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Biglobal Stability of Cylindrically-Shaped Hybrid and Solid 

Rockets with Injecting or Reactive Headwalls 

Trevor S. Elliott,* Joshua W. Batterson,† and Joseph Majdalani‡ 

University of Tennessee Space Institute, Tullahoma, TN 37388, USA 

The purpose of this study is to investigate the biglobal stability of a simulated rocket 

chamber with a cylindrical grain perforation and a variable headwall injection.  Our effort 

is motivated by the need to characterize the hydrodynamic stability of the flowfield that 

evolves in both cylindrically-shaped hybrid and solid rocket motors with reactive headwalls.  

To this end, the biglobal stability approach is applied to the incompressible Navier-Stokes 

equations, which can be resolved while assuming Berman’s self-similar half-cosine profile at 

the chamber headwall.  The corresponding headwall injection constant is thus varied from 

0.5 in the case of solid rocket motors to 50 in the case of hybrid rocket engines.  The present 

analysis constitutes a natural extension to previous stability investigations that rely on either 

one-dimensional Local Nonparallel (LNP) formulations with headwall injection or on strictly 

two-dimensional biglobal stability formulations based on an axisymmetric stream function 

representation and no headwall injection.  Here, we do not limit ourselves to a stream 

function formulation but rather consider the complete Navier-Stokes equations in the 

context of a biglobal stability framework.  The resulting linearized eigenproblem is solved 

using pseudo-spectral methods and a judicious set of boundary conditions that are consistent 

with either hybrid or solid rocket chambers.  At the outset, the stability spectrum for a solid 

rocket motor with an inert headwall is recovered as a special case.  Finally, a comparison to 

previous work that employs the LNP approach is provided and discussed. 

Nomenclature 

ijA  = operator matrix 

a  = chamber radius 

ijB  = the right-hand-side coefficient matrix of a matrix pencil 

ND  = Chebyshev pseudo-spectral derivative matrix of size N  

d  = weight coefficients for pseudo-spectral derivative matrices 

NI  = identity matrix of size N  

L  = chamber length 

M  = base flow component 

M  = instantaneous flow component 

m  = general amplitude function 

m  = acoustic fluctuation 

m  = unsteady hydrodynamic fluctuation 

m  = vortical fluctuation 

 = Landau order symbol 

P  = base flow pressure 

p  = pressure amplitude function 

p  = hydrodynamic pressure fluctuation  

q  = azimuthal integer wave number 

r  = normalized radial coordinate 
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Re  = Reynolds number 

NT  = Chebyshev polynomial of the first kind 

U  = base flow velocity, rU ,U ,
zU  

u  = velocity amplitude function 

u  = hydrodynamic velocity fluctuation 

z  = normalized axial coordinate 

 

Greek 

  = gradient operator 

  = 1/ Re  

  = streamwise Chebyshev variables mapped between [-1, 1] 

  = eigenvalue 

  = complex frequency of oscillations, r ii 
 

i  = temporal stability growth rate 

r  = dimensionless circular frequency 

  = tangential coordinate  

  = radial Chebyshev variables mapped between [-1, 1] 

 

Subscripts and Superscripts 

i  = denotes an imaginary component 

ii  = diagonal matrix or diagonal element 

ij  = matrix or matrix elements 

h  = property at the headwall 

N  = Chebyshev polynomial order/number of collocation points 

r  = denotes a real component 

w  = property at the sidewall 

n  = denotes the order of the derivative 

I. Introduction 

YDRODYNAMIC stability investigations of rocket chambers may be traced back to the pioneering work of 

Varapaev and Yagodkin,1 and to those connected with turbulence characterization in simulated rocket 

configurations, such as Beddini,2 Beddini and Roberts,3 Lee and Beddini,4,5 Apte and Yang,6-8 Wasistho, 

Balachandar and Moser,9 and others.  Along similar lines, several research studies by Casalis and co-workers, 

especially those by Casalis, Avalon, and Pineau,10 Griffond, Casalis and Pineau,11 Ugurtas et al.,12 Griffond and 

