity solutions for (2.3)–(2.4) exist provided that the corner condition that

requires forcing Ūr = 0 at x = 0 is relaxed. In the absence of this singularity, one may
follow Berman (1953) and posit Ψ = xF(r) to the extent of retrieving

[(
F

r

)(
F′

r

)′
−
(

F′

r

)2
]′
+ 1

Re

[
1
r

(
r

(
F′

r

)′)′]′
= 0,

lim
r→0
(F′′ − F′/r)/r = F(0)= F′(1)= 0, F(1)= 1,

(2.5)

where primes denote differentiation with respect to r. As shown independently by
Taylor (1956) and Culick (1966), an exact solution of (2.5) exists for an infinite
Reynolds number, with Ω̄ = C2rΨ and C ∈ R. The corresponding Taylor–Culick
motion is defined by

Ūr =−1
r

sin
(

1
2
πr2

)
Ūx = πx cos

(
1
2
πr2

) P̄=−π
2x2

2
− 1

2r2
sin2

(
1
2
πr2

)
+ P0 (2.6)

where P0 is the reference pressure at the headwall centre.
To illustrate the non-parallel nature of the Taylor–Culick flow due to radial injection

at r = 1, analytical streamlines are depicted as solid lines in figure 2. We also note that
the motion becomes gradually more parallel in the downstream direction, away from
the headwall.
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FIGURE 2. Streamlines of the mean flow solutions. Solid lines correspond to the DNS-
computed base flow used in § 4, whereas dashed lines stand for the Taylor–Culick analytical
solution given by (2.6).

In studying the influence of the mean flow on one-dimensional linear stability,
Griffond et al. (2000) show that (2.6) represents a legitimate solution of Berman’s
equation for Re > 1000. Furthermore, Majdalani & Akiki (2010) show that viscous
effects do not play any appreciable role in modifying the flow characteristics,
especially when the no-slip condition Ūr(0, r) = 0 is discounted. These theoretical
predictions are corroborated by the excellent agreement between the Taylor–Culick
profile and cold-flow measurements acquired by Avalon & Josset (2006) using an
experimental facility known as VALDO. The latter has a radius of R0 = 0.03 m and
allows Vinj to vary from 0.6 m s−1 up to 2 m s−1, thus permitting its Reynolds number
to range between 1200 and 4000. In this setup, a fluid is injected across a porous
cylinder that is made of poral, a permeable bronze metal. In addition to these in-
house experiments, the Taylor–Culick motion is actually confirmed through a set of
laboratory investigations carried out by Dunlap et al. (1990). In both experiments, it
is reported that agreement with experimental data is maintained as long as the flow
remains laminar with x/R < 12. It can thus be seen that the inviscid Taylor–Culick
solution provides an excellent approximation of the Berman equation for large Re and
x/R< 12.

2.2.2. Computed mean flows
In seeking a more accurate representation of the mean flow, a numerically computed

solution will be needed, particularly one that remains valid both in the headwall
region and far downstream. To overcome the inconsistency at the point (0, 1), a simple
idea may be borrowed from the cold-flow apparatus VALDO and then implemented
into our model by introducing a spatially varying velocity distribution Vinj(x) along
the sidewall. This spatial function will satisfy the condition Vinj(0) = 0 while still
permitting a smooth C2 transition to the final value of Vinj = 1, after crossing a
designated distance from headwall that we refer to as xlink . Different feasible test
functions have in fact been explored and these are summarized in a paper by
Chedevergne & Casalis (2006b).

To start with, the computation of the mean flow is performed for a porous cylinder
truncated at x = Xe using a multi-module, multi-physics code named CEDRE. This
solver is developed at ONERA with the objective of serving multiple functions and
flow regimes, including instantaneous velocity and pressure calculations in a user-
defined SRM chamber. Spatial discretization in CEDRE is based on a finite volume
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1rmin 1rmax 1xmin 1xmax

2.89× 10−6 m 2.945× 10−4 m 2.29× 10−6 m 1.2566× 10−3 m

TABLE 1. Grid spacings used to compute both mean and unsteady flows.

approach that employs an upwind Roe scheme with a second-order extension (MUSCL
scheme with Van Leer limiter). A complete description of the code is given by Refloch
et al. (2011) and more specific information concerning code validation for rocket
simulations may be gleaned from a survey by Vuillot, Scherrer & Habiballah (2003).

In the interest of establishing realistic baseline cases, the characteristic length and
velocity are chosen to match those employed in the VALDO facility by Avalon
& Josset (2006). For this reason, we use a chamber radius of R = R0 = 0.03 m
and an injection velocity of Vinj = 1 m s−1. Homogeneous boundary conditions are
subsequently used, corresponding to the velocity adherence at x = 0, the constant
normal velocity injection at r = R, and symmetry conditions at r = 0. At x = Xe,
a radial pressure equilibrium is imposed so that the average pressure is equal
to Patm:

1
R

∫ R

0
P(r) dr= Patm. (2.7)

Four meshes are successively tested to the extent of establishing grid independence.
Our sample results for Xe = 8 are performed with a Cartesian grid that is composed
of 301 × 161 nodes (later, for Xe = 10, the grid is increased to 351 × 161 nodes such
that the thickness of the cells at the headwall remains identical to the Xe = 8 case).
Furthermore, cosine repartition is employed such that the thickness of the cells on the
boundaries is suitably refined close to the headwall. The minimum and maximum grid
spacings used are given in table 1.

Here, calculations are conducted in the (x, r) plane assuming an axisymmetric,
rotational, laminar flow. To reach steady state, an implicit time scheme is used
with a fixed value of the Courant–Friedrichs–Lewy (CFL) number. Using CFL = 10,
steady-state runs are performed to obtain the basic flow components whose (dashed)
streamlines are depicted in figure 2. Compared to the Taylor–Culick approximation,
one may infer that good agreement exists. Both solid and dashed lines merge quite
rapidly as one departs from the headwall. The limiting case of xlink = 0 with Vinj =
const. (which proves to be mesh-dependent) differs from the Taylor–Culick solution
solely because of the viscous effects that are neglected in the analytical model
expressed through (2.6).

Figure 3(a,b) provides views of the mean axial and radial velocity components
computed at a dimensionless Xe = 8 and Vinj = 1 m s−1. It is clear that this flow
closely resembles the Taylor–Culick model except in the front-end region, where
a boundary layer develops. The agreement obtained between the computed flow
and the Taylor–Culick profile confirms the essentially incompressible character of
this motion. While a compressible solution for the Taylor–Culick problem has been
recently developed by Majdalani (2007), it is not considered here due to the relatively
small velocities characterizing our problem.
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FIGURE 3. Contour lines of the axial and radial components of the basic flow velocity: (a) Ūx

and (b) Ūr. Solid lines represent the DNS-computed mean flow and dashed lines display the
analytical solution given by (2.6).

