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 In this study, the transverse vorticoacoustic wave in a circular cylinder is characterized for 

a variable velocity profile at the injector faceplate. This particular configuration mimics the 

conditions leading to the onset of traveling radial and tangential waves in a simple liquid 

rocket engine (LRE). To capture the unsteady behavior in this physical setting, we consider 

a short thrust chamber with an injecting headwall and combine the benefits of three 

techniques: regular perturbations, Helmholtz decomposition, and boundary layer theory.  

First, regular perturbations are leveraged to linearize the equations of motion and, in the 

process, help to identify the unsteady interaction equations. Second, a Helmholtz 

decomposition of the first-order disturbance equations gives rise to a compressible, inviscid, 

and acoustic set that is responsible for driving the unsteady motion. This is accomplished in 

conjunction with an essentially incompressible, viscous, and vortical set that materializes by 

virtue of coupling with the acoustic wave at the boundaries. After recovering the acoustic 

mode from the resulting wave equation, the last step is to solve for the vortical mode by 

applying boundary layer theory and a judicious expansion of the rotational set with respect 

to a small viscous parameter,  . After some effort, an explicit formulation for variable 

headwall injection is obtained and validated by means of a limiting process verification that 

is based on two previously investigated cases, the uniform and bell-shaped injection profiles. 

The solution is then illustrated using two new configurations corresponding to laminar and 

turbulent profiles. In the process of comparing the four representative cases, the 

characteristics of the vorticoacoustic wave, including its penetration depth, spatial 

wavelength, and overshoot factor, are systematically explored and discussed. Most 

characteristics are found to depend on the penetration and Strouhal numbers along with the 

distance from the centerline. Along the axis of the chamber, the waves attributed to different 

injection profiles behave similarly to the extent that behavioral deviations among them 

increase as the sidewall is approached. This work also accounts for the presence of a 

downstream boundary that stands to produce left-traveling reflections whose pairing with 

the right-traveling waves promotes the establishment of a standing wave environment. The 

combined waves are formulated analytically and shown to be appreciable in view of their 

amplitudes that twice exceed those associated with traveling waves. 

Nomenclature 

0a  = speed of sound of incoming flow, 
1/2

0( )TR  

, ,r ze e e  = unit vectors in , ,r   and z  directions 

mnf  = transverse frequency, 0/ (2 ) / (2 )mn mna k R  
 

,L R  = chamber length and radius, respectively 

bM  = average blowing/burning Mach number at headwall, 0/bU a  

OF  = overshoot factor 

p  = pressure 

Pr  = Prandtl number, ratio of kinematic viscosity and thermal diffusivity 
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, ,r z  = radial, tangential, and axial coordinates 

aRe  = acoustic Reynolds number, 0 0/a R   
bRe  = blowing (or wall injection) Reynolds number, 0/bU R   

S  = Strouhal number, / 2 /mn b mn bk M f R U  

pS  = penetration number, 3 2 3 2 2
0 0/ ( ) / (4 )b mn b mnU R U f R     

t  = time 
T  = temperature 
u  = total velocity vector 

( )bU r  = headwall velocity profile 
U  = mean flow velocity vector 

wV  = propagation velocity of vortical waves in the axial direction 

py
 

= penetration depth of rotational elements in the y  direction 

pz  = penetration depth of rotational elements in the z  direction 

OSz  = locus of unsteady velocity overshoot 
 
Greek 
  = viscous parameter, 1/ aRe  

d  = dilatational parameter, 1/2
0 0( 4 3)     

  = wave amplitude 
  = ratio of specific heats 
  = second coefficient of viscosity, bulk 2 / 3   

w  = spatial wave length 
  = dynamic viscosity 

bulk  = bulk viscosity 
  = kinematic viscosity,    
  = density 

,Ω ω  = mean or unsteady vorticity 

mn  = circular frequency, 02 /mn mnf a k R   
 
Subscripts 
0  = mean chamber property or reference value 
, ,r z  = radial, tangential, and axial directions 

 
Superscripts 
*  = dimensional variables '  = unsteady flow variable 
(0)  = leading-order variable 
(1)  = first-order variable 

I. Introduction 
HIS study aims at investigating the mathematical forms of the vorticoacoustic waves that can be engendered 
inside a simulated liquid rocket engine (LRE) with a strongly injecting headwall.  The rotational gaseous 

motion that arises in such an environment may be described by a set of four coupled partial differential equations 
(PDEs) representing continuity and momentum conservation in the context of a fluid oscillating in a relatively short 
cylindrical chamber with a permeable headwall.1,2  The formulation to be developed here will therefore seek to 
accommodate a multitude of axisymmetric mean flow velocities that may be envisioned along conventional injector 
faceplates.  These will be seen to influence the chamber’s vorticoacoustic wave oscillations.  In the process, the 
nonlinear interactions that develop between the bulk and unsteady gaseous motions will be explored and shown to 
produce rich structures that we plan to characterize assuming a non-reactive cold flow environment of a simulated 
LRE chamber. 

Thus far, a variety of exact and asymptotic solutions have been developed using mathematical models of the 
vorticoacoustic field arising in simulated solid rocket motors (SRMs) with either cylindrical3,4 or planar 
configurations.5-8  In SRMs, however, the unsteady motion remains primarily dominated by longitudinal oscillations 

T 
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due, in large part, to the presence of distributed sidewall mass addition and high chamber aspect ratios.  In sharp 
contrast, the headwall-driven gaseous injection and the typically low aspect ratios associated with LRE thrust 
chambers lead to a predominantly transverse wave environment.9-11  It is well known, for example, that in most 
LREs, large pressure oscillations appear in a plane that is normal to the chamber axis, thus leading to transverse 
mode instabilities whose reported frequencies closely match the modes predicted by linear chamber acoustics.12,13   

In recent work on the subject, Fischbach, Flandro and Majdalani1 revisit the transverse wave problem in a 
simulated LRE with uniform headwall injection.  However, their chief objective remains focused on understanding 
the mechanism of acoustic streaming rather than the vorticoacoustic wave character itself.  In a follow-up study, 
Haddad and Majdalani2 introduce a higher-order solution of the rotationally traveling wave in a similarly configured 
LRE.  At the outset, formulations are produced for both uniform and bell-shaped injection profiles, with the latter 
constituting a more realistic representation of the mean flow.  Both studies feature a circular-port configuration that 
may be viewed as analogous to the idealized SRM problem with the main difference being in the SRM sidewall 
exchanging roles with the LRE headwall.  In this article, the procedure developed for specific injection patterns will 
be generalized to encompass an arbitrary mean flow profile.14  Moreover, both traveling and standing wave forms 
associated with such motions will be constructed asymptotically and characterized. 

To set the stage, the flowfield developed inside a right-cylindrical chamber having a low aspect ratio and a 
normally injecting headwall will be considered.  According to our idealization, the mean gaseous motion is induced 
by a variable axisymmetric injection pattern.  Due to unavoidable flow fluctuations within the chamber, small-
amplitude acoustic waves are promptly promoted and sustained.  The resulting self-excited waves give rise to a 
complex flow motion that we wish to analyze.  Based on the small-perturbation technique introduced by Chu and 
Kovásznay,15 the conservation equations are recast into two sets of relations, one controlling the mean flow 
behavior, and the other describing the oscillatory motion.  The first-order oscillatory set is then decomposed into a 
pair of acoustic and vortical fields using the Helmholtz decomposition concept.6  These classical techniques are 
therefore leveraged to derive an improved asymptotic approximation of the oscillatory motion in a circular chamber 
in general, and a simulated LRE in particular.  Then using a systematic application of boundary layer theory, a crisp 
mathematical formulation is achieved for the right-traveling vorticoacoustic wave motion associated with a variable 
headwall injection profile.  The resulting solution will be shown to be sufficiently general to permit the recovery of 
previous approximations1,2 as special cases.  Lastly, the effect of a downstream boundary on producing reflected 
waves will be examined along with the solution of the resulting standing wave structure. 