Casalis,13,14 Féraille and Casalis,15 and Fabignon et al.16 pay special attention to different hydrodynamic stability 

models and their ability to predict with varying degrees of accuracy the oscillatory motions observed in solid rocket 

boosters such as Ariane.  Among their achievements, these studies help to identify some of the sources of instability, 

such as parietal, obstacle, and angle vortex shedding, clarify the connection between the stability eigenmodes and 

the reported frequencies, delineate the salient acoustic frequencies and pressure shifts, and shed some light on the 

basic inconsistencies between techniques that entail perturbations of the primitive variables, and those that rely on 

stream function formulations.2-5  They also help to explain the spatial evolution of disturbances in simulated porous 

channels and tubes, which mimic the flowfield in solid rocket motors.  From a practical perspective, the theoretical 

findings obtained through hydrodynamic stability models are not only supported by lab-scale firings,17 they are 

further corroborated by cold-flow data acquired using two elegantly designed experimental facilities coined VECLA 

(Veine d’Etude de la Couche Limite Acoustique) and VALDO (Veine Axisymmétrique pour Limiter le 

Développement des Oscillations).  These two facilities are associated with two-dimensional, planar and 

axisymmetric flow investigations, respectively (see Avalon, Casalis and Pineau18).  Other essential wave 

characteristics are elucidated through the work of Avalon and Comas,19 Vuillot and Avalon;20 Vuillot,21 Couton et 

al.,22 and Ugurtas et al.23   

 In what concerns the stability of solid rocket motors, the most noteworthy developments, perhaps, may be 

associated with the adoption of a biglobal framework by Chedevergne and Casalis,24,25 specifically in a compelling 

stream function formulation that brings about new insights into the unresolved thrust oscillation problem.  The same 

study winds up earning the 2007 AIAA Best Solid Rocket Paper Award.  This particular effort is accompanied by 
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two sequels attributed to Chedevergne, Casalis, and Féraille,26 and Chedevergne, Casalis, and Majdalani.27  In the 

last installment, direct numerical simulations of cylindrically-perforated solid rocket motor grains are shown to 

coincide quite closely with biglobal stability predictions of the ensuing unsteady motion when properly augmented 

by the vorticoacoustic wave contribution formulated by Majdalani and Van Moorhem.28   

 In the realm of liquid rocket flowfield stability, the first serious investigation of note may be attributed to 

Batterson and Majdalani29,30 and their biglobal stability analysis of the bidirectional vortex motion that arises in the 

context of the so-called Vortex Combustion Cold Wall Chamber (VCCWC) by Chiaverini et al.31-34 This two-part 

series provides, first and foremost, the detailed analytical derivation, numerical discretization steps, and spectral 

collocation tools needed to handle the complete set of partial differential equations that emerge in a problem where 

the parallel flow assumption is relaxed.  Second, it illustrates the practical application of biglobal stability to the 

incompressible helical profiles associated with the VCCWC configuration.  It thus manages in providing the 

stability eigensolutions for the complex lamellar,35,36 linear,37 and nonlinear Beltramian motions,38 using a realistic 

set of boundary conditions associated with choked chamber conditions.  Among its main outcomes, the Batterson-

Majdalani study shows that the stability of helical motions can be substantially enhanced by increasing swirl while 

securing an axisymmetric flow configuration throughout the chamber. In the case of unstable modes, which can 

occur for low values of swirl, their manifestation is found to be most pronounced near the headwall, namely, in the 

funnel region where flow turning and shearing are most appreciable.  Everywhere else, the disturbances are seen to 

faithfully follow the paths prescribed by the mean flow streamlines. 

 As far as hybrid flowfield analysis is concerned, the application of hydrodynamic instability theory in the context 

of a simulated hybrid rocket engine may be ascribed to the work of Abu-Irshaid, Majdalani, and Casalis.39  In this 

investigation, the one-dimensional, LNP approach is evoked to analyze the stability of a hybrid rocket chamber that 

admits a half-cosine injection pattern at its headwall.  The study itself focuses on the effects of headwall injection on 

the stability of the extended Taylor-Culick profile, which is described in detail by Majdalani,40 and Majdalani and 

Akiki.41  Using 0 / ( )h wu U U  as a measure of the relative intensity of headwall-to-sidewall injection, the LNP 

model shows that increasing hu  leads to a shift in the neutral curve upstream of the headwall.  It also suggests that 

further increases in hu  result in unstable behavior over a progressively expanding range of frequencies throughout 

the chamber.  The analogous case of a solid rocket motor with a reactive headwall is accompanied by a narrower 

instability band.  In short, these findings indicate that, when all conditions are set equal, a hybrid rocket flowfield 

will be intrinsically less stable than that of a solid rocket motor.   