At this stage, it may be instructive to note that, as described in detail by
Chedevergne & Casalis (2006b), the impact of a numerically acquired mean flow
on hydrodynamic instability eigenmodes may be shown to be weak in the extent of
small xlink values. On the one hand, although the physical nature of the eigenmodes
remains indifferent to the choice of analytical or computed motions, using a computed
mean flow leads to a more accurate specification of the eigenvalues. For this reason,
the computed field will be used in the stability analysis. On the other hand, unlike
hydrodynamic stability eigenmodes, acoustic modes remain unaffected by the small
mean flow differences that arise in the front-end region. This may be attributed to
the markedly longer wavelengths associated with acoustic oscillations. The attendant
behaviour will be illustrated in § 3.2, where the limited impact of the mean flow
approximation on the acoustic modes will be discussed. Unless noted otherwise, the
analytical Taylor–Culick profile will be the basis of the vorticoacoustic wave analysis.

In what follows, the term ‘mean flow’ will designate the steady-state solution
obtained either numerically or analytically, depending on whether the analysis refers to
hydrodynamic stability or acoustic mode calculations, respectively.

3. Theoretical treatment of flow disturbances
When a basic flow is perturbed, it gives rise to both incompressible, hydrodynamic

instability eigenmodes, and to compressible, pressure-driven acoustic modes. The
corresponding disturbances may be determined using techniques based on biglobal
instability, Helmholtz wave decomposition, and small perturbation theories. In this
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study, only a brief overview of the relevant theories will be presented. Substantially
more detailed descriptions can be found in work by Chedevergne et al. (2006) and
Majdalani (2009).

3.1. Hydrodynamic instability eigenmodes

3.1.1. Streamfunction formulation
Eigenmodes of the flow induced by wall-normal injection originate in accordance

with biglobal stability theory. In fact, a biglobal approach is needed because of the
non-parallel nature of the basic flow, especially for small x. The linear theory that we
rely on is based on a perturbation notion that considers any physical quantity Q to be
a superposition of a mean variable Q̄ and a fluctuating, time-dependent part q. The
decomposition Q = Q̄ + q can be introduced into the Navier–Stokes equations which,
after some simplifications and cancellations, give rise to a linear system of partial
differential equations (PDEs). These PDEs prescribe the motion of time-dependent
disturbances q. Because of linearity, only one-way coupling is permitted such that
the mean flow can affect the disturbances but not the other way around. In the
linearized system of equations, the Reynolds number Re, the mean flow Q̄, and its
various derivatives, define the main coefficients. Accordingly, any perturbation q may
be judiciously expressed as

q= q̂(x, r)ei(nθ−ωt), n ∈ N, ω ∈ C. (3.1)

This unsteady variable representation is mathematically consistent with the mean flow
being dependent on both x and r. It can thus be seen that biglobal theory differs
from the local stability concept where the amplitude function q̂ = q̂(r) is strictly one-
dimensional. In (3.1), n is an integer that denotes the azimuthal wavenumber (an index
that vanishes for purely axisymmetric disturbances), θ stands for the azimuthal angle,
and ω represents the complex circular frequency. While its real part ωr reproduces the
circular frequency of oscillations, its imaginary part ωi controls the temporal growth
rate.

Based on the findings of Chedevergne & Casalis (2005, 2006a) and the supporting
experimental measurements gathered from subscale SRMs by Prévost & Godon (2005),
the hypothesis of axisymmetric disturbances seems quite appropriate as it leads to
near-perfect agreement between theory and measurements. Furthermore, by focusing
on the n = 0 eigenmodes, a two-dimensional streamfunction ψ may be introduced
to capture the essence of the disturbances. This simplification enables us to reduce
the linearized Navier–Stokes equations into a single, fourth-order PDE written for the
unsteady streamfunction ψ(x, r)= ψ̂(x, r)ei(nθ−ωt). We get

1
r

∂Ψ

∂r

∂(L ψ̂)

∂x
− r

∂Ψ

∂x

∂

∂r

(
1
r2

L ψ̂

)
+ ∂ψ̂
∂r

∂

∂r

[
1
r

∂

∂r

(
∂Ψ

∂x

)]
− r

∂ψ̂

∂x

∂

∂r

[
1
r

∂

∂r

(
1
r

∂Ψ

∂r

)]
− 1

Re
L (L ψ̂)= iωL ψ̂. (3.2)

At this point, one may recall that the instantaneous flow Q = Q̄ + q must satisfy the
original boundary conditions stipulated in (2.4). This permits deducing the assortment
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of conditions that must be imposed on ψ̂ , namely,

∀x : ∂ψ̂
∂r
(1, x)= 0; ∂ψ̂

∂x
(1, x)= 0,

∀r : ∂ψ̂
∂r
(r, 0)= ∂ψ̂

∂x
(r, 0)= 0,

∀x : ∂
3ψ̂

∂r3
(r, 0)= ∂ψ̂

∂r
(r, 0)= ∂ψ̂

∂x
(r, 0)= 0.

(3.3)

Next, we sketch the numerical scheme that must be applied to (3.2)–(3.3).

3.1.2. Numerical procedure
Equation (3.2) can be solved directly for (x, r) ∈ [0,Xe] × [0, 1] provided that

a suitable outflow condition is made available at x = Xe. We follow Theofilis
(2003, 2011), Theofilis, Duck & Owen (2004) and Casalis et al. (2004), who utilize a
simple linear extrapolation relation. Thus, given a number of discretization points Nx

in the streamwise direction, we set, for all r:

ψ̂(Xe, r)= ψ̂(XNx, r)= XNx − XNx−2

XNx−1 − XNx−2
ψ̂(XNx−1, r)

+ XNx−1 − XNx

XNx−1 − XNx−2
ψ̂(XNx−2, r). (3.4)

Discretization of the computational domain [0,Xe] × [0, 1] may be effected using
Chebyshev polynomials. After some effort, (3.2)–(3.4) are turned into a generalized
eigenvalue problem of the form A ψ = ωBψ . Here the unknown eigenvector ψ refers
to an arrangement of the discretized values of ψ̂(x, r) whereas ω corresponds to one
of the (unknown) eigenvalues. Finally, Arnoldi’s algorithm may be implemented to
produce the problem’s complex eigenvalues, ω, and their associated eigenvectors ψ , as
shown for example by Golub & Loan (1996).