II. Formulation 

A. Geometry 
This work is connected with the stability analysis and wave dynamics within LRE thrust chambers.  In this vein, 

we consider a circular-port chamber in which rapid combustion has already occurred to the extent of justifying the 
use of a non-reactive gaseous mixture as the working fluid.  We proceed by showing in Fig. 1 a schematic of the 
idealized thrust chamber which is simulated as a right-cylindrical chamber that extends vertically from the center 
axis at * 0r   to the sidewall at *r R .  Horizontally, the domain extends from * 0z   to L , where the headwall 

r* R
z*q

r*

qUb

uq’

ur’

L
 

Figure 1.  Chamber geometry and coordinate system showing a generally axisymmetric injection profile.  Included is a
front view depicting the coupled radial and tangential wave motions that constitute the transverse modes. 
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may be viewed as a porous surface across which flow may enter at a velocity ( )bU r .  In this framework,   defines 
the azimuthal coordinate and the transverse direction of unsteady velocity disturbances, u  and ,ru  denote the 
tangential and radial oscillations, respectively.  Given that this study is chiefly concerned with a simulated LRE, the 
aspect ratio of the enclosure at hand is taken to be low, specifically less than or equal to unity, 1L R  . 

B. Normalized System of Equations 
For a solution that may be universally applied to different injection profiles, reliance on a judicious choice of 

dimensionless variables seems essential.  Generally speaking, normalized results lead to more concise 
representations while offering the benefit of reverting back to the original, dimensional variables quite 
straightforwardly.  In this vein, we proceed by normalizing the flow variables according to 

 0

0

*

*

/

/

p p P

  

 




0
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/ ( / )
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t t R a





u u *
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/

/

r r R

z z R





0

0

*
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/

/ ( / )

T T T

a R



  
 (1) 

where reference properties are defined in the Nomenclature.  The normalized equations for a viscous compressible 
fluid, with no body forces acting on it, may be expressed as 

Mass: ( ) 0
t

 
  


u  (2) 

Momentum:   2 21 1
( ) ( )

2 dp
t

  


                

u
u u u u u u  (3) 

Energy: 
2

2

0

1T p
T p T

t t Pr

 


                  
u u  (4) 

State: p T  (5) 

where Pr  and   refer to the Prandtl number and the ratio of specific heats, respectively.  The viscous parameters 
  and d  are given by 

 0 0

0 0

1 4
= ;

3d
aa R Re

 
  


    (6) 

It may be interesting to remark that the bulk viscosity, also known as the dilatational viscosity ,  is taken here at 
the reference conditions as 0.   This parameter stems from the viscous shear term associated with the volumetric-
rate-of-strain, and is routinely set equal to zero when the fluid is incompressible, as predicated by the Stokes 
hypothesis.  Moreover, in the case of a rapid adiabatic disturbance in which friction may be ignored (i.e., in the case 
of an inviscid, fast traveling, acoustic wave disturbance), the isentropic relation may be used instead of the energy 
equation.  When put in dimensionless form, the pressure-density relation becomes 

 p   (7) 

C. Unsteady Disturbance Equations 
After normalization, the first stage in solving Eqs. (2)–(5) is to separate the normalized flow variables in terms of 

a mean flow and an oscillatory component.  This strategy, first introduced and vetted by Chu and Kovásznay,15 has 
been ubiquitously employed in the literature.16,17  Known examples showcasing its importance include the reduction 
of the velocity-potential equation into a simpler, more manageable form and the derivation of the 1-D acoustic wave 
equation.18-20  The normalized flow variables can hence be decomposed using 
 ; ; 1 ; 1 ; 1bM p p T T             u U u =    (8) 

The instantaneous variables in Eq. (8) may be substituted into Eqs. (2)–(5), thus leading to two sets of equations for 
the steady and unsteady fields.5,21  The next step consists of expanding all unsteady variables in terms of the primary 
perturbation parameter,  .  In the process, each fluctuation q  may be written as 

 (1) 2 (2) 3 (3) 4( )q q q q         (9) 

Here q  alludes to a generic flow variable, and   denotes the ratio of the superimposed oscillatory pressure 
amplitude to the traditionally larger mean chamber pressure.  The expanded quantities may be later separated and 
rearranged by orders of the perturbation parameter.  These sets can be solved sequentially for every order of ,  
except for the leading-order set that corresponds to the mean flow profile.  In this study, the steady-state motion is 
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determined by the externally prescribed headwall injection pattern.  As such, the forthcoming analysis focuses on 
the first-order interaction equations that describe the motion of the unsteady field. These are given by 

 
(1)

(1) (1)
bM

t

          
u U  (10) 

  
(1)

(1) (1) (1) (1) 2 (1) 2 (1)1
b dp M

t
 


                     
u

U u U u u    (11) 

 
(1) (1) 2

(1) (1) 2 (1)1
b b

T p
M T M p T

t t Pr

 


   
          

U U  (12) 

 (1) (1) (1)p T    (13) 

D. Headwall Injection Pattern 
As one may infer from Eqs. (10)–(13), the mean flow (U ) exhibits a strong influence on the oscillatory behavior 

in the chamber by controlling the bulk gaseous transport within the chamber.  In practice, the inflow of propellants 
across traditional faceplates remains susceptible to the number, location, orientation, and size of headwall injectors 
along with their corresponding inlet velocities.  Nonetheless, despite the complex injection patterns that may be 
present, a streamtube motion quickly develops, especially for conventional thrust chambers.22  Bearing these factors 
in mind, our analysis will devote itself to simple and axisymmetric representations of the incoming stream. 

Our main procedure unfolds as follows:  To start, the general solution is derived and then examined for four 
dissimilar yet axisymmetric injection configurations.  The first corresponds to a uniform, top-hat, plug flow along 
the chamber length.  The second implements a bell-shaped, half-cosine that has been in some cases named after 
Berman.23  The latter has been frequently used in theoretical studies of propulsive systems with wall injection.  
Examples include, but are not limited to, those by Culick,24 Brown et al.,25 Proudman,26 Beddini,27 Chedevergne, 
Casalis and Féraille,28 Griffond and Casalis,29 Saad and Majdalani30 and Majdalani.31  The third and fourth injection 
profiles are common to the fluid dynamics community and represent laminar and turbulent velocity profiles in 
circular tubes.32  The four representative test cases may be expressed in non-dimensional form using 
Uniform profile: (0) (0) (1)r z  U e e e  (14) 

Berman (bell-shaped) profile: 21
2(0) (0) cos( )r zr   U e e e  (15) 

Laminar profile: 2(0) (0) (1 )r zr   U e e e  (16) 

Turbulent profile: 1/7(0) (0) (1 )r zr   U e e e  (17) 

where all velocities are normalized with respect to the centerline speed at 0.z   
In the above, the mean velocity vector (U ) stands for the arbitrary injection profile.  In all four test cases, U  

appears as a sole function of the normalized radius, with no radial or tangential components.  These assumptions 
enable us to combine Eqs. (14)–(17) into one generic form, namely 
 (0) (0) ( )r zF r  U e e e  (18) 

where ( )F F r  corresponds to 1,  21
2cos( ),r  21 ,r  and 1/7(1 )r  for the uniform, bell-shaped, laminar, and 

turbulent profiles, respectively.  It may be worth mentioning that for 0 1,r   0F  .  This observation will be 
helpful to recall while formulating the upcoming vortical solution. 