At this point it may be instructive to note that the spatial stability study employed by Abu-Irshaid, Majdalani, 

and Casalis39 requires selection of a certain azimuthal integer wave number q  and frequency .r    Naturally, its 

imaginary frequency is suppressed, i.e. 0,i   in accordance with the spatial stability approach.  The LNP method 

determines at each spatial position, the spatial growth rate ( )i  and the longitudinal wave number r  for given 

values of the operating Reynolds number and headwall injection constant.  In the present work, we shift from the 

one-dimensional LNP approach to the biglobal framework outlined by Batterson and Majdalani.29  In this vein, the 

specification of the azimuthal wave number will be necessary to determine the entire stability spectrum for a given 

Reynolds number and .hu   The temporal stability analysis of Chedevergne, Casalis, and Féraille26 is somewhat 

similar except for its reliance on a single value of 0q   and the Arnoldi algorithm to compute a specific number of 

eigenvalues near a starting point.  In the present work, the QZ algorithm will be used instead to determine the 

eigenmodes for the first four azimuthal wave numbers in both hybrid rocket chambers and solid rocket motors 

having non-inert headwalls. 

The paper is organized as follows:  In Sec. II, we introduce the problem configuration consisting of the physical 

geometry and flowfields under investigation.  We then layout the hydrodynamic stability theory along with the 

fundamental biglobal stability equations in Sec. III, following the work of Batterson and Majdalani.29,30  Then, in 

Sec. IV, the Chebyshev collocation method is selected and discussed in view of its direct relevance to our problem.  

In this section, the spectral equations are formulated from the general eigenvalue problem and the boundary 

conditions associated with the flow under investigation are defined.  Finally, in Sec. V, numerical results for each 

core flowfield are presented and discussed, with a summary that is given in Sec. VI. 

II. Problem Configuration 

In this study we consider a motor case with a cylindrical grain perforation.  The corresponding hybrid and solid 

rocket core flowfields are depicted schematically in Figure 1a,b where the motor is represented as a cylindrical 

chamber of length L  and radius .a   The headwall injection velocity is assumed to be Berman’s cosine function with 
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a maximum centerline velocity equal to 0.U   In order to reproduce the rate of mass addition at the injector faceplate 

of a hybrid rocket, the headwall injection velocity may be varied.  Additionally, the independent sidewall injection, 

,wU  may be calibrated to capture the regression rate of the fuel grain in the case of a hybrid, or the solid propellant 

in the case of a solid rocket motor.  As implied in our Nomenclature, all coordinates are normalized by the chamber 

radius and all velocities are normalized by wU : 

 ;   ;   ;   ;   r z
r z

w w w

UU U r z
U U U r z

U U U a a


       (1) 

Furthermore, the headwall injection constant, ,hu  is defined as  

  0 /h wu U U  (2) 

According to Majdalani,40 the mean flow components may be expressed as 

 
2 21 1

2 2

1
sin( );   ( )cos( );   0r z hU r U z u r U

r
         (3) 

 It should be pointed out that 0z   stands for the upstream edge of the porous wall and that the headwall 

injection constant germane to hybrid rockets can vary in the range of 50 500,hu   with a typical value of 50.   For 

a solid rocket motor (SRM), one may assume that the same propellant is present at both the sidewall, where the 

injection is uniform, and the headwall, where the profile is cosine-shaped.  This arrangement leads to a value of 
1
2
.hu    The resulting idealization ensures that the headwall mass injection rate is equal to 

2 ,wa U  thus making 

the model consistent with that of a sufficiently long grain, which burns equally uniformly along its sidewall and 

headwall, as in depicted in Figure 1b.  

III. Biglobal Hydrodynamic Stability Theory 

The instantaneous velocity may be considered to be the sum of a steady part and three fluctuating wave 

disturbances, 

 M M m m m     (4) 

Here M  denotes the instantaneous flowfield and M  refers to the base flow.  The next two terms represent the 

compressible, irrotational acoustic wave, ,m  and the rotational, incompressible vortical wave, m .  The combination 

of these two components constitutes what has become known as the vorticoacoustic wave, a time-dependent motion 

that is adequately modeled by Majdalani and co-workers in a variety of physical settings.28,42-46  The last term 

corresponds to the hydrodynamic instability wave, m , which, unlike its vorticoacoustic counterpart, evolves over a 

wide spectrum of frequencies and length scales.  For this reason, spectral methods may be best suited to discern its 

character.   