3.1.3. Biglobal stability spectra
As alluded to earlier, the stability results featured in this work are based on

a numerically computed mean flow. Two sample sets of complex eigenvalues are
showcased in figure 4 for Re = 1975 and Xe = 8 and 10. Interestingly, although the
spectra appear at approximately the same circular frequencies, their temporal growth
rates increase with the chamber length. Everywhere, the CEDRE-computed basic flow
corresponds to R= 0.03 m and Vinj = 1 m s−1.

For each eigenvalue ω, a companion eigenvector ψ may be retrieved, thus leading to
the recovery of the axial and radial velocity eigenfunctions ûx and ûr directly from

ûx = 1
r

∂ψ̂

∂r
and ûr =−1

r

∂ψ̂

∂x
. (3.5)

Clearly, any disturbance q = q̂e−iωt, determined by its eigenvalue ω, contains the
essential fluctuating flow ingredients such as ux, ur, p and their derivatives. Using
the constant parameters R and Vinj, the complete set of perturbations q may be
transformed into dimensional quantities. Although mathematically q can be complex,
the associated physical perturbation is given by its real part Re(q). Then, given an
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FIGURE 4. Set of eigenvalues in the complex (ωr, ωi) plane for Re= 1975. Two cases are
shown: Xe = 8 (squares) and Xe = 10 (triangles).

eigenmode ω = ω0, the ensuing physical disturbance may be deduced fromRe(Aq̂ e−i(Vinj/R)ω
0t)= A[(q̂)r cos(2πft)+ (q̂)i sin(2πft)] eνt,

with f = Vinj

2πR
ω0

r and ν = Vinj

R
ω0

i

(3.6)

where ω0 = ω0
r + iω0

i and A represents the initial amplitude of the perturbation, an
initially unknown value. Naturally, it is not necessary to specify A because q is a
solution to a linear system.

Two major results stemming from the stability analysis can be immediately pointed
out. First, we note that the spectrum in figure 4 is discrete. As such, only a discrete
set of dimensionless frequencies ωr exists for which disturbances may develop from
the mean flow. Second, all of the eigenvalues ω bear a negative imaginary part.
This implies that all of the eigenmodes will be exponentially damped in time.
However, their associated eigenfunctions will grow exponentially in the streamwise
direction, as illustrated in figure 5(a,b). These three-dimensional surface plots display
the spatial evolution of the real part of the eigenfunctions ûx and ûr for the
eigenvalue ω0 = 40.409− 9.164i and Xe = 8. Without having been explicitly prescribed
in the formulation of the disturbance itself, as in (3.1), the axial fluctuation in
figure 5(a) points to the existence of a strong (exponential-like) amplification in the x
direction. The spatial amplification is thus implicitly embedded in the biglobal stability
framework.

We conclude that, for a given eigenvalue, two counteracting mechanisms are seen to
coexist: a temporal decay affecting the perturbations as time elapses and a spatial
growth in the perturbed amplitudes as the wave propagates downstream. These
eigenmodes do not represent absolute instabilities. Provided that Xe remains small
in figure 4, the flow will continue to be globally stable. The influence of Xe on the
eigenvalues will be further discussed in § 4.

3.2. Vorticoacoustic modes
In the absence of mean flow instability, the flow driven by wall-normal injection in
a porous chamber is strongly susceptible to vorticoacoustic oscillations. These are
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FIGURE 5. Axial and radial components of the velocity eigenfunctions (real parts) for
eigenmode ω = 40.409 − 9.164i: (a) ûx and (b) ûr. Here t = 0 and the initial amplitude in
(3.6) is taken as A= 0.01A0, where A0 is defined in figure 3(a).

invariably reported in SRM chambers due to small, inevitable fluctuations in the
injection process (Majdalani, Flandro & Roh 2000). Unlike hydrodynamic instability
disturbances, which evolve over short wavelengths and characteristic speeds at the
order of the mean flow, the vorticoacoustic waves travel over much longer wavelengths
and a much higher speed, namely, that of sound. The disparity in spatial and
temporal scales over which these two types of disturbances propagate enables us
to linearly superimpose their contributions and obtain the total unsteady fluctuation in
the chamber.

With the instability eigenfunctions already in hand, the vorticoacoustic waves remain
to be determined, and these have been systematically investigated by Majdalani and
co-workers in a variety of geometries and flow configurations (see, for example,
Majdalani & Van Moorhem 1998; Majdalani 1999; Majdalani & Roh 2000; Majdalani
2001a,b; Majdalani & Flandro 2002; Majdalani 2009). Unlike the instability waves,
which cannot be obtained except by computer, the vorticoacoustic framework leads
to closed-form approximations that can be used to directly describe the oscillatory
waves driven by pressure fluctuations. In what follows, only the basics of Majdalani’s
approach will be revisited.

In the analytical framework, a small perturbation q is superimposed on the
mean flow Q̄ to the extent of linearizing the compressible Navier–Stokes equations
before seeking an asymptotic solution. The steady motion Q̄ may be equated
to the Taylor–Culick profile, although the time-dependent formulation has been
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generalized to the extent of accommodating an arbitrary mean flow (see Majdalani
2001a; Majdalani & Flandro 2002; Majdalani 2009). Subsequently, the Helmholtz
decomposition theorem can be used to split the temporal perturbation q into two
complementary parts: q = q̆ + q̃. Here q̆ defines the irrotational compressible wave,
which is pressure-driven, and q̃ denotes the incompressible rotational part, which is
induced by unsteady vorticity originating at the boundaries. Chu & Kovásznay (1958)
refer to these fluctuations as mass-like or force-like, sound or vorticity disturbance
modes, respectively. In the present configuration, q̆ stands for the irrotational acoustic
wave, which is dominated by longitudinal oscillations in a porous cylinder with no
flow, thus leaving q̃ to serve as the correction needed to account for the basic flow
pattern Q̄. As noted by Griffond (2002), q̃ controls the vorticoacoustic boundary layer
and this component has been resolved using several perturbation methods such as
multiple scales and WKB.