E. Flowfield Decomposition 
In comparable studies leading to analytical solutions of wave motions, first-order fluctuations are invariably 

separated into either an acoustic or a vortical field.4,33  Because the acoustic part remains inviscid, it proves 
incapable of satisfying the velocity adherence condition at solid boundaries.  Both physically and mathematically, a 
correction is required, namely, in the form of a vortical wave.  Using a circumflex to denote the pressure-driven 
potential part, and a tilde for the boundary-driven vortical component, the unsteady flow variables may be once 
more partitioned into: 

 (1) (1) (1) (1) (1) ˆˆ ˆ ˆˆ; ; ; ;p p p T T T          u u u   =    (19) 

Substituting Eq. (19) into Eqs. (10)–(13) yields two independent sets of equations that remain coupled by virtue 
of the no-slip requirement at the headwall.6  These are: 
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Acoustic set: 

 
ˆ

ˆ ˆbM
t

 
     


u U  (20) 

  ˆ 1
ˆ ˆˆ bp M

t 
          
u

U u u   (21) 

 
ˆ ˆ1ˆ ˆb b

T p
M T M p

t t




           
U U  (22) 

 ˆ ˆp̂ T    (23) 

 ˆp̂   (24) 

Vortical set: 
 0  u  (25) 

    2 21
b dp M

t
 


                 
u

U u U u u
          (26) 

 
2

21
b b

T p
M T M p T

t t Pr

 


             
U U

    (27) 

 p T     (28) 

F. Boundary Conditions 
The fundamental disparities between acoustic and vortical fields warrant the use of two dissimilar sets of 

boundary conditions.  In the case of the acoustic wave, a closed boundary must be maintained, as usual, along all 
solid surfaces, including the injection site (i.e., at 1,r   0z   and /z L R ).  In the case of the rotational wave, 
the no-slip condition at the headwall must be secured first and foremost, being the counterpart of the sidewall 
boundary in the inverted analog of an axially traveling wave within an elongated porous cylinder.6  In both 
geometric configurations, the no slip condition is secured at the injecting surfaces which can be either the headwall 
or the sidewall of the simulated LRE or SRM, respectively.  Along the non-injecting surface (i.e. sidewall here), slip 
may be permitted in the vortical wave formulation.  At the downstream end of the chamber, /z L R , the vortical 
wave remains bounded and, being sufficiently removed from the headwall, it may be assumed that its rotational 
effects persist no longer.  Naturally, with the attenuation of the unsteady vorticity component, the vorticoacoustic 
wave reduces to its potential form.  A summary of the physical constraints entailed in the resulting model is 
furnished in Table 1. 

III. Solution 
This section describes the boundary layer approach that we follow to reduce the time-dependent vortical system 

into a more manageable set.  The ensuing formulations will be derived from first principles and for arbitrary mean 
flow profiles.  In this vein, the acoustic wave motion will be considered first being primarily responsible for 
generating the unsteady vorticity field. 

A. Acoustic Formulation 
Although Eqs. (20)–(24) consist of an assortment of five equations, they can be systematically reduced to a 

single PDE that represents a modified form of the wave equation.  By subtracting the derivative of the acoustic mass 
conservation from the divergence of the momentum equation, an extended form of the wave equation1 is revealed, 
specifically: 

Table 1.  Boundary conditions for the acoustic and vortical fields 

 Boundary 

 1r   0z   /z L R  

Acoustic field ˆ 0p n  ˆ 0p n  ˆ 0p n  

Vortical field no condition imposed 0r zu u u      bounded 



7 
American Institute of Aeronautics and Astronautics 

 

      
2

2 2
2

ˆ
ˆ ˆˆ ˆb

p
p M p

tt
                 

U u u U  (29) 

Several detailed solutions of Eq. (29) are widely available in the literature.  In what follows, we employ a 
solution that suitably describes the acoustic motion in a simulated LRE, where transverse waves dominate over their 
longitudinal counterparts.  In this case, the complete leading-order acoustic field may be reproduced from 

    ˆ cosmnik t
m mnp e J k r m  (30) 

    ˆ cosmnik t
r m mn

mn

i
u e J k r m

k



   (31) 

    ˆ sinmnik t
m mn

mn

i m
u e J k r m

k r 


  (32) 

 ˆ 0zu   (33) 

where m  and n  are positive integers that refer to the tangential and radial mode numbers, respectively.  In the same 
vein, mnk  and m  designate the radial and tangential wave numbers, and the numerical values of mnk  may be 
extracted from the roots of ( ) 0.mnJ k    These return the transverse wave numbers that may be labelled as:  

 
01 10 11

02 20 22

12 21

3.831 705 97 1.841183 78 5.331 442 77

7.015 586 67 3.054 236 93 9.969 467 82

8.536 316 37 6.70613319 etc.

k k k

k k k

k k

  
   
  

 (34) 

In the interest of clarity, the four parts of Fig. 2 are intended to illustrate the instantaneous pressure distribution 
along with the acoustic velocity vectors in our right-cylindrical chamber using four sequential mode numbers.  
These relate to four zeroes of mJ   listed in Eq. (34).  Everywhere, the pressure contours and velocity vectors 
represent snapshots taken in a polar plane at 0.01 s, ,t z   where red and blue colors denote positive and negative 
acoustic pressures, respectively.  It may be interesting to note the evolution of the nodal lines going from a) to d), 
thus giving rise to double-D and alternating cross patterns that characterize the acoustic modes shapes.  In a) and b), 
the first and second radial modes are featured along with the first tangential mode where alternating double-D 
contours appear either a) once or b) twice, with the second set brushing along the outer periphery.  The 
corresponding velocity nodal lines are shifted at a 90 degree angle.  In c) and d), the second tangential configuration 
is depicted at the first and second radial modes.  The last contour clearly captures the symmetrically alternating 
wave structure in both tangential and radial directions.  Consistently with the first cases considered, the velocity 
nodal lines appear to be at a 45 degree angle with respect to the pressure, thus leading to straight crosses (instead of 
oblique crosses) at 2.m    In comparison to the acoustic pressure distribution displayed in Fig. 2, the nodal lines of 
the vorticoacoustic waves are shifted by a phase angle of / (2 ).m  

B. Vortical Formulation 
Before proceeding with the formulation of the vortical wave structure, it may be useful to clarify the origin of the 

driving mechanisms for the waves in question, while paying particular attention to the reason for the decoupling of 
the incompressible continuity and momentum equations from the remaining members in Eqs. (25)–(28).  To this 
end, we recall that the acoustic waves stem from pressure gradients within the chamber and these remain immune to 
the effects of the no-slip requirement at the boundaries.  They also display no sensitivity to the mean flow when 
evaluated at the leading order in .bM   In contrast, the traveling vortical waves are generated by the acoustic motion 
due to the presence of solid boundaries.  They appear as a necessary correction that depends on the geometry at 
hand, the mean flow, and the acoustic mode shapes.  From this perspective, it may be argued that the vortical 
pressure distribution may be dismissed and this may be attributed to the pressure differential being mainly 
prescribed by the acoustic field.5  The foregoing assumption will be useful while solving for the vortical disturbance.  
However, at this stage, we find it convenient to retain the small vortical pressure wave p  in the momentum 
equation as we put 
 0  u  (35) 