 
 
Figure 1.  Geometric sketches of a) internal burning hybrid grain with cylindrical perforation and sinusoidally imposed 

headwall injection, and b) simulated solid rocket motor with equally injecting headwall and sidewall.  
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 Because the vorticoaoustic contribution is well known, our attention will remain concentrated on the 

hydrodynamic instability contribution.  We therefore begin our analysis by superimposing the base flow to the 

hydrodynamic wave, which appears as a first-order perturbation, 

 M M m   (5) 

 Applying this perturbation expansion to the viscous, incompressible Navier-Stokes equations leads to a set of 

Linearized Navier-Stokes (LNS) equations.  As shown by Batterson and Majdalani,29 we get 

Continuity: 

 
1

0r r zuu u u

r r r z





 
   

  
 (6) 

Radial momentum: 

 
2r r r r r r r

r r z z

U u U uu u U u U u U p
U u U u

t r r r r r z z r

   

 

       
       

       
 

  
2 2 2

2 2 2 2 2 2

1 1 2r r r r ruu u u u u

r rr r r r z




    
      

    
 (7) 

Tangential momentum: 

 
1r r

r r z z

u u U U u u U U u u U u U p
U u U u

t r r r r r r z z r

          

  

       
        

       
 

  
2 2 2

2 2 2 2 2 2

1 1 2 ru u u u uu

r rr r r r z

    


    
      

    
 (8) 

Axial momentum: 

 
2 2 2

2 2 2 2

1 1z z z z z z z z z z z
r r z z

U uu u U u U u U p u u u u
U u U u

t r r r r z z z r rr r z

  
  

            
           

           
 (9) 

where the collection of terms at ( )M  may be dropped, being identically satisfied by the mean flowfield associated 

with Eq. (3).  Furthermore, second-order terms of 
2m   and higher may be truncated in the process of identifying 

the first-order stability equations. 

 Equations (6)-(9) may be further reduced by assuming a biglobal modal ansatz of the form 

 ( , )exp[ ( )]m m r z i q t    (10) 

This ansatz only requires that the base flow be periodic with respect to .   The two-dimensional amplitude function, 

( , ),m r z  enables us to globally compute the spatial waveform.  Substitution of this ansatz gives rise to the following 

biglobal stability equations: 

Continuity: 

  1 1 0r zr u iqr u u
r z


     

      
    

 (11) 

Radial momentum: 

 
2 2

1 1 2 2

2 2
(1 )r r

r z r

u U
U iqU r U r q r u

t r r z rr z
   

         
          

        
 

 
2 1 12 2 ( )r r

z r

U U
iq r U r r u u p i u

z r
  



          
          

       
 (12) 

Tangential momentum: 

 1 2 1 1 12 r r r z

U U
U r iq r u U U r iqU r r U

r r z

 
 



       
       

    
 

    
2 2

1 2 2 1

2 2
1 ( )z

U
r q r u u iqr p i u

r zr z


    

       
          

     
 (13) 

Axial momentum: 

 1 1z z z
r z r z

U U U
u r u U iqU r U

r r z z




         
                
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2 2

1 2 2

2 2
( )z zr q r u p i u

r zr z
  

     
        

     
 (14) 

In previous work, a similar set of biglobal stability equations are developed by Robitaillié-Montané and Casalis,47 

albeit in Cartesian coordinates.  

IV. Chebyshev Discretization 

A Chebyshev collocation stencil is selected over other discretization methods due to its simplicity and 

straightforward application.  We define a discrete Chebyshev polynomial of order N  as 

      
1

N

N i i

i

P f f   


  (15) 

In the above, i  
represents the collocation point corresponding to 1,...,i N  whereas  i   stands for the 

appropriate weight function.  For Chebyshev polynomials, we have 

    
 

 

2
1

2

1
1

1

i N

i

i i

T

d N


 

 


  

    
     

         with         

 1
cos

1

arccos

i

i

N




 

  
  

  




 (16) 

where 

 
2;     1  or  

1;      otherwise 
i

i N
d


 


 (17) 

This polynomial structure can be employed to generate a discretization scheme such as the Chebyshev pseudo-

spectral differentiation matrix defined below.48,49  

A. Chebyshev Differentiation Matrix 

For each 1,N   one can let the rows and columns of the    1 1N N    Chebyshev spectral differentiation 

matrix ND  be indexed from 0 to .N   The entries of the matrix are:29 

 

 

 
 

 
 

 
 

 

 
 

2

11 2

2

2 1 1
; 2,..., 1

6 2 1

1
         ,     , 2,..., 1

2 1 1

6

i
N N ii

i

i j

i
N N ij

j i j

N NN

N
D D i N

d
D D i j i j N

d

N
D





 



   
   





    




 
 




 (18) 

Higher order derivatives can be computed by simply raising the first order pseudo-spectral differentiation matrix to 

the corresponding power.  For example, one may take: 

  
d

...
d

n
n

N N N Nn

n

D D D D




      (19) 

 The axisymmetric problem now requires a two-dimensional grid based on directionally independent Chebyshev 

points, or a tensor product grid.50 This grid allows two independent variables to appear in the same matrix operator.  