For an axisymmetric cylinder, the sound wave q̆ may be expressed as{
p̆(x, t∗)= cos(ωmx)e−iωmt∗,

ŭ(x, t∗)= i sin(ωmx)e−iωmt∗ex
(3.7)

where p̆ and ŭ are the pressure and velocity fluctuations of the longitudinal plane wave.
Using a0 for the speed of sound, these fluctuations are normalized by a characteristic
time t∗ = ta0/R, which captures the time that an acoustic disturbance consumes while
crossing the radius. For the closed–open acoustic conditions imposed by the present
configuration, one may use a circular frequency of ωm = (m− 1

2)π/Xe, where m ∈ N∗.
As shown by Majdalani & Flandro (2002), the boundary-driven vorticity wave q̃

associated with a steady motion Q̄ can be expressed in terms of a self-similar mean
flow streamfunction, Ψ (x, r) = xF(r). By letting q̃ designate the velocity fluctuation ũ,
we have 

ũx =−i
(

F

F0

)
e[ζ−i(ωmt∗+Φ)], F0 ≡ F(1), F′0 ≡ F′(1),

ũr =−M

r

(
F

F0

)3

e[ζ−i(ωmt∗+Φ)],

(3.8)

where M = Vinj/a0 is the wall injection Mach number. Using the generalized-scaling
technique introduced by Majdalani & Rienstra (2002), ζ(r) and Φ(r) may be written
at order Re−1,

ζ(r)= ξ
∫ r

1
x3F−3(x) dx,

Φ = Sm

[∫ r

1
(xF−1 − 4Re−1xF−2)+ 3

2
Re−1(r2F−2 − F−2

0 )

]
,

(3.9)

where

ξ = S2
m

Re
= ω2

m

M2Re
, Sm = ωm

M
, Re= VinjR

ν
, (3.10)

and the characteristic function F may be taken to be

F(r)=
{

r2(2− r2) 10< Re< 100,
sin( 1

2πr2) Re > 100.
(3.11)
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The Taylor–Culick flow becomes a special case for which F = sin θ , F0 = 1, F′0 = 0,
and θ = 1

2πr2. The corresponding solution reduces to

ũx =−i sin θ sin (ωmx sin θ) e[ζ−i(ωmt∗+Φ)],

ũr =−M

r
sin3θ cos(ωmx sin θ)e[ζ−i(ωmt∗+Φ)],

ζ =− ξ
π2

[
csc θ − 1+ θ cot θ csc θ + I

(
1
2
π

)
− I(θ)

]
,

Φ = Sm

π
ln tan

(
1
2
θ

)
+ Sm

πRe

[
4 cot θ + 3

(
θcsc2θ − 1

2
π

)]
,

I(θ)= θ + 2
∞∑

k=1

(
1− 21−2k

)
(2k + 1)π2k

( ∞∑
j−1

1
j2k

)
θ 2k+1

= θ + 1
18
θ 3 + 7

1800
θ 5 + 31

105840
θ 7 + · · · .

(3.12)

A simpler closed-form expression may be obtained, as shown by Majdalani &
Van Moorhem (1998), using the concept of composite scales. The so-called ‘CST’
technique is a variant of multiple scales theory and applies to the treatment of some
problems with nonlinear scales (see Majdalani 1998, 2001a). At the outset, one may
employ a practically equivalent expression to (3.12), namely,

ζ =−ξ
[
η(r)r3

F3
− η(1)

F3
0

]
=−ξ η(r)r

3

sin3θ
,

η(r)= 1− r

1+ 3
2
(1− r)3/2

(
1− r

r
− 3

2
ln r

) ,
Φ = Sm

∫ r

1

x

F
dx+ Sm

Re

[
η(r)r

F3
(3rF′ + 2F)− η(1)

F3
0

(3F′0 + 2F0)

]
= Sm

π
ln tan

(
1
2
θ

)
+ 2Sm

Re

η(r)r

sin2θ

(
1+ 3θ

tan θ

)
.

(3.13)

A detailed characterization of the vorticoacoustic layer that accompanies (3.13) is
given by Majdalani (1999). Figure 6 illustrates the distribution of the axial component
of the wave by providing four radial profiles along the chamber for the first acoustic
mode. The irrotational component ŭx can be identified as the driver of the rotational
part ũx. Their combination leads to the vorticoacoustic velocity fluctuation in the axial
direction.

The relations formed by (3.7)–(3.13) constitute a practical framework for
analytically approximating the acoustic modes while accounting for the effects of the
mean flow Q̄, especially in the case of the Taylor–Culick profile. When using the latter,
the vorticoacoustic approximation will be valid everywhere except in the close vicinity
of the headwall. This particular limitation remains secondary because fluctuations near
the headwall are so small that they can be of no material consequence.

As for the modal dependence on Xe, it may be helpful to remark that the
acoustic frequencies are directly impacted by variations in the chamber length through
ωm = (m − 1

2)π/Xe. So while Xe plays an appreciable role in controlling the frequency
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FIGURE 6. Radial profiles of the longitudinal velocity of the first acoustic mode ω1 = 6.545.

of the compressible mode, its effect on the incompressible eigenmode ωr remains
secondary. This behaviour is corroborated by the spectrum of figure 4, where the
influence of Xe on ωr can hardly be seen.

4. Direct numerical simulation (DNS)
It may be generally hypothesized that amplification of thrust oscillations can

be attributed to coupling mechanisms between acoustic modes and hydrodynamic
instability frequencies. To investigate such potential interactions, DNS calculations are
performed with the aim of elucidating the unsteady wave behaviour. In this effort,
two separate types of computations are carried out and these correspond to two
distinct configurations. The first aims at investigating the coupling between eigenmode
frequencies and acoustic modes in the context of a static configuration in which both
R and Vinj remain fixed. This setup can also permit characterizing the dependence of
biglobal stability eigenmodes on Xe.

In the second set of numerical experiments, which we call dynamic, Vinj is varied to
the extent of reproducing the emergence of eigenmodes through acoustic forcing.

The DNS computations of the unsteady disturbances represent a continuation to
the simulation initiated in § 2.2.2 based on ONERA’s code CEDRE. For consistency,
the same geometric and input parameters used to obtain the steady-state solution are
retained in the unsteady flow investigation.

4.1. Static cases
The primary reason behind DNS computations in a static configuration is to isolate
the influence of one specific eigenmode on the acoustic field. As stated in § 3.1, an
eigenmode can be characterized by its dimensionless frequency ωr. Depending on the
proximity of ωr to the acoustic frequencies, different outcomes may be expected. In
addition, since the dependence of eigenmodes on Xe has been brought into question,
several test cases will be simulated with varying chamber lengths.