   21
bp M

t



              
u

U u U u
         (36) 

In seeking an ansatz for u , we note that in Eqs. (35)–(36), the rotational velocity disturbance stands as a 
function of time and three spatial variables.  Moreover, it is necessary to choose  , , ,t r zu  in a manner to offset 
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the acoustic motion at the headwall, t .  The time dependence of the vortical field will then match that of the 
acoustic motion in the injection plane.  This can be achieved when the unsteady vortical wave exhibits the form  

  , ,mnik te f r zu     or     , ,mnik t
mn mnik e f r z ik

t


   

u

u
   (37) 

This particular ansatz will be used to secure a closed-form vortical approximation. 

C. Arbitrary Injection Profile 
The transverse wave subject to a uniform mean flow is briefly explored by Fischbach, Flandro and Majdalani1 as 

part of their investigation of the acoustic streaming mechanism in a simulated LRE.  A more in-depth formulation 
that focuses on wave characterization is later furnished wherein detailed solutions for the uniform and bell-shaped 
injection profiles are carefully constructed.2  The present approach will therefore apply a regular perturbation 
expansion to a well-established variant of the conservation equations.  For the case of an arbitrary mean flow, Eqs. 
(35) and (36) may be expanded in scalar notation to produce 

 
1

0r r zuu u u

r r r z



 

   
  

  
 (38) 

 
22 2 2

2
2 2 2 2

1 1 1 1r r r z
mn r b

u uu u u up
ik u M F

z r r r r zz r r
 

  
     

         
        

      (39) 

 
2 22 2

2
2 2 2 2

1 1 1 1 1r r z
mn b

u u u u uu u up
ik u M F

z r r r r r r zr r z r
    

 
    

      
           

         

        (40) 

 
22 2 2

2
2 2 2

1 1 1 1 1z r r z z z
mn z b b r

uu u u u u up
ik u M F M F u

z z r z r z r z r rr r


  
                  

         

        (41) 

Recognizing that the vortical wave is most noticeable near solid surfaces, Eqs. (38)–(41) may be transformed 
using boundary layer theory, with the no-slip boundary condition being enforced at the headwall.  Because the 
vortical wave can grow or decay in the axial direction, it is helpful to rescale the axial variable using a stretched 
inner coordinate of the form 

 
z


  (42) 

This spatial distortion is necessary because the near-wall boundary layer correction cannot be captured with the 
original variable .z   Rescaling the axial coordinate serves a similar purpose to zooming onto the near wall region; 
only then would the inner behavior of the solution be revealed.  The outer inviscid solution remains adequate except 

    

    
Figure 2.  Pressure (upper) and velocity (lower) contours in a polar slice for transverse wave oscillations corresponding
to: a) k11 , b) k12 , c) ,21k  and d) k22 . 

a) d) b) c) 
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in the boundary layer region where viscous forces dominate.  Moreover, being the inverted square root of the 
acoustic Reynolds number, the viscous parameter 1   can be suitably employed as a perturbation parameter.  On 
this note, our subsequent step consists of expanding the vortical variables that appear in Eqs. (38)–(41) with respect 
to the viscous parameter.  This is accomplished by setting  

 (0) (1) 2 (2) 3 (3) 4( )q q q q q              (43) 

The process of collecting terms of the same order in   and rearranging leads to two vortical sets that must be 
solved in succession.  In so doing, caution is to be exercised while handling terms of order bM  .  Because the 
Mach number and viscous parameters can appear at about the same order, their ratio can be of order unity and, 
hence, non-negligible. 
 

1. Leading-Order Solution 
At (1) , Eqs. (38)–(41) render 

 
(0)

0
u








 (44) 

 
(0) 2 (0) (0)

(0)
2

1b r r
mn r

M u u p
ik u F

r  
  

    
 

    (45) 

 
(0) 2 (0) (0)

(0)
2

1b
mn

M u u p
ik u F

r
 

    
  

    
 

    (46) 

 
(0)1

0
p

 






 (47) 

Clearly, Eqs. (44)–(47) appear to be nearly decoupled, with the exception of the vortical pressure term appearing 
on the right-hand side of both the radial and tangential equations.  Solving Eq. (47) yields an axially invariant 

 (0) (0) , ,p p t r   .  At this order, the no-slip condition at the headwall may be viewed as the main driver behind the 
bulk axial propagation of the vortical wave.  The vortical pressure remains immaterial to the wave generated and can 
be set equal to zero.  We therefore take 

 (0) 0p   (48) 

Similarly, solving Eq. (44) leads to an axially invariant (0)u  that must be suppressed in order to satisfy the no-slip 
condition at the headwall.  This is performed by putting 

  (0)
0 , 0u G r     (49) 

Now that (0)p  has been settled, Eqs. (45) and (46) can be collapsed into a single equation.  The general solution 
of the resulting ODE proves to be identical for both velocities.  The differences emerge when applying the boundary 
conditions corresponding to each vortical component.  For example, either radial or tangential equations reduce to 

 
(0) 2 (0)
, ,(0)

, 2
0r rb

mn r

u uM
ik u F  

   
 

   
 

 
  (50) 

and so 

    1 2(0) (0) (0)
, , ,, , , ,X X

r r ru A t r e B t r e 
      (51) 

where the axial constants 1X  and 2X  depend on the injection profile, F , and are thus functions of the radial 
variable, r : 

  
2

1 2 2

4
1 1

2
b mn

b

X
ik

r
F

M

M





 
  
 
 

 (52) 

  
2

2 2 2

4
1 1

2
b mn

b

X
ik

r
F

M

M





 
  
 
 

 (53) 

At this juncture, two physical constraints may be brought to bear: the physicality of the solution in the farfield 
and the no-slip requirement at the headwall.  First, in order to determine which of the axial constants provides a 
physical solution, Eqs. (52) and (53) may be rewritten in such a way to explicitly isolate their real and imaginary 
parts.  We retrieve 
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  
2 4 2 4

1 4 4 4 4

16 161 1 1 1
1 1 1

2 2 2 2 2
b mn mn

b b

X r
M k k

F MM F
i

 


 
      

 




 (54) 

  
2 4 2 4

2 4 4 4 4

16 161 1 1 1
1 1 1

2 2 2 2 2
b mn mn

b b

X r
M k k

FM M F
i

 


 
      

 




 (55) 

Recalling that 0F   in the domain of interest, its presence is immaterial to the sign of 2X ; the latter, having a 
positive real component, can cause the vortical velocities to grow unboundedly for large  .  Therefore,  (0)

, , ,rB r t   
must be suppressed to prevent the unphysical growth of the velocities as     in the farfield.  Equation (51) 
becomes 

   1(0) (0)
, , , , X

r ru A t r e 
    (56) 

Finally, the velocity adherence condition at the headwall ( 0  ) can be applied to each velocity component 
separately. This enables us to fully determine the radial and tangential components, 