For this reason, Kronecker products are required for tensor product grids.  Using standard notation, the Kronecker 

product of two matrices is denoted by   ij mn i m j nA B C     where    i m j nC    represents a block matrix such that each 

block is built according to .ij mna B   The Kronecker product can be applied to the differentiation matrix to specify 

derivatives in two directions.  In what follows, derivatives with respect to   will be taken as    
n

N NI D
 
 while 

derivatives with respect to   will be written as     ,
n

N ND I
 
where  NI

 
stands for the N N  identity matrix.  

Both   and   are defined next. 
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B. Principal Matrices 

As we are interested in the spectral decomposition and eigensolution to this problem, our system is formulated in 

terms of the generalized eigenvalue problem, 

 ii i ij iA f B f  (20) 

The solution domain must be transformed for the r  and z  independent coordinates.  The two-dimensional mapping 

formula for arbitrary chamber length NZ  over the domain 0 1r   and 0 Nz Z   may be reconditioned using 

 

 

 

1
2      1       or   2 1

2
                

2 2
1     or       =   

2

N N

N N

r r
r

Z z Z
z

Z r Z

 


 


         
      
   

 (21) 

The corresponding block matrices take on the form: 

 

1
,,

1
,,

,,

,,

0       

0            
           

0               

00                  

rr

zz

r
c uc u N ii

c uc u ii

z
c uc u N

c pc p

BA D r

BA iqr

BA D

BA






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where the overbar is used as a reminder that the spectral operators are mapped to the physical domain. 
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C. Boundary Conditions 

 Having defined the operating matrices, one is left with the need to specify a judicious set of auxiliary conditions.  

The physical requirements at the chamber boundaries and centerline may be taken to realistically correspond to the 

acoustic field in a circular tube with acoustically closed endpoints, i.e. 0 n u  and 0.p n   Finally, closure for 

an axisymmetric system may be achieved by letting 
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 Note that the streamwise conditions on all velocities at the headwall are suppressed in order to satisfy the no-slip 

requirement.  Similarly, the velocity and pressure boundary conditions at the downstream section are selected to 

conform with an acoustically closed chamber. According to one-dimensional local theory, spatial instability is first 

observed in axisymmetric modes, a scenario that renders the analysis of higher modes inconsequential.  This is 

confirmed by Abu-Irshaid, Majdalani, and Casalis,39 whose iso-n plots display the growth rate n connecting the 

abscissa of spatial instability with temporal theory.  However, traverse mode instability, which is particularly 

relevant in liquid rockets with headwall injection, more commonly occurs in asymmetric modes.  Assuming that 

analogous modes may occur in cylindrically-shaped hybrid rocket engines, the case of 0q   will also be 

considered by modifying the centerline boundary conditions to the extent of representing axisymmetric motion.  The 

asymmetric analog of Eq. (26) becomes  
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 (27) 

Having achieved a well-posed eigenvalue problem, its solution will be used to unravel both the characteristic 

eigenmode frequencies and the eigensolutions corresponding to our principal variables, , , ,r zu u u  and .p  
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Figure 2.  Spectral results for a solid rocket motor with Re = 5×10
3
, uh = 0, and q = 0, 1, 2, and 3 in Parts a) through d). 
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V. Results and Discussion 

A. Solid Rocket Motor with Inert Headwall 

The first test case in this study considers a 

cylindrically-shaped SRM with a nonreactive headwall, 

i.e. 0.hu    Figure 2 provides the eigensolutions for the 

simulated SRM with 5000Re   and four azimuthal 

wave numbers evolving from 0 to 3.  By increasing ,q  

the spectral frequencies that fall within the unstable 

region, above the 0i   horizontal line, seem to be quite 

similar in both trend and amplitude as they follow a 

rather linear behavior.  Upon closer look, we find that the 

initial unstable frequencies for each q  move closer to the 

0r   axis with successive increases in .q   Also 

depicted in Figure 2 is the clustering of eigenmodes in 

the stable region, below the horizontal line.  In the cluttered area, the linear trends that characterize the unstable 

eigenmodes cease to exist.  Instead, the clustering seems to adhere to no particular order.   

