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Inversion of the Fundamental
Thermodynamic Equations for
Isentropic Nozzle Flow Analysis
The isentropic flow equations relating the thermodynamic pressures, temperatures, and
densities to their stagnation properties are solved in terms of the area expansion and spe-
cific heat ratios. These fundamental thermofluid relations are inverted asymptotically and
presented to arbitrary order. Both subsonic and supersonic branches of the possible solu-
tions are systematically identified and exacted. Furthermore, for each branch of solu-
tions, two types of recursive approximations are provided: a property-specific
formulation and a more general, universal representation that encompasses all three
properties under consideration. In the case of the subsonic branch, the asymptotic series
expansion is shown to be recoverable from Bürmann’s theorem of classical analysis. Bos-
ley’s technique is then applied to verify the theoretical truncation order in each approxi-
mation. The final expressions enable us to estimate the pressure, temperature, and
density for arbitrary area expansion and specific heat ratios with no intermediate Mach
number calculation or iteration. The analytical framework is described in sufficient detail
to facilitate its portability to other nonlinear and highly transcendental relations where
closed-form solutions may be desirable. [DOI: 10.1115/1.4003963]

1 Introduction

One-dimensional nozzle theory employs a set of isentropic flow
equations that have proven so useful over the years that they con-
tinue to receive attention in a variety of technological applica-
tions. Their surprising simplicity is perhaps responsible for
affording them wide acceptance in both academic and industrial
circles, particularly, in the communities that are concerned with
propulsion and power generation equipment. From gas turbines to
rockets, several fundamental thermodynamic relations stand at the
foundation of standard performance measures and design criteria
[1]. Gas turbine efficiencies, ideal thrust coefficients, and rocket
specific impulses are some of the examples that may be cited in
this context. The utility of such relations extends beyond the mun-
dane performance prediction of a propulsive system to encompass
sizing, shape selection, loss estimation, and product optimization.
Applications abound and one may list chemical rockets, ramjets,
scramjets, afterburners, and a variety of gas turbine engine com-
ponents through which gases are expanded.

By assuming a chemically nonreactive, calorically perfect ideal
gas, the basic thermodynamic principles give rise to a well-estab-
lished set of mathematical equations that relate pressures, temper-
atures, densities, local Mach numbers, ratios of specific heat, and
the critically important area expansion ratio. These relations are
highly nonlinear and transcendental to the extent of requiring nu-
merical root finding. It is for this reason, in part, that compressible
flow tables have for decades graced the appendices of textbooks
on the subject [2–4]. These tables often present discrete numerical
solutions over a finite range of operating parameters. Interpolation
is subsequently required to obtain the desired outcome.

In this study, an asymptotic alternative is pursued. In lieu of nu-
merical root solving, closed form expressions are derived for each
of the principal variables. The work complements a recent study
in which Stodola’s area-Mach number relation [5] was tacitly
inverted under both subsonic and supersonic conditions [6]. The
corresponding expression has since been integrated into Rocflu, a

compressible Navier–Stokes solver module that complements a
massively parallel code referred to as ROCSTAR [7]. The latter is a
rocket simulation program developed at the University of Illinois
by the Center for Simulation of Advanced Rockets (CSAR) (e.g.,
Najjar et al. [8]).

In practical applications, Thakre and Yang [9] and Zhang et al.
[10] have used the relations in question to verify their codes on
nozzle erosion. Similarly, Haselbacher et al. [11] have used quasi-
one-dimensional models in establishing reduced-order models and
test cases for their slow-time acceleration study and to estimate rel-
evant time scales. While on this subject, it may be helpful to
remark that the usefulness of the analytical approximations that we
seek does not stand so much in expediting root solving as it does in
securing reliable expressions for each specific solution. Besides
their academic interest, the resulting expressions may be employed
in next generation codes in such a way to promote accurate and
swift convergence to the desired supersonic or subsonic branches
of solution. Lastly, the mathematical strategies that we describe
may find utility in the treatment of other, multivalued functions,
especially those that may prove intractable when pursued with
classical methods.