    1(0) cosmnik t X
r m mn

mn

i
u e e m J k r

k
 


    (57) 

    1(0) sinmnik t X
m mn

mn

i m
u e e m J k r

k r


 


   (58) 

2. First-Order Solution 
At ( ) , Eqs. (38)–(41) lead to 

 
(1) (0)(0)

(0)1 1r
r

u uu
u

r r r
 

 
 

   
  

   (59) 

 
2 (0)(1) 2 (1) (1)

(1)
2

1b r r
mn r

uM u u p
ik u F

r r


   
  

   
   

    (60) 

 
2 (0)(1) 2 (1) (1)

(1)
2

1 1b
mn

uM u u p
ik u F

r r
 

      
  

    
   

    (61) 

 
(0)(1)

(0)1 b
mn

uMp
ik u F 

   


 
 

   (62) 

Given their origination from a perturbation expansion, Eqs. (59)–(62) mirror the leading-order set.  Their left-
hand side matches their predecessor’s with the exception of being one order higher; their right-hand side accounts 
for the contributions stemming from the leading-order correction.  With no further ado, the known vortical velocities 
and pressure may be substituted into Eqs. (59)–(62) to the extent of transforming the original system into: 

      1C 1C

(1)
2

1 cosmnik t X X
mn m mn m mn

mn

u i
e k J k r e e X J k r m

k
   
 


    


 (63) 

 
(1) 2 (1) (1)

(1)
2

1b r r
mn r

M u u p
ik u F

r  
  

  
 

    (64) 

 
(1) 2 (1) (1)

(1)
2

1b
mn

M u u p
ik u F

r
 

    
  

   
 

    (65) 

 
(1)

0
p








 (66) 

As before, the first-order vortical pressure can be resolved first, thus simplifying the solution of the remaining 
velocities.  Obviously, the integration of Eq. (66) produces an axially invariant first-order pseudo-pressure.  With no 
loss of generality, one may justifiably take 

 (1) 0p   (67) 

Eliminating (1)p  in Eqs. (64) and (65) leads to a homogeneous PDE for the radial and tangential components, 
namely, 
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(1) 2 (1)
, ,(1)

, 2
0r rb

mn r

u uM
ik u  

   
 

  
 

 
  (68) 

A solution to Eq. (68) that imitates that of Eq. (50) may be readily realized.  To ensure boundedness in the domain 
of interest, especially as    , we deduce 

   1(1) (1)
, , , , X

r ru A t r e 
    (69) 

Here too, the no-slip condition must be secured.  However, since the cancellation of the acoustic velocity has been 
accomplished at the leading order, the first-order contribution at the headwall vanishes.  This leaves us with 

  (1) (1)
, ,, , ,0 0r ru t r A     (70) 

and so 

 (1) (1) 0ru u    (71) 

At this juncture, the axial component may be obtained through integration of Eq. (63) with respect to the 
stretched axial coordinate.  This operation yields 

          1 1 1(1) 2 (1)1
1

1 1

cos , ,mnik t X X X
mn m mn m mn

mn

Xi
u e k J k r e e X e J k r m A t r

k X X
  

   


  
    

 
  (72) 

In the above, the headwall boundary condition enables us to identify the integration constant (1)A .  Its backward 
substitution into Eq. (72) leads to the first-order axial velocity, 

         1 1 1(1) 2 1
1

1 1

1 1 cosmnik t X X X
mn m mn m mn

mn

Xi
u e k J k r e e X e J k r m

k X X
  

  


  
     

 
  (73) 

Here 1X   denotes the derivative of 1X  with respect to r . This parameter is heavily dependent on the injection 
profile ( )F r , viz. 

 1
1 3 2 2 2

2

1 4

mn

b mn b

ik rFX
X

r F FM ik M



  




 


 


 (74) 

IV. Results and Discussion 
The analytical approximations obtained heretofore may be compiled into one set of expressions for the 

vorticoacoustic velocity and pressure distributions.  The significance of these solutions and the behavior of their 
corresponding waves will now be discussed.  In the process, the wave behavior associated with each of the mean 
flow profiles will be compared and contrasted. 

In the interest of clarity, a summary of the vorticoacoustic wave components is provided by superimposing both 
potential and rotational contributions.  The resulting unsteady disturbances may be asymptotically presented as: 

     2cos ( , )mnik t
m mn bp e J k r m M     (75) 

     1 2cos 1 ( , )mnik t X
r m mn b

mn

i
u e J k r m e M

k
 


     (76) 

     1 2sin 1 ( , )mnik t X
m mn b

mn

i m
u e J k r m e M

k r


  


     (77) 

         1 1 12 31
1

1 1

cos 1 1 ( )mnik t X X X
z mn m mn m mn

mn

Xi
u e m k J k r e J k r e X e

k X X
     


  

       
 

  (78) 

A. Validation of Generalized Solution 
Before proceeding with the analysis of the physical implications of Eqs. (75)–(78), it may be helpful to entertain 

a limiting process verification.  Having served as the subjects of past investigations,1,2 the uniform and bell-shaped 
injection profiles are chosen as test cases.  The uniform injection case was first investigated by Fischbach, Flandro 
and Majdalani1 and then reaffirmed by Haddad and Majdalani.2  In both studies, the vorticoacoustic waves can be 
written as 

     2cos ( , )mnik t
m mn bp e J k r m M     (79) 
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     1U 2cos 1 ( , )mnik t X
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 


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      1U 2sin 1 ( , )mnik t X
m mn b
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u e J k r m e M

k r


  


     (81) 

     1U 3

1U

cos 1 ( )mnik t Xmn
z m mn

ik
u e m J k r e

X
  


     (82) 

where 1
1U

1 2
2

2(1 1 4 ).b mn bM ik MX      
When comparing Eqs. (79)–(82) to Eqs. (75)–(78), three conclusions may be drawn. Firstly, the total 

vorticoacoustic pressure will coincide with the acoustic pressure, which is common to all cases considered.  It 
remains independent of the injection profile unless higher orders in 2

bM  are sought.  Secondly, the vorticoacoustic 
radial and tangential velocities in Eqs. (80) and (81) will match those of the generalized solution whenever their 
axial parameters concur.  In this context, it can be readily verified that 1UX  is recoverable from 1X  following a 
straightforward substitution of the injection profile F  by its unit value.  Thirdly, the most noticeable difference 
arises in the expression of the axial vorticoacoustic velocity.  Despite visible dissimilarities, it may be shown that 
Eq. (82) will duplicate Eq. (78) when 1X  is replaced by 1UX .  Subsequently, the constant value of 1UX  will lead to 
a vanishing 1UX  , thus restoring the form obtained in previous work. 