From Figure 2, the maximum circular frequency below which the flow becomes stable can be estimated.  Using 

5000Re   and 0,hu   the threshold frequencies are calculated to be 25.32,  22.86,  25.82,r   and 14.06  for 

0,  1,  2,q   and 3,  respectively.  To aid in visualizing the behavior of the first unstable eigensolution, a 

magnification of the spectrum is provided in Figure 3 for 3,q   where a red circle is used to pinpoint the mode in 

question.  This particular eigenmode, 14.054 0.0901 ,i    is further explored by evaluating its eigensolutions in 

Figure 4, where isocontours are provided for the radial, tangential, and axial velocities (Figure 4a,b,c).  Our results 

indicate that moderate fluctuations in ru  can occur in the headwall region, whereas strong fluctuations in u  
and zu  

may be seen throughout the entire chamber.  Fluctuations in the latter seem to faithfully follow the mean flow 

streamlines.  Lastly, we show in Figure 4d the hydrodynamic pressure oscillations that develop in the flow.  These 

seem to appear just as the axial oscillations begin to dissipate and slowly decrease in amplitude while approaching 

the exit plane at .Nz Z   

D. Solid Rocket Motor with Reactive Headwall 

Based on the LNP investigation by Abu-Irshaid, Majdalani, and Casalis,39 one is able to predict the stability 

breakdown region for a solid rocket motor that is subject to uniformly distributed propellant burning along both its 

sidewall and headwall.  Thus using 5000,Re   0,q   and 1
2
,hu   the bulk flowfield is found to be stable below a 

dimensionless frequency of 28.5.r    For 2,q   the threshold frequency below which the flow stabilizes 

increases to 34r .    These results are reproduced in Figure 5 where the neutral curves and threshold frequencies 

predicted by the LNP approach are provided.  Using identical conditions, the spectral results that we obtain using the 

biglobal framework are depicted in Figure 6.  As one may infer from Figure 6b, our spectral analysis may be viewed 

as somewhat concurrent with the LNP approach:  In lieu of 28.5,r   the present framework projects a threshold 

value of 26.87r   for the first unstable eigenvalue at 0.q    The discrepancies between the LNP and biglobal 

stability outcomes may be partly attributed to the absence of outflow boundary conditions in the LNP approach.  

Furthermore, the LNP’s specification of a longitudinal wave number may be viewed as being somewhat restrictive 

in the sense that it pre-establishes the periodic behavior of the solution in the streamwise direction.  By comparison, 

the spatial behavior, which is implicitly captured in the biglobal approach, tends to be more realistic.  Lastly, the 

application of the LNP approach to essentially nonparallel rocket flowfields can result in a finite error, unlike the 

biglobal approach.  

In complementing this 0q   test case, Figure 7 is used to display the spectra associated with 5000,Re  1
2
,hu   

and two successive values of the tangential wave number, namely, 1q   and 2.  Here too, a qualitative agreement 

may be drawn between the biglobal stability predictions and those of the LNP approach.39 The threshold frequencies 

in this study are found to be 28.76r   and 31.1 for 1q   and 2, respectively.  Those deduced from the LNP 

approach return similar values of 28.5r   and 34 , which fall within 1.8% and 9.3% of their biglobal stability 

counterparts, respectively. 

Compared to the SRM configuration with inert headwall conditions (i.e. Figure 2), a similar behavior in wave 

frequencies and amplitudes is realized here.  Specifically, spectral values in the unstable region do not appear to 
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Figure 3.  First unstable eigensolution for a solid rocket 

motor with Re = 5×10
3
, uh = 0, and q = 3.  
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exhibit appreciable changes in either trend or amplitude.  As before, the initial unstable eigenmodes for each wave 

number q  tend to gravitate away from the vertical 0r   axis as q  is increased, thus extending the region of 

stability in a manner that is qualitatively consistent with the trends associated with the LNP approach.39  Figure 7 

also reflects the presence of mode clustering in the stable region, which clearly resembles the data scatter obtained 

for 0hu   in Figure 2.  Moreover, the stable eigenmodes seem to progressively drop further and further below the 

horizontal stability axis as q  is incremented.  This downward shift confirms that the flow becomes fundamentally 

more stable at higher values of .q   

At 3,q   the first two unstable modes retrieved through biglobal analysis correspond to 31 26.06 0.2377i    

and 32 27.61 0.5163 ,i    where qm  refers to the mth eigenmode for a tangential wave number .q
 
 In this 
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Figure 4.  Eigensolutions for the first unstable eigenvalue ω31 = 14.06 + 0.0901i with q = 3, Re = 5×10
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situation, 32  exhibits a higher temporal growth rate than 

31.   The eigensolutions associated with these two 

modes are depicted in Figures 8 and 9, respectively.   