The paper is organized as follows. First, the pressure, tempera-
ture and density relations are derived as function of the nozzle
area and gas compression ratios. A uniquely developed universal
form is also advanced for the purpose of providing a direct repre-
sentation of all three properties using a single expression. Then,
one-by-one, the resulting correlations are expanded and solved
asymptotically. The resulting series expansions are generalized to
arbitrary order before undergoing a strict numerical verification.
This step is accompanied by a rigorous order validation process
that leads to an explicit representation of the error accrued in each
approximation. The theoretical error is further confirmed by
means of Bosley’s graphical error assessment technique [12]. For
the particular case of the subsonic branch, the solution is repli-
cated using Bürmann’s theorem of classical analysis [13].

2 Fundamental Isentropic Flow Relations

In compressible thermofluid applications, one-dimensional noz-
zle flow equations have often been reported to predict performance
within a few percent of actual values. The conditions leading to
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their inception assume a homogeneous gas with inviscid, adiabatic
flow conditions and uniform properties at all cross-sections. Under
these auspices, one may write Stodola’s area-Mach number rela-
tion [5] as
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ðc� 1ÞM2
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As usual, pressures, temperatures, and densities may be calculated
at any cross-section by first solving for the appropriate Mach num-
ber from Eq. (1), and then substituting the result into any of the
three isentropic relations:
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where overbars denote dimensional thermodynamic quantities and
the subscript “c” refers to chamber conditions. Because the veloc-
ities are relatively low in this region, chamber conditions may be
exchanged for stagnation values. To circumvent the last step, one
may extract the Mach number directly from Eq. (2) and write
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At this point, substitution of Eq. (3) into Eq. (1) yields a set of
three ideal expressions:
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In this work, these relations will be considered one-by-one and
inverted asymptotically. Our objective will be to recast each ther-
mofluid property as a function of the local area ratio, thus averting
the Mach number calculation and leading, instead, to closed-form
approximations. The asymptotic inversion will be carried out
under both subsonic and supersonic expansion states to provide a
description of the behavior in a supersonic nozzle, such as the one
depicted in Fig. 1.

3 Solutions

As a basis for solving Eqs. (4)–(6) we consider the size of the area
expansion ratio and realize that it remains small. This prompts the
introduction of eðzÞ � A2

t =A2ðzÞ, the reciprocal of the left-hand-side
term, where z represents the local axial coordinate. As usual, the ratio
of specific heats c is taken to be a constant that varies between 1 and
1.67. In rocket motors, c varies between 1.1 and 1.4, although a value
of 1.12 may be representative of metalized propellant mixtures. For
example, the reusable shuttle rocket motor (RSRM) exhibits a mean
chamber pressure of �pc ¼ 6:28 MPa, a ratio of specific heats of
c ¼ 1:17, and a nozzle expansion ratio yielding an exit value of
ee ¼ 0:017. In many propulsive applications, the squared area ratio
ee varies between 0.1 and 0.001, although values as low as 6� 10�6

have been reported for high altitude nozzle applications (cf. Sutton
[1]). Throughout a converging-diverging area duct, e may hence vary
from a value near unity in the proximity of the throat section, to a
small value in highly expanded nozzle sections.

Our principal variables consist of the three dimensionless ratios
that are extensively described and tabulated in textbooks on the
subject. These are

pðzÞ ¼ �pðzÞ
�pc

; TðzÞ ¼ TðzÞ
Tc

; qðzÞ ¼ �qðzÞ
�qc

(7)

where �pc, Tc, and �qc represent the total stagnation properties. It
should be noted that in standard tables and charts, the reciprocals of
Eq. (7) are furnished instead. The present use of fractions to represent
local over stagnation properties stems from a strictly perturbative
aspect because the choice of a small fraction will secure faster con-
verging asymptotic series expansions for transonic flows. This may
be verified in the upcoming analysis that will be pursued to obtain
the appropriate subsonic (s) or supersonic (S) solutions.