Our next step consists of comparing the generalized solution to that of the bell-shaped injection profile.  As 
described by Haddad and Majdalani,2 the vorticoacoustic wave generated by the bell-shaped injection profile may be 
expressed as 

     2cos ( , )mnik t
m mn bp e J k r m M     (83) 
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where 1 2 2 21
C 2

21
21 [1 1 4 sec ( )].b mn bM i rX k M       

Verifying that Eqs. (83)–(86) may be restored from their generic counterparts can be readily accomplished, 
especially that their expressions become identical when 1CX  replaces 1X .  For the case in question, the axial 
parameters coincide when the injection profile F  is substituted by the bell-shaped expression, 21

2cos( )r . 
In addition to the uniform and bell-shaped profiles, two new cases are examined here.  These correspond to the 

classical laminar and turbulent profiles in a cylindrical enclosure.  The combined cases hence provide four different 
chamber scenarios whose properties may be compared.  For the sake of illustration, the plots in Figs. 3–5 are used to 
display the behavior of the radial, tangential and axial disturbances along the chamber axis at decreasing values of 
the inlet Mach number.  To remain consistent with former work on the subject, our comparisons are drawn for 0,t   

0.000647,   and a thrust chamber whose aspect ratio is equal to unity ( exit / 1z L R  ).1,2  To this end, Figs. 3–5 
are used to capture the oscillatory motion at 1/ 2r   and 1

4   for the first tangential and radial modes 
corresponding to 11 5.331k  .  In addition, each of these plots displays the unsteady velocities at two inlet Mach 
numbers of 0.3bM   and 0.003.  

B. Wave Characterization 
As alluded to previously, the expressions for unsteady radial and tangential velocities in Eqs. (76) and (77) are 

nearly identical for all test cases.  This behavior may be observed in the foregoing illustrations. The effect of specific 
mean flow motion is manifested through the axial parameter 1;X  except for this mean flow dissimilarity, the 
approximations obtained in the radial and tangential directions would have concurred identically.  Their spatial 
distributions are therefore expected to behave similarly, with minor shifts that are caused by differences in their 
mean flow speeds, an observation that is confirmed through Figs. 3–5.  For instance, at 0.7r  , the mean flow 
velocity returns a value of unity for the uniform flow and 0.7181, 0.51,  and 0.8420  for the bell-shaped, laminar, 
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and turbulent profiles, respectively.  It may hence be seen that slower downstream propagation of the unsteady 
traveling waves may be attributed to slower injection velocities.  According to Table 2, the fastest injection speed at 

0.7r   belongs to the uniform injection profile and is followed, in decreasing order, by the turbulent, bell-shaped, 
and laminar profiles.  Correspondingly, the individual plots in Fig. 3 show that the radial waves are swept 
downstream at speeds that are commensurate with the headwall injection pattern of the model in question. 

The behavior of the vortical component in the axial direction deserves particular attention.  Recalling that the 
acoustic component of the axial wave is discounted here (assuming a short chamber), the unsteady axial wave, zu , 
becomes confounded with the vortical part, .zu   The latter is needed to compensate for the more dominant 
tangential and radial components and, thereby, ensure that continuity is fully satisfied.  Figure 5 illustrates the 
behavior of zu  for two injection Mach numbers.  In these snapshots, the average unsteady velocity appears to be 
negative in the uniform injection case and positive for the bell-shaped, laminar, and turbulent flow models.  
Furthermore, the absolute value of the velocity remains higher for the laminar and bell-shaped cases.  This behavior 
may be attributed to the speed of the mean flow at 0.7,r   where the bell-shaped and laminar patterns, in 
comparison to the uniform and turbulent motions, possess less kinetic energy for inducing the traveling wave 
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Figure 3.  Unsteady radial velocity at inlet Mach numbers corresponding to a) 0.3  and b) 0.003.  
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Figure 4.  Unsteady tangential velocity at inlet Mach numbers corresponding to a) 0.3  and b) 0.003.  
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Figure 5.  Unsteady axial velocities at inlet Mach numbers corresponding to a) 0.3  and b) 0.003.  
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motion.  At the outset, they are accompanied by a faster spatial attenuation of their wave amplitudes. 
To further confirm this feature, an inspection of the axial parameter 1X  in Eq. (52) shows that, at the centerline, 

the profile function F  for the bell-shaped, laminar, and turbulent cases will consistently yield a value of unity that 
matches the result for the uniform flow case.  Moreover, as we move away toward the sidewall, 0F  .  In close 
proximity of the sidewall, 1X   , having a negative real part.  It may therefore be seen that at the sidewall, Eqs. 
(76)–(78) collapse into  

 20 ( , )r bu M     (87) 

     2sin ( , )mnik t
m mn b

mn

im
u e J k m M

k  


    (88) 

 30 ( )zu     (89) 

Equations (87) and (89) confirm that through the use of a mean flow profile function that vanishes at 1,r   the 
ensuing transverse wave motion can intrinsically satisfy the no-slip requirement, not only at the headwall but at the 
sidewall as well.  This is true of the dominant component of the wave, ,ru  and of zu  as well.  As for the 
contribution of ,u  its value at the sidewall remains identical to that of the acoustic component and this may be 
attributed to the vortical contribution in the tangential direction becoming vanishingly small at 1.r   

C. Penetration Number and Rotational Layer Thickness 
Figures 3–5 illustrate the dependence of the wave’s boundary layer thickness on the injection Mach number.  It 

is apparent that viscous forces dominate over inertial forces as the injection Mach number is reduced.  Conversely, 
when the injection Mach number is successively augmented, it may be seen that the rotational boundary layer 
becomes more appreciably blown off the headwall.34  Along similar lines, the slower decay of the wave due to a 
higher Mach number results in a larger propagation wavelength as measured by its peak-to-peak value. 

Physically, the behavior of the propagation wavelength may be attributed to the wave’s Strouhal number, or 
dimensionless frequency, / .mn bS k M   A decrement in the injection Mach number and its corresponding 
increment in the Strouhal number lead to a larger number of reversals per unit time.  Furthermore, the increased 
frequency results in a higher interaction rate between fluid particles, and it is this increased friction between shear 
layers that leads to a more rapid attenuation of the wave amplitude. 

Mathematically, the same behavior may be deduced by rewriting the axial decay term 1X  of Eq. (52) in terms of 
the Strouhal number and another dimensionless parameter.  On this note, a two-term Maclaurin series approximation 
of 1X  is helpful to capture the amplitude (real) and oscillatory (imaginary) components of the wave.  These are 
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where the effective penetration number pS  emerges in the form 
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This parameter played a key role in the characterization of the boundary layer thickness of the longitudinal 
vorticoacoustic wave in a simulated SRM.21  Note that an increase in pS  leads to a deeper penetration of the wave.  
From a theoretical standpoint, the penetration number gauges the relative intensity of two basic forces: unsteady 
inertia and viscous diffusion of the (comparable) radial and tangential velocities in the axial direction.  For the radial 
and tangential velocities, pS  may be viewed as the ratio of 

Table 2.  Axial speeds at r = 0.7  for the four representative headwall injection profiles 

Injection profile Expression Speed at r = 0.7  Speed ranking 

Uniform 1 1 1 

Bell-shaped 21
2cos( )r  0.7181 3 

Laminar 21 r 0.51 4 

Turbulent 1/7(1 )r 0.8420 2 
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To showcase the significance of these dimensionless groupings, the wave expressions may be recast using the 
Strouhal and penetration numbers.  At the outset, the (real) magnitudes of the waves in Eqs. (76)–(78) become 
simply dependent on 
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 (93) 
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and 
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A straightforward inspection of Eqs. (93) and (94) confirms that, at the sidewall, the radial component vanishes 
while the tangential component scales with ( ).m mnJ k   Naturally, these observations are well consistent with the 
asymptotic behavior of the waves at the boundaries.  Along similar lines, two terms in Eq. (95) ensure the 
cancellation of the axial component at the sidewall.  Examining the three terms between braces further reveals that 
the vanishing 2F  multiplier along with the limiting value of ( ) /m mnJ k r F  as 1r   ensure the satisfaction of the 
no-slip boundary condition at the sidewall. 