In Figure 8, it may be seen that the fluctuations in the 

radial velocity near the headwall are less pronounced 

than in the inert headwall case.  This is due to the parallel 

flow inertia caused by axial injection at 0,z   which 

suppresses the tendency of radial oscillations to grow in 

the headwall region.  As for the tangential and axial 

velocity distributions, a strong agreement between the 

inert and reactive headwall cases may be seen, namely, in 

the form of appreciable disturbances that intensify as the 

centerline is approached.  Here too, the disturbances 

seem to faithfully follow the steady-state streamline 

patterns in the chamber, with the highest amplitudes 

occurring in the region of maximum shear, i.e. where 

streamline curvatures tend to be the sharpest.  Compared 

to the inert headwall case, the axial velocity fluctuations 

increase in magnitude due to the added headwall 

injection.  The pressure oscillations also increase in 

magnitude compared to the case with no headwall 

injection.  Their distribution seems to be nearly orthogonal to that of the velocity disturbances, with their largest 

magnitudes appearing in the region where the streamline curvatures start to flatten out.    

 
 

Figure 5.  Neutral curves from the one-dimensional LNP 

approach
39

 using Re = 5×10
3
 and uh = 0.5. 
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Figure 6.  Spectral results of a solid rocket motor with Re = 5×10
3
, uh = 0.5, and q = 0 showing a) the overall frequency 

spectrum and b) a magnification region where the first unstable eigenmode may be identified.  
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Figure 7.  Spectral results for a solid rocket motor with Re = 5×10
3
 and uh = 0.5 using a) q = 1 and b) 2. 
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As we move to a more unstable eigenmode, we note that 32 31( ) ( ) .i i    We therefore use Figure 9 to illustrate 

the contours of the perturbations in the radial, tangential, and axial waves for 32 27.61 0.5163 .i     Compared to 

the first unstable mode, we calculate 32 31( ) / ( ) 0.5163/ 0.2377 2.17.i i     The frequency growth rate of the 

second mode proves to be more than twice its precursor, which is featured in Figure 8.  At the outset, the large 

amplitude fluctuations in Figure 9 are seen to be more pervasive, thus extending over a larger portion of the 

chamber.  For example, the high amplitude fluctuations in all components are manifested not only in the core region, 

but all the way to the chamber wall.  This behavior is indicative that the flowfield is not only unstable in the core 

region, but throughout the entire chamber.  Furthermore, the triggered oscillations seem to exhibit better resistance 

to dissipation while approaching the choked exit section.  Unlike the first unstable mode, where velocity fluctuations 

are quickly suppressed in the downstream direction, the larger temporal growth rate of 32( )i  leads to higher 
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Figure 8.  Eigensolutions for the first unstable eigenvalue ω31 = 26.07 + 0.2377i with q = 3, Re = 5×10
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amplitudes in the vicinity of the exit plane.  The increased i  also leads to more uniform amplitudes in the pressure 

fluctuations.  As shown in Figure 9d, these seem to retain their magnitudes and spread across the chamber diameter 

while propagating axially.  

E. Hybrid Rocket Engine 

The final investigation is directed toward a hybrid rocket engine case with a headwall injection constant of 

50.hu    The spectrum for the hybrid rocket with a Reynolds number of 5000 and two azimuthal wave numbers of 

0 and 3 are depicted in Figure 10.  This graph features the first unstable eigenmodes for both cases of .q   Based on 

the biglobal stability approach, we find that the first unstable eigenmodes at 0q   and 3 yield 01 21.95  2.523i  
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Figure 9.  Eigensolutions for the second unstable eigenvalue ω32 = 27.61 + 0.5163i with q = 3, Re = 5×10
3
, and uh = 0.5. 
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and 31 47.13 2.15 .i     After careful scrutiny, we realize that the changes in headwall injection, which correspond 

to realistic hybrid rocket configurations, correlate directly with the frequency growth.  This correlation may be 

corroborated by comparing the spectral results obtained heretofore, namely, in Sections A through C.  Accordingly, 

the unstable frequency seems to increase with hu  both in magnitude, with respect to its circular frequency, and in 

the number of unstable eigenmodes.  Our results also suggest that a greater scatter is induced by successive increases 

in .hu   As depicted in Figure 10, an interesting pattern of modal distributions may be inferred from the resulting 

spectra irrespective of the azimuthal mode number.  Going from 0q   to 3, eigenmodes are seen to evolve into two 

families of rays that obliquely diverge from the stability axis, either upwardly or downwardly.  The clustering of 

these modes along the neutral axis extends from a dimensionless frequency of 0r   to approximately 800.   