4.1.1. Computational strategy
Our strategy is to superimpose, at the initial time, a representative eigenmode

ω = ω0 = 40.409 − 9.164i (extracted from the spectrum in figure 4), on the DNS-
calculated basic flow. The eigenvelocities ux and ur associated with ω0 are projected
on the DNS grid and added to the previously computed mean flow. The projection is
made so that fluctuations in ux and ur follow (3.6) at t = 0.
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Regarding ux, we take Aux = 0.01A0, with A0 being the peak value attained by the
longitudinal component Ūx as shown in figure 3(a). This value is selected so that
fluctuations remain in the linear range relative to the mean flow. As for the amplitude
factor Aur , it is prescribed by the stability calculation. Typically, one gets Aur ≈ 0.1Aux .
Given that the initial time corresponds to t = 0 s, only the real parts (ûx)r and (ûr)r
need to be introduced into the simulations.

It may be important to note that the pressure perturbation of the stability mode
ω = ω0 is not superimposed on the pressure distribution of the mean flow, being very
small in amplitude. At first glance, the superposition process may appear to be simple.
Actually, the superposition of the mean and unsteady components requires careful grid
projections to avoid introducing spurious errors. It also requires special attention to the
boundary conditions.

To compute the unsteady field, an explicit time scheme is used with a time step of
1t = 5 × 10−9 s. The corresponding maximum CFL number is kept under unity. With
the origin of time being set at t = 0 s, our computer runs are stopped after 4 000 000
iterations, at t = 0.02 s. Subsequently, signals from different virtual sensors (placed to
cover the flow in the entire chamber) are extracted and analysed.

It should be remarked that other comparable strategies exist for exploring
the character of oscillations in simulated SRMs. For example, Apte & Yang
(2001a,b, 2003) introduce white noise or an acoustic excitation to perform LES
calculations that can be quite effective at capturing the triggered instabilities.

4.1.2. Three representative cases
Using the strategy described above, several representative computations are

performed by changing the eigenmode introduced at t = 0 s or the length of the
chamber Xe. In what follows, three benchmark cases are chosen at fixed values of R
and Vinj. The first two enable us to capture the effect of changing Xe. The third one
aims at exploring the nonlinear behaviour that emerges from eigenmodes being close
to the main chamber’s acoustic frequency.

(i) Case 1: introduces ω0 = 40.409 − 9.164i in the DNS code using Xe = 8. The
corresponding frequency is calculated to be f = Vinjω

0
r/(2πR0)= 214 Hz.

(ii) Case 2: introduces ω0 = 40.367−7.302i in the DNS code using Xe = 10. Although
this eigenmode is less damped than in Case 1, its frequency remains the same,
namely, f = 214 Hz.

(iii) Case 3: introduces ω0 = 68.679 − 7.594i in the DNS code using Xe = 8. The
frequency shifts to f = 364 Hz, which is nearly identical to the first acoustic mode
in the chamber, specifically, fac = a0/(4RXe)= 363 Hz.

The essential difference between the first two cases lies in the computations being
carried out in chambers with slightly different lengths. In figure 4, one can clearly see
that the mode ω = 40.409 − 9.164i, calculated for Xe = 8, shifts to 40.367 − 7.302i
when the length is increased to Xe = 10. Physically, the two modes are virtually the
same and the lowest for the given geometry.

For the two chamber lengths, Xe = 8 and 10, the acoustic frequencies are 291 and
363 Hz, respectively. For Cases 1 and 2, the frequency of the intrinsic disturbance is
214 Hz, hence considerably lower than the acoustic mode frequency. Because of this
disparity in frequencies, one expects the perturbations to exhibit linear oscillations. In
contrast to the first two cases, Case 3 consists of an eigenmode with a frequency
that mirrors the first acoustic mode. At the outset, one expects nonlinear interactions
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FIGURE 7. Sketch representing the three benchmark cases.

to be imminent. These three cases are situated side by side in figure 7, where both
acoustic and stability eigenmode frequencies are displayed as function of the chamber
length Xe.

Before additional comparisons could be made, a few definitions are in order. First,
we introduce sq

fluc as the net fluctuation in q reported by a virtual sensor signal. It
is obtained by subtracting the mean flow from the DNS value at a sensor location.
Second, we let sq

th represent the theoretical evolution of q according to biglobal
stability analysis as given by (3.6).

4.1.3. Radial fluctuations
Any signal sq

fluc can be compared to its theoretical prediction sq
th. Starting with the

computed sur
fluc for the three representative cases, figures 8(a)–8(c) provide an overview

of the results obtained for the radial velocity fluctuations.
As one may infer from figure 8(a,b), excellent agreement exists between DNS and

biglobal stability solutions for the radial velocity in Cases 1 and 2. A short animation
of the radial fluctuations obtained from the DNS signal sur

fluc for Case 1 is provided
in supplementary movie 1, available online at http://dx.doi.org/10.1017/jfm.2012.245.
Here, it can be clearly seen that sur

fluc ≈ sur
th . This agreement is no longer valid for Case

3 in figure 8(c). This outcome is typical of other results obtained in our study as
signals from other sensor locations lead to similar conclusions.

In principle, as long as an eigenmode’s circular frequency remains sufficiently
separated from an acoustic mode, its linear evolution predicted by linear stability
theory appears to be quite accurate, being corroborated by DNS results. Indeed, only
real parts (ûr)r and (ûx)r are introduced in the DNS code at t = 0 while the theoretical
pattern in (3.6) also involves (ûr)i, ωr and ωi. Consequently, in addition to an already
gratifying DNS confirmation of the values of ωr and ωi for a given eigenmode, the
dependence of our stability results on Xe is also verified.

The remaining question is now turned to the physical interpretation of the
dependence of eigenmodes on the domain size. It may be argued that truncating
the cylinder at x= Xe enables us to ignore the accelerating mean flow and its influence
on the eigenmodes downstream of Xe. Then, given the nature of spatial amplification
in the streamwise direction, we find that longer domain sizes lead to less damped and,
hence, less stable eigenmodes.

Concerning Case 3, the fast Fourier transform (FFT) of the signal, sur
fluc, can be

used to track down the origin of the discrepancy observed in figure 8(c). However,

http://dx.doi.org/10.1017/jfm.2012.245
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FIGURE 8. Comparisons between the fluctuating radial velocity signal sur
fluc (dashed line) and

the theoretical evolution sur
th (solid line with + symbol) given by (3.6) for the three cases

of figure 7: (a) ur at (x, r) = (7.333, 0.342), Case 1; (b) ur at (x, r) = (8, 0.809), Case 2; (c)
ur at (x, r)= (8, 0.866), Case 3. (d) The FFT output for sur

fluc in (c), Case 3.

calculating the FFT of such signals proves to be laborious because our sampling
frequency happens to be considerably high relative to the amplified frequencies. For
this reason, the periodogram method with a Hann window is employed to acquire the
frequency signature of the signal sur

fluc.
The peak in figure 8(d) corresponds to f = 335 Hz, a value that matches the

frequency of ω62 = 62.787 − 7.389i. This eigenmode happens to be the neighbouring
point in figure 4 to the initially introduced ω68 = 68.679− 7.594i.