3.1 Property Specific Subsonic Solution. For the subsonic
roots, a regular perturbation approximation may be applied with e
as the baseline parameter. Each quantity is then expanded into

pðe; c; nÞ ¼ p0 þ ep1 þ e2p2 þ � � � þ enpn þ Oðenþ1Þ;
Tðe; c; nÞ ¼ T0 þ eT1 þ e2T2 þ � � � þ enTn þ Oðenþ1Þ;
qðe; c; nÞ ¼ q0 þ eq1 þ e2q2 þ � � � þ enqn þ Oðenþ1Þ

8><
>: (8)

Before linearization, one may introduce the gas compression
related constant

n � c� 1

cþ 1

2

cþ 1

� �2= c�1ð Þ
(9)

At the outset, Eqs. (4)–(6) may be rearranged and expressed as

en ¼
p2=c � pðcþ1Þ=c

T2=ðc�1Þ � Tðcþ1Þ=ðc�1Þ

q2 � qcþ1

8><
>: ¼ sa � sb; a ¼

2=c

2=ðc� 1Þ
2

8><
>:

b ¼
ðcþ 1Þ=c
ðcþ 1Þ=ðc� 1Þ
ðcþ 1Þ

8><
>: (10)

where s ¼ ðp; T; qÞ represents any of the three thermodynamic
quantities. By inserting the three-pronged system forming Eq. (8)
into Eq. (10), terms of the same order may expanded and segre-
gated. In the case of the dimensionless pressure ratio, one obtains

pa
0 � pb

0 þ ap1pa�1
0 � bp1pb�1

0 � n
� �

eþ Oðe2Þ ¼ 0; (11)Fig. 1 Variable area duct showing relevant thermodynamic
properties and physical stations
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and, more collectively, a generic relation of the type

sa
0 � sb

0 þ as1sa�1
0 � bs1sb�1

0 � n
� �

eþ Oðe2Þ ¼ 0 (12)

This expansion may be carried up to the fifth order where the as-
ymptotic solution becomes accurate over a substantially wide
range of area ratios. By retaining additional terms, one can solve
for the sequential corrections. At length, one finds

p ¼ 1� 22= c�1ð Þc 1þ cð Þ 1þcð Þ= 1�cð Þe

� 3c2 5�cð Þ= c�1ð Þ 1þ cð Þ2 1þcð Þ= 1�cð Þe2 þ Oðe3Þ (13)

T ¼ 1þ 22= c�1ð Þ 1� cð Þ 1þ cð Þ 1þcð Þ= 1�cð Þe

þ 2 3þcð Þ= 1�cð Þ 1� cð Þ 1þ cð Þ2 cþ1ð Þ= 1�cð Þe2 þ O e3
	 


(14)

q ¼ 1� 22= 1�cð Þ 1þ cð Þ 1þcð Þ= 1�cð Þe

� 2 5�cð Þ= c�1ð Þ 2þ cð Þ 1þ cð Þ2 cþ1ð Þ= 1�cð Þe2 þ Oðe3Þ (15)

Upon further scrutiny, a recursive relation may be obtained from
which all subsonic roots may be retrieved to any level of preci-
sion. Further detail concerning this arbitrarily accurate formula-
tion may be found in Appendix A.

For those unfamiliar with perturbation theory or asymptotic
approximation methods, the steps leading to Eqs. (13)–(15) may

appear somewhat daunting. However, the chief benefit of the ana-
lytical results stands in their final expressions. Once these rela-
tions are obtained, they can be straightforwardly evaluated for any
value of e and c. As for the perturbative approach itself, it may be
revisited on occasion to retain familiarity with asymptotic strat-
egies or to gain insight in the treatment of other problems with
similar characteristics.