Beyond this frequency, the bifurcation of eigenmodes ceases to originate along the neutral axis.   

The first unstable eigenmode, 31 47.13 2.15 ,i    which is pinpointed in Figure 10d, is further explored in 

Figure 11 through a display of its unsteady flowfield ingredients.  In the case of a simulated hybrid, the streamtube 

motion that dominates throughout the chamber is evident.  The parallel flow straightening caused by strong headwall 

injection is clearly conveyed to all fluctuating components.  These appear to undulate about the mean flow 

streamlines, thus forming segmented regions that extend from the headwall to the exit plane.  These segments are 

characterized by rather self-similar oscillations that start at the sidewall and expand in width as the centerline is 

approached.  They also intensify and stretch horizontally as more mass is picked up with successive increases in .z   

Given that computed amplitudes are irrelevant in an eigenvalue problem (due to arbitrary scaling), what may be 

more important to identify than actual magnitudes is the frequency of occurrence of velocity extrema.  In the case of 

a cylindrically-shaped hybrid engine, the peak values associated with the three velocity disturbances seem to occur 

more frequently than in the SRM case.  Furthermore, by examining the fluctuations in the axial and tangential 

velocity components at a particular location in the chamber, especially near the centerline, one may infer that 

vorticity generation is increased compared to similarly unstable modes of SRMs with minimal or no headwall 

injection.  As for the unsteady pressure contours that accompany this unstable mode, they tend to smoothly follow 

the streamtube motion, with their largest magnitudes occurring in an annular region extending between 10% and 

50% of the chamber diameter (i.e. 0.1 0.5r  ).   
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Figure 10.  Spectral results for a hybrid rocket engine with Re = 5×10

3
 and uh = 50 using a) q = 0 and b) 3.  The 

magnifications in c) and d) serve to identify the first unstable eigenmodes for the two cases considered. 
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For the reader’s convenience, the streamlines associated with the extended Taylor-Culick profile40 are illustrated 

in Figure 12 using 50hu   and a sufficiently large Reynolds number.  This graph serves to illuminate the strong 

connection between the mean flow character and the generation and propagation of biglobal stability disturbances. 

VI. Conclusions 

In this paper, a biglobal stability framework is used to investigate the growth of disturbances in three idealized 

rocket chambers: a solid rocket with inert headwall, a solid rocket motor with a reactive headwall, and a hybrid 

rocket engine with sufficiently large headwall injection. Despite the increased accuracy associated with our two-

dimensional approach, the spectral results that we obtain seem to compare favorably with those reported previously 
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Figure 11.  Eigensolutions for the first unstable eigenvalue ω31 = 47.1326 + 2.1496i with q = 3, Re = 5×10
3
, and uh = 50. 
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using a one-dimensional formulation, namely, that of the Local Nonparallel (LNP) approach.39  In the majority of 

cases modeled, our spectra seem to exhibit similar frequency thresholds to those acquired using a one-dimensional 

representation for the three systems under investigation.  Overall, our results show that the range of unstable 

frequencies increases with successive increases in headwall injection, thus making a hybrid rocket flowfield more 

unstable than that of a solid rocket motor.  Paradoxically, we also find that the first unstable eigenmode proves to be 

more sensitive to variations in the azimuthal wave number q  than to changes in the headwall injection constant .hu  

Finally, we find that as hu  is increased, the shift in i  with successive increases in r  also increases.  However, a 

direct numerical correlation between these two parameters has yet to be determined.  

In this work, the boundary conditions in the exit plane are chosen as though the engine is choked at ,Nz Z  

despite the underlying assumption of an incompressible fluid.  It would be interesting to investigate the sensitivity of 

the eigenmodes to the length of the chamber .NZ   It would also be helpful to re-evaluate the eigenmodes using a 

different set of outflow conditions that correspond to an incompressible fluid with vanishing normal stresses in the 

exit plane. The relevance of such conditions is discussed by Casalis, Boyer and Radenac.51  These modifications will 

be considered in future work along with a wider parametric selection of test cases that will focus more closely on the 

hybrid rocket configuration. 
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