At first glance, it may be surprising to identify ω62 in the DNS computations
since its frequency lags behind the fundamental acoustic frequency by 30 Hz, whereas
ω68 falls within 1 Hz of fac. Upon further inspection, it may be seen that the two
eigenmodes are at play in this particular case. Given available signal characteristics,
the low frequency accuracy achieved by the periodogram method does not allow us
to conclude with absolute certainty that the only amplified frequency is f = 335 Hz.
Moreover, neither the modal evolution sur

th of ω68 nor that of ω62 corresponds to the
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acquired DNS signal sur
fluc. At this point we realize that a combination of the two

eigenmodes will lead to a more suitable fit.
To identify the individual modal contributions, a spatial decomposition over the

acquired set of signals sur
fluc must be performed at each time step. To this end,

each signal sur
fluc may be assumed to be a combination of the two eigenfunctions

corresponding to ω68 and ω62. Letting A68 and A62 be the complex amplitude
coefficients of the combined signal (standing for the exponential dependence
Ae−i(Vinj/R)ωt in (3.6)), then sur

fluc may be deduced from the real part of the complex
sum A62û62 + A68û68, namely,

sur
fluc = A62

r (û
62
r )r−A62

i (û
62
r )i+A68

r (û
68
r )r−A68

i (û
68
r )i . (4.1)

At each time step, one has as many relations of the form given by (4.1) as the number
of virtual sensor signals, namely 30. In view of this overdetermined system, the four
unknowns (A62

r ,A62
i ,A68

r ,A68
i ) are calculated using least squares. This enables us to

fully recover the complex amplitude coefficients (A68,A62) as a function of time.
Figures 9(a)–9(c) display the modulus and phases of (A68,A62) and compare

them to modal solutions based on the theoretical evolution prescribed by (3.6), i.e.
the envelope Aeνt. According to the resulting combination, the initially introduced
eigenmode ω68 collapses at the very beginning of the computation in favour of ω62.
Thus, one can note the large gap that exists between the computed evolution of ω68

and its theoretical modal prediction 0.01A0 ‖ (û68
r )r ‖∞ eν

68t. In contrast, as shown in
figure 9(b), ω62 tends to behave linearly following its quasi-modal evolution with
a small phase gap. Similarly, as depicted in figure 9(a), its amplitude decreases
according to modal behaviour of the form A1eν

62t with a proportionality constant
A1 = 10. In fact, this mode becomes dominant in the majority of the computations
as confirmed by the frequency analysis of the signals: see figure 8(d). Instead of
strong coupling between acoustic and stability modes, the present analysis suggests
a probable pairing mechanism. For example, the velocity eigenfunctions ûx and ûr

exhibit similar attributes for ω62 and ω68. In particular, the corresponding peak values
in ûx occur at the same location near the wall. Given this behaviour, we may be
unable to ascertain whether the bimodal analysis supports the existence of a physical
coupling mechanism or whether a numerical artefact is triggering a rather spurious,
coupling-like effect due to the proximity of eigenmodes.

So far, in the analysis of sur
fluc, no strong evidence of vorticoacoustic fluctuations has

been seen. Upon a closer look, however, the absence of acoustic mode manifestation in
the radial direction may be attributed to the amplitude of ũr being small, specifically of
O(M) or 10−3 relative to ũx. Recalling that ŭr = 0 and ũr ≈ O(Mũx) in (3.12), it is no
longer surprising that reconciliation between theory and DNS could be achieved in the
case of radial fluctuations without reference to the vorticoacoustic field. Evidently, this
situation changes in the analysis of axial fluctuations.

4.1.4. Axial fluctuations
Let us now examine the signals acquired for the axial fluctuations sux

fluc. Unlike
the analysis of radial disturbances, substantial discrepancies between sux

fluc and sux
th are

observed for all three benchmark cases. Figures 10(a) and 10(b) provide examples
for Cases 1 and 2. While the interplay of two eigenmodes may be responsible for
part of the discrepancies associated with Case 3, the disagreement in Cases 1 and 2
between DNS and biglobal stability solutions can only be due to the omission of the
vorticoacoustic contributions. This behaviour suggests a strong likelihood of acoustic
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modes developing naturally during the simulation, a hypothesis that will soon be
tested.

For Cases 1 and 2, the acoustic part of the signal in sux
fluc can be extracted

by subtracting the linear evolution sux
th using sux

ac = sux
fluc − sux

th . The hydrodynamic
and vorticoacoustic fluctuations can be identified in supplementary movie 2 which
represents the DNS evolution of sux

fluc for Case 1. For Case 3, assuming a dual mode
coupling, the acoustic part sux

ac may be restored from the pair of coefficients A62 and
A68. This is accomplished by taking

sux
ac = sux

fluc − A62
r (û

62
x )r+A62

i (û
62
x )i−A68

r (û
68
x )r+A68

i (û
68
x )i . (4.2)

Here, the combination of acoustic modes can be readily evaluated owing to the
closed-form analytical approximations provided in § 3.2.
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Concerning the pressure oscillations, they are mainly composed of acoustic modes
because any signal sp

fluc remains chiefly prescribed by the acoustic waveform p̆; the
other two contributions p̂ and p̃ may be ignored, being negligible in comparison.
While the pseudopressure p̃ that accompanies the boundary-driven vorticoacoustic
wave is known to be of higher order in the Mach number, the pressure fluctuation
p̂ proves to be immaterial, especially near the headwall of the chamber where the
virtual pressure sensor is located. Since we essentially have sp

fluc ≈ sp
ac, the signal sp

fluc
can be reconstructed from the first M acoustic modes using

sp
fluc =

M∑
m=0

Amp̆m, (4.3)

where p̆m = cos(ωmx)e−iωmt∗ corresponds to the plane wave given by § 3.2. Here too,
we face an underdetermined system while writing (4.3) at each time step for the
chosen sensor. This warrants the use of least squares to retrieve the coefficients {Am}
of the combination of acoustic modes exhibiting a quasi-harmonic distribution with
Am = 1/m2.