To more effectively characterize the spread of unsteady vorticity in the chamber, the rotational boundary layer 
may be deduced from Eqs. (93) and (94).  The penetration of rotational elements is defined as the distance from the 
injecting boundary to the point where the contribution of the vortical wave becomes negligible, a condition that is 
traditionally taken at 1% of the acoustic wave.34  Because the axial component of the potential field vanishes in the 
farfield, the penetration depth may be extracted for the radial and tangential components by putting: 

 2
0.01p F

z

Se 


   (96) 
where   corresponds to 1%  and pz  denotes the axial thickness of the rotational boundary layer.  Rearranging Eq. 
(96) renders a closed-form expression for pz , namely, 
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Figure 6 correlates the thickness of the vorticoacoustic boundary layer to the injection Mach number and viscous 
parameter.  In conjunction with the expression obtained in Eq. (97), Fig. 6 shows that the boundary layer thickens 
for large injection Mach numbers, with the potential of exceeding the length of the chamber.  When this situation 
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Figure 6.  Sensitivity of the penetration depth to variations in blowing speed and viscosity shown at a) constant
 = 0.000647  and b) bM = 0.03  using the bell-shaped, laminar, turbulent, and uniform injection profiles. 
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occurs, the linear oscillations will have no time to depreciate before exiting the chamber; the latter would be entirely 
filled with high amplitude transverse waves.  On the other hand, in the case of small injection Mach numbers, the 
onset of transverse oscillations will remain almost exclusively limited to the vicinity of the injector zone.  Rotational 
effects will fade elsewhere. 

Based on 2
pz F , the dependence on the injection pattern is apparent in the expression of the penetration depth. 

In the bell-shaped, laminar, and turbulent cases, the boundary layer thickness reaches its peak value at the centerline, 
where disturbances are swept into the chamber with the largest headwall velocity, acting here as a tailwind.  
However, the thickness of this region depreciates precipitously down to zero at the sidewall where the mean flow is 
nil.  This behavior cannot be mimicked by the uniform profile for which the penetration depth remains constant 
throughout the chamber, a result that may not be entirely physical. 

Figure 7a showcases the dependence of py  on the penetration number and axial chamber position in the SRM 
case.  Figures 7b, 7c and 7d illustrate a similar dependence of pz  in the LRE case, where the effects of the different 
injection mechanisms are encapsulated.  In SRMs, particles injected radially at the sidewall must turn before 
merging in the longitudinal direction.  This causes the penetration depth to increase in the direction along which 
unsteady vorticity is swept (downstream) by virtue of the mean flow.  Conversely, in LRE thrust chambers, injection 
takes place at the headwall and remains unaffected by the downstream convection of unsteady vorticity.  The 
thickness of the rotational boundary layer will therefore depend on the speed of injection. Throughout the chamber, 
a linear correlation, given by Eq. (97), prescribes the depth of penetration and the penetration number.  Unlike the 
axially dominated wave problem for which the wall-normal depth of penetration py  reaches a maximum inviscid 
limit as pS   , the axial depth of penetration, ,pz  continues to grow linearly with pS  up to the point where bM  
would have exceeded the upper injection threshold of the model  i.e. 0.3 .bM   

D. Wave Properties 
In addition to the penetration depth, three properties will be investigated to complete the characterization of the 

vorticoacoustic wave behavior.  These consist of the spatial wavelength,  , the unsteady velocity overshoot factor, 
OF , and its spatial locus, OSz .  Given that the radial and tangential components have similar expressions, the 
following analysis is performed using the radial component only.  Nonetheless, the forthcoming procedure will be 
equally applicable to both directional waves. 
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Figure 7.  Penetration depths of vortical waves corresponding to a) longitudinal oscillations in long SRM configurations34

versus transverse waves in short LRE chambers using b) bell-shaped, c) laminar, and d) turbulent injection profiles. 
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1. Spatial Wavelength 
The spatial wavelength, ,w  denotes the distance traveled by a wave during one period.  It is also referred to as 

the distance between two consecutive peaks.  To calculate ,w  the wave propagation speed in the axial direction 
must be determined.  To this end, the radial component of the vortical wave in Eq. (76) can be rewritten as 

  , , expr mn

S
u G r z i z k t

F
        

  (98) 

where G  represents the amplitude of the wave.  With wave propagation in the axial direction being our primary 
concern, differentiation of the axial component will be essential to retrieve the corresponding velocity.  The 
argument of Eq. (98) returns 
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Knowing that the dimensionless period of oscillation is 2 / mnk  , the spatial wavelength becomes 
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or, in dimensional form, 
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The dimensionless result is analogous to that obtained in the SRM configuration wherein longitudinal 
oscillations are characterized by 2 / ,w V S   with V  representing the wall-normal injection velocity.4,5  
Consistent with classic theory of periodic flows, the velocity of propagation appears to be solely dependent on the 
medium and conditions, i.e. the injection Mach number and the radial distance from the centerline.  However, w  
may be affected by the transverse mode number, which is embedded in the Strouhal number.  Higher modes reduce 
the peak-to-peak distance between oscillations, as one would expect.  Another important characteristic of the 
generalized model lies in the connection between all properties and the injection profile :F  this function controls 
the radial distribution of the mean flow velocity.  Accordingly, oscillations in the vicinity of the sidewall propagate 
at a much slower rate than those located near the chamber core. 

2. Unsteady Velocity Overshoot 
The emergence of the Strouhal number in the argument of the vortical solution serves to control the phase 

difference between the strictly acoustic and vortical waves.  Given their phase relations, the two waves will 
periodically couple, when they happen to occur at nearly the same phase, thus resulting in an overshoot of the total 
unsteady velocity.  This amplification can reach, in many cases, twice the acoustic wave amplitude.  A similar 
mechanism was first reported by Richardson35 who realized that maximum velocities in reciprocating flows 
occurred in the vicinity of the sidewall, rather than the centerline of his resonator tubes.  In order to identify the 
location of Richarson’s overshoot, Eq. (76) must be rewritten in term of the Strouhal and penetration numbers, 
specifically 
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Knowing that the overshoot takes place when both waves merge in phase, an equivalent mathematical condition may 
be written as  OSexp / 1i zS F    in Eq. (98).  The locus of the first and most pronounced overshoot can therefore 
be deduced asymptotically as 

 OS

F
z

S


  (104) 

In view of our underlying normalization, the induced overshoot factor can be determined by superimposing the axial 
contribution of the vortical correction and that of the acoustic wave.  In this vein, the overshoot factor OF  may be 
extracted from Eq. (103) by evaluating the amplitude of the vorticoacoustic velocity at OSz z  directly from Eq. 
(104): 
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Figure 8a quantifies the overshoot factor and its locus for different control parameters: the Strouhal number, the 
penetration number, and the distance from the centerline.  Figure 8a shows that the strength of the overshoot 
decreases as we move away from the chamber centerline and increases at higher values of 2

0( / )p b mnS S U   , 
i.e. with larger injection velocities or smaller frequencies.  However, the locus of the overshoot depends solely on 
the Strouhal number and the distance from the centerline.  For all physical values of the Strouhal number, the 
overshoot takes place in the neighborhood of the headwall, in a segment that stretches over less than 25 percent of 
the chamber radius. 