In view of Am and the vorticoacoustic solution given by (3.12), the axial component
of the acoustic mode fluctuation can be constructed and compared to sux

ac everywhere in
the chamber. But first, the viscous dissipation mechanism that is present in the DNS
results must be modelled and applied to the acoustic wave amplitudes. Otherwise, the
inviscid amplitudes would remain constant and therefore insensitive to the amount of
viscous dissipation in the chamber. In reality, acoustic amplitudes are susceptible to
viscous decay and so this aspect must be modelled before meaningful comparisons can
be made between DNS and theory.

Assuming linear acoustic oscillations for the three representative cases, an artificial
function Fµ(t) is developed in a manner to match the observed viscous dissipation rate.
We find Fµ(t)= F0

µe−2.3((Vinjt)/R0), with F0
µ = 0.015. It should be noted that Fµ(t) is used

for all sensors and has the same expression for all three cases, despite the nonlinear
interplay of eigenmodes that may be expected for Case 3. Furthermore, Fµ(t) is only
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valid for t > 0.005 s, after the acoustic growth phase that occurs at the beginning of
the computations.

A sample comparison between sp
ac and the combination of acoustic modes is shown

in figure 11(a). Since a combination of acoustic modes can reproduce the signal sp
ac at

any location in the chamber, this method can be used to faithfully predict the acoustic
pressure. In figure 11(b), the coefficients {Am} are plotted with respect to the mode
number m for the first 20 modes. Clearly, Am ≈ 1/m2 and the combination found
corresponds to a harmonic distribution of acoustic modes. The same coefficients {Am}
can be relied upon to evaluate the vorticoacoustic velocity fluctuations sac

ux
.

Figures 12(a)–12(d) display comparative plots between DNS and biglobal stability
solutions in which vorticoacoustic contributions and proper viscous dissipation are
accounted for. The favourable agreement observed in figures 12(a)–12(c) is gratifying
and lends support to the validity of our framework for Cases 1 and 2. It also confirms
the accuracy of the vorticoacoustic approximation obtained by Majdalani and co-
workers along with the suitability of a dissipation function to capture the effects of
viscous attenuation on the acoustic modes.

The early disagreement between DNS and biglobal stability theory in figure 12(d)
corresponds to Case 3, for which nonlinear pairing of eigenmodes is likely to occur. In
this situation, the eigenmode coupling captured through (4.1) leads to good agreement,
albeit limited to t > 0.0055 s. Other comparisons performed using several different
DNS sensors lead to the same conclusion. As for the discrepancies observed in the
first instants of figure 12(d), they are indicative of local nonlinear behaviour wherein
the acoustic mode distribution captured through {Am} deviates from the expected
harmonic form.

To summarize, both DNS and biglobal stability analysis converge in predicting the
same dependence of eigenmodes on the size of the domain Xe. This is established
through Cases 1 and 2 . In addition, introducing an eigenmode ω whose frequency is
sufficiently removed from the acoustic modes leads to a conventional linear evolution
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that can be accurately predicted with the biglobal stability framework. In contrast,
when the frequency of the introduced eigenmode happens to be close to an acoustic
mode, a nonlinear mechanism occurs. Unlike the original eigenmode, a secondary
one emerges naturally in the computed flow without being artificially superimposed.
According to the present bimodal analysis, this natural emergence is linked to
nonlinear interactions that give rise to internal, eigenmode-to-eigenmode pairing rather
than external coupling between eigenmodes and acoustic modes.

4.2. Dynamic cases
In the second set of simulations, it is assumed that either R or Vinj are time-
dependent. In real motors, the radius R continuously expands with respect to time
due to propellant combustion and subsequent grain regression. However, in order
to simplify the ensuing analysis, the sidewall boundary condition is specified with
a temporal function Vinj(t) while the mesh is kept unchanged with a fixed radius,
R = 0.03 m. By varying Vinj(t), we are able to simulate conditions leading to a
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frequency shift according to f = Vinj(t)ωr/(2πR). A frequency crossing is expected
between an eigenmode and an acoustic mode. We hypothesize that such a crossing
would trigger the emergence of a secondary eigenmode as seen in SRMs and VALDO
experiments. Two main parameters characterize this crossing mechanism: the crossing
speed linked to the slopes of the frequency evolutions and the minimal frequency gap
for which the emergence of a secondary eigenmode can be induced. Realistic values
of these parameters may be extracted from VALDO experiments and simulated in the
DNS code. However, given the small time step 1t = 5× 10−9 s used in our simulation,
subsequent computations can be estimated to have prohibitively long durations. A
compromise must be made and this is accomplished by taking

Xe = 8 (0.24 m),
t ∈ [0, 0.06] (12 000 000 iterations),
Vinj(t)= 0.98+ 0.5t.

(4.4)

By introducing into the DNS run the eigenmode ω68 = 68.679 − 7.594i, its frequency
f = ω68

r Vinj(t)/(2πR) will range from 357 to 368 Hz during the computation, thus
crossing at some point the first acoustic mode f = 363 Hz. In this manner,
an amplification is expected to occur around t = 0.04 s. To engender secondary
eigenmodes, the presence of small disturbances in the DNS code is required, and
this effect may be realized through mesh deformation. To this end, the injection line
is distorted such that r = R + n(x)e−4, where n(x) corresponds to 3 dB Gaussian
white noise. The distortion is extended over the entire mesh using the radial function
sin( 1

2πr/R). This particular type of mesh deformation mainly affects the injection
condition. A uniform wall-normal injection velocity Vinj gives rise to a non-uniform
radial velocity Ūr and a non-zero axial velocity Ūx. The induced shearing near the
injecting wall becomes appreciable despite the mesh distortion being relatively small.
It therefore leads to a high level of noise in the computations.

Using this mesh along with a constant injection velocity Vinj = 0.98 m s−1, the
steady-state motion is computed and used as the basic flow in the biglobal stability
code. The eigenmodes are then modified. For example, ω68 = 68.679 − 7.594i is
slightly distorted into ω0 = 68.442 − 5.501i. The slight shift in the circular frequency
ωr does not affect the upcoming frequency crossing. However, the reduction in |ω0

i |
makes this eigenmode less stable, especially in the presence of noise.

The other ingredient that is needed to induce the expected coupling is the inception
of acoustic oscillations, particularly the first longitudinal modes, in the dynamic
simulations. This may be accomplished by superimposing a harmonic distribution
1/m2 of the first ten acoustic modes onto the steady pressure field. The amplitude
of the entire distribution is set at 0.001Patm, where Patm is the atmospheric pressure
imposed in the exit plane at x = 8. However, we find it unnecessary to add velocity
perturbations to the steady-state velocities Ux and Ur.

Computations are initiated following this basic superposition. At the end of
the simulation, signals from 100 virtual sensors are extracted. Then, using short-
time Fourier transforms, our analysis is performed with a sampling frequency of
fs = 105 Hz.

Based on all sensors and signals for sux
fluc, sur

fluc and sp
fluc, the frequency analysis

indiscriminately reveals a highly amplified frequency along with its nonlinear
harmonics. The origin of this frequency, f = 6050 Hz, may be linked to the ninth
acoustic mode fac = 6180 Hz. Nonetheless, limitations due to the sampling frequency
and the relatively small number of sensors do not allow us to accurately analyse this
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fluc and their short-time Fourier
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mode. Its presence is eliminated by conditioning the signals using a Butterworth filter
of order five and a cutting frequency of fc = 2000 Hz. Furthermore, the continuous
parts of the signals for Vinj(t)s

q
fluc(0)/0.98, which are linked to the increase in Vinj, are

subtracted from the filtered signals.
We examine the radial and axial velocity fluctuations by showing in figures 13(a)

and 13(b) samples of sur
fluc and sux

fluc at two sensor locations. As explained
before, the radial disturbances are primarily composed of eigenmodes because
their vorticoacoustic parts are negligible. Interestingly, figure 13(a) shows amplified
frequencies around the first acoustic mode fac = 363 Hz. Furthermore, within the
periodic signal for sur

fluc, two distinct oscillations are observed, namely, around
t = 0.015 and 0.03 s. These two oscillations correspond to the evolution of two
eigenmode frequencies according to f = (Vinj/2πR)ω0. These are ω62 = 62.288−5.328i
and the expected eigenmode ω68 = 68.442 − 5.501i. Figure 13(b) again shows the
emergence of these two eigenmodes. In fact, after the first instants where the acoustic
frequencies dominate the evolution of sux

fluc, the signal begins to exhibit the two
characteristic oscillations caused by the emergence of ω62 and ω68.

Instead of the unique appearance of ω68 around t = 0.04 s, the DNS computations
reveal the eigenmode ω62 around t = 0.015 s, prior to the anticipated appearance of
ω68 around t = 0.03 s. The temporal stability of these modes is visible especially for
ω68, which quickly vanishes as its circular frequency moves away from the acoustic
value.
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Confirmation of the presence of the two eigenmodes is given by figures 14(a)
and 14(b), where spectra at instants t = 0.015 s and t = 0.03 s are depicted. The
amplitudes of signals sur

fluc and sux
fluc are normalized by the maximum values gained on

the short-time Fourier transforms of figure 13(a,b). The reason for the appearance of
ω62 is not entirely clear. However, as in the static simulation of Case 3, a nonlinear
interaction between the first acoustic mode and the superimposed mode ω68 can trigger
the emergence of the secondary eigenmode, ω62.

In closing, it may be worthwhile to remark that, although our computations
have been subject to a very fast crossing speed (i.e. 182 Hz s−1 compared to
34 Hz s−1 in the VALDO experiments), the main objective of this investigation has
been achieved. The emergence of an eigenmode induced by the crossing of its
frequency with an acoustic mode has been clearly demonstrated using both static
and dynamic simulations. This behaviour constitutes a major result that lends support
to our fundamental hypothesis for the occurrence of thrust oscillations in SRMs (see
Chedevergne et al. 2006). The suspected coupling mechanism between acoustic modes
and eigenmodes is now elucidated through the use of DNS data and biglobal stability
theory.

5. Concluding remarks
In this study, we have shown that the use of DNS calculations can provide

new physical insight into understanding the results of biglobal stability analysis.
For example, we have demonstrated that the critical eigenvalues precipitated by the
theoretical stability analysis are recovered when computing the unsteady motion of
an isolated fluctuation through DNS calculations. In the process, special attention has
been given to the dependence of the temporal growth rate ωi on the chamber length
Xe. Evidently, ωi controls the stability character of these eigenmodes and the linear
analysis predicts a growth in ωi with successive increases in Xe. These theoretical
results are limited to the use of a steady, laminar mean flow. Experimentally, this
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assumption holds true as long as x < 12. Under these conditions, ωi remains negative,
thus implying the presence of temporal damping. However, as Xe continues to increase,
nonlinearities in the flow will inevitably lead to strong amplification in the streamwise
direction. The natural transition of the flow around x = 12 is likely to result from the
existence of the eigenmodes discussed heretofore. This hypothesis has to be further
explored in future work. So far, comparisons with cold and reactive gas experiments
have confirmed the relevance of biglobal stability analysis in accurately estimating the
temporally stable modes (see Chedevergne et al. 2006; Chedevergne & Casalis 2006a).
The nature of these intrinsic instabilities has led to a coherent construct that explains
the source of SRM thrust oscillations.

In addition to their important role in corroborating the biglobal stability results,
these DNS calculations have confirmed the accuracy of Majdalani’s analytical solution
for the vorticoacoustic boundary-driven waves associated with the Taylor–Culick flow.
Moreover, it has been demonstrated that the proximity of instability frequencies
to natural acoustic modes can lead to the emergence of neighbouring stability
eigenmodes. Both static and dynamic DNS computations made with a time-dependent
injection velocity have established the presence of strong coupling between acoustic
modes and instability eigenmodes. For the unsteady injection velocity cases, the
frequency of one mode f = Vinjωr/(2πR) becomes a function of the time t and can
cross the acoustic mode fac. This event reproduces what occurs in live motors, where
the coupling mechanism between acoustics and intrinsic instabilities is believed to be
responsible for the emergence of secondary eigenmodes and the merging of frequency
paths.
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CHU, B.-T. & KOVÁSZNAY, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting
compressible gas. J. Fluid Mech. 3 (5), 494–514.

COUTON, D., DOAN-KIM, S. & VUILLOT, F. 1997 Numerical simulation of vortex-shedding
phenomenon in a channel with flow induced through porous wall. Intl J. Heat Fluid Flow 18
(3), 283–296.

CULICK, F. E. C. 1966 Rotational axisymmetric mean flow and damping of acoustic waves in a
solid propellant rocket. AIAA J. 4 (8), 1462–1464.

CULICK, F. E. C. 1968 A review of calculations for unsteady burning of a solid propellant. AIAA J.
6 (12), 2241–2254.

DUNLAP, R., BLACKNER, A. M., WAUGH, R. C., BROWN, R. S. & WILLOUGHBY, P. G. 1990
Internal flow field studies in a simulated cylindrical port rocket chamber. J. Propul. Power 6
(6), 690–704.

FABIGNON, Y., DUPAYS, J., AVALON, G., VUILLOT, F., LUPOGLAZOFF, N., CASALIS, G. &
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