Recalling that faceplate injectors protrude inwardly, it is clear that they can be subject to oscillations reaching 
twice the strength of the predicted acoustic waves, even in the linear range.  Additionally, it appears that the distance 
from the centerline affects the overshoot and its properties.  The slower injection rate near the sidewalls leads to a 
smaller overshoot factor.  As one may infer from Eq. (104) and Fig. 8b, OSz  decreases while moving away from the 
centerline to the extent of vanishing along the sidewall.  This behavior shifts the line of maximum wave amplitude 
closer to the headwall as 1r  .  In the case of a liquid rocket engine, these spatial excursions of peak transverse 
amplitudes serve to amplify shearing stresses on the injectors, where coupling between modes, reflections, and 
standing wave motion can lead to further steepening and shock-like behavior. 

V. Standing Wave Formulation 

A. Traveling vs. Standing Wave Basics 
For the reader’s convenience, we begin this section with a basic overview.  It is well known, for example, that a 

traveling wave exhibits nodes and extrema that move in the direction of propagation.36  In elemental form, 
sinusoidal planar waves traveling in the positive and negative z -directions can be written as 

Right-traveling:    , sinu z t A k z t   (106) 

Left-traveling:    , sinu z t A k z t    (107) 

where A  denotes their amplitude. 
On the other hand, a standing wave is produced when two waves with the same frequency, wavelength, and 

amplitude merge together while traveling in opposite directions.  The resulting nodes and extrema become stationary 
within the medium, hence the term standing.36  The resulting wave can be synthesized from the sum of the two 
traveling waves, 

          , sin sin 2 sin cosSu z t A k z t A k z t A t k z          (108) 

The linear superposition of traveling or standing waves forms wave packets.  These groups of waves are 
characterized by a group velocity that represents the propagation speed of the packet in a medium.  The group 
velocity is defined as: 
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Figure 8.  Effects of radial distance on a) the wave overshoot and b) its locus for the bell-shaped, laminar, and turbulent 
cases. 
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where   denotes the wave’s angular frequency and k , the angular wavenumber.  The propagation velocity of a 
single wave is known as ‘phase velocity.’  In addition to linear superposition, it is possible to superimpose different 
waves nonlinearly. 

B. Standing Vorticoacoustic Wave 
As per Eq. (98), our vortical wave model leads to a right-traveling wave.  However, when the flow is choked at 

the nozzle, the chamber’s exit section may act as a solid boundary that causes the wave to rebound.37  The left-
traveling reflected wave exhibits the form  

  , , expr mnu G r z i z k
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The summation of Eqs. (98) and (110) produces the standing radial wave representation: 
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In our problem, this expression becomes 

     2

2
cos cos expmn

p

ik tr
r m mn

mn

S

F S F

A i z
u e J k r m z

k





          
  (112) 

where rA  is the integration constant first introduced in Eq. (51).  To ensure the satisfaction of the no-slip 
requirement at the headwall, ( 0) 0u z   , it can be shown that rA  must be set equal to 1 / 2.   The ensuing 
standing wave in the radial direction turns into 
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and, in the tangential direction, into 
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Figure 9.  Vorticoacoustic radial velocity for standing waves at inlet Mach numbers corresponding to a) 0.3 and b) 0.003. 
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Figure 10.  Vorticoacoustic tangential velocity for standing waves at inlet Mach numbers corresponding to a) 0.3 and b) 
0.003. 
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It should be noted that the axial velocity fluctuation is not presented above because: a) it represents a negligible 
contribution, being an order smaller than ru  or u , and b) it leads to a rather long and laborious expression relative 
to Eqs. (113) and (114). 

Figure 10 displays the mode shapes of the radial and tangential disturbances corresponding to the standing wave 
structure along the axis of the chamber at varying times.  To be consistent with the traveling wave plots, results are 
depicted for  1

40.000647, 1 / 2, , 0.003,0.3 ,br M       and the first tangential/radial modes using 11.k   
The graphs in Fig. 10 span over half a cycle, thus illustrating the behavior of the standing wave with respect to time.  
The most striking outcome may be connected with the maximum value of the standing wave when compared to its 
traveling counterpart.  For all cases considered, the standing waves exhibit peaks that are twice as large as those of 
their traveling wave components.  This magnification points to the importance of accounting for the reflected wave 
contributions in a simulated LRE enclosure. 

VI. Conclusions 
In our efforts to mimic the cold flow environment in a simple liquid rocket engine, asymptotic expansion tools 

are used to capture small-to-moderate amplitude oscillations that are dominated by their transverse motion in a short 
circular cylinder.  A generalized formulation is advanced and tested for uniform, bell-shaped, laminar, and turbulent 
injection profiles at the chamber headwall.  After decomposing the unsteady wave into potential and rotational 
fields, the latter is resolved using a boundary layer formulation that relies on a small viscous parameter,  .  This 
parameter corresponds to the square root of the inverted acoustic Reynolds number based on viscosity and the speed 
of sound.  At the outset, several fundamental flow features are unraveled including the radial, tangential, and axial 
velocities of the time-dependent vortical field.  The pseudo-pressure associated with the rotational motion is also 
determined rigorously and shown to be immaterial to the present analysis. 

Our generic solution is verified by comparing its results to those obtained previously assuming uniform1 or bell-
shaped injection configurations.2  These special cases are recovered identically.  The uniform injection model, 
however, leads to a transverse wave solution that permits slippage along the sidewall.  An improved formulation is 
herein produced that gives rise to a more suitable representation of the oscillatory field.  The latter is shown to 
satisfy the no-slip requirement at both headwall and chamber sidewall for the radial and axial components.  It is 
hoped that this mathematical strategy can be further refined and extended to target higher-order models of three-
dimensional traveling and standing waves in various geometric settings. 

Moreover, two parameters, the penetration and Strouhal numbers, are identified as controlling factors of the 
wave’s axial propagation.  The latter’s dependence on these keystone parameters is ascertained to be nearly identical 
to its counterpart arising in the longitudinal wave analog encountered in the treatment of unsteady SRM flows.5,6  
The advent of these parameters enables the full characterization of the penetration depth in the direction normal to 
the injecting surface.  With the vorticoacoustic solution in hand, fundamental wave propagation properties are 
carefully extracted and discussed.  These include the depth of penetration and Richardson’s overshoot factor 
associated with transverse waves.  These are found to be strongly dependent on the Strouhal and penetration 
numbers. 

Lastly, the locus of peak wave amplitudes, where Richardson’s overshoot occurs, is determined to be within a 
quarter radius, thus placing the maximum shearing stresses resulting from transverse wave oscillations in the close 
vicinity of the headwall.  Despite the linear restrictions of this work, our findings indicate that the merging of 
vortical and acoustic wave modes doubles the amplitude of the acoustic wave in the region of protruding injectors, 
for a large range of frequencies and injection Mach numbers.  Moreover, by considering the presence of wave 
reflections, the structure of the emerging standing waves is shown to exhibit amplitudes that are twice as large as 
their traveling wave constituents.  We conclude that, irrespective of whether the chamber is dominated by traveling 
or standing wave motions, and notwithstanding the possibility of nonlinear mode coupling and its wave steepening 
tendency, a doubling of acoustic velocity amplitudes may be expected in the headwall region.  These observations 
may be viewed as crucially relevant to our understanding of wave propagation in thrust chambers and to the load 
ratings and reciprocating stresses that such oscillatory motions stand to generate. 
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