3.2 Universal Subsonic Solution. An alternate, more porta-
ble, expansion for the subsonic root may be obtained by recogniz-
ing that the key ratio, b=a ¼ ðcþ 1Þ=2, remains constant for the
three cases at hand; at the outset, Eq. (10) may be collapsed into

en ¼
p2=c � pðcþ1Þ=c

T2=ðc�1Þ � Tðcþ1Þ=ðc�1Þ

q2 � qcþ1

8><
>: ¼ x� x

ðcþ1Þ=2

; where

x � sa ¼
p2=c

T2=ðc�1Þ

q2

8><
>: (16)

Thus using regular perturbations, a universal solution for x may
be constructed with the added benefit of being simpler to solve,
both numerically and asymptotically, while remaining equally ap-
plicable to all three thermofluid quantities. This property inde-
pendent expression collapses into

xðe; c; 4Þ ¼ 1� 2 cþ1ð Þ= 1�cð Þ 1þ cð Þ cþ1ð Þ= 1�cð Þe� 24= c�1ð Þ 1þ cð Þ 3þcð Þ= 1�cð Þe2 � 1
3
2 5þcð Þ= c�1ð Þ 3þ cð Þ 1þ cð Þ2 cþ1ð Þ= 1�cð Þe3

�2 9�cð Þ= c�1ð Þ 2þ cð Þ 5þ cð Þ 1þ cð Þ
5þ3cð Þ= 1�cð Þ

e4 þ Oðe5Þ

(
(17)

Furthermore, a recursive expression for x is presented in Appendix
A to any desired level of precision.

3.3 Solution via Classical Analysis. It is interesting to note
that the same solution can be arrived at via classical analysis.
Accordingly, an expression for x may be obtained in terms of e by
utilizing Bürmann’s theorem. The first requirement for this theo-
rem is the identification of an analytic function / in a closed
region [13]. In our case, we take

e ¼ /ðxÞ ¼ 1

n
x� xðcþ1Þ=2
h i

(18)

with the closed region for /ðxÞ being the subsonic branch in
which the solution varies over the interval 0 � x � 1. Because the
function is analytic over this interval, a convenient anchor point
may be chosen at x ¼ 1, where

/ð1Þ ¼ 0 (19)

Expansion about this point may be immediately carried out using
a Taylor series expansion of the form

/ðxÞ ¼ /0ð1Þðx� 1Þ þ /00ð1Þ
2!
ðx� 1Þ2 þ � � � (20)

It is then possible to retrieve

ðx� 1Þ ¼ 1

/0ð1Þ
/ðxÞ � /00ð1Þ

2 /0ð1Þ½ �/ðxÞ
2 þ � � � (21)

Equation (21) is defined as the reversion of a standard Taylor se-
ries expansion about x ¼ 1 [13]. The above extraction is sufficient

to produce x in terms of e: For a more general case, it may be
noted that, in Eq. (21), x appears as an analytic function of / so
long as ðx� 1Þ remains small. It follows that if some arbitrary
f ðxÞ is analytic near x ¼ 1; it will also be an analytic function of
/ for sufficiently small values of ðx� 1Þ: Such an expansion will
be reproducible from

f ðxÞ ¼ f ð1Þ þ a1/ðxÞ þ a2/ðxÞ2 þ � � � (22)

It may hence be seen that Bürmann’s theorem can provide the
coefficients for Eq. (22). For the present study, based on Eq. (18),
f ðxÞ may be taken simply as x: Furthermore, one may introduce
wðxÞ as a ratio of f ðxÞ; /ðxÞ; and their values about the expansion
point, x ¼ 1: This quantity may be formulated as

wðxÞ ¼ f ðxÞ � f ð1Þ
/ðxÞ � /ð1Þ ¼

x� 1

/ðxÞ (23)

The expansion of x may then be rendered directly from Bür-
mann’s theorem using

x ¼ 1þ
Xn�1

m¼1

em

m!

dm�1

dxm�1
w xð Þ½ �m

� �
þ Rn (24)

where Rn represents the remainder through which the truncation
error may be inferred. According to Bürmann’s theorem, the
derivatives in Eq. (24) are evaluated as x! 1: When finalized,
the results are found to be term-by-term identical to the expression
in Eq. (17) obtained using regular perturbation theory. As for the
degree of difficulty in evaluating Eq. (24), it may be useful to
remark that while the summation part entails the calculation of a
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derivative, this operation is only carried out while constructing an
expression for the universal thermodynamic variable to a desired
level of precision. Once the algebraic form of the universal vari-
able is identified, no additional differentiation will be required.

3.4 Subsonic Error Verification. To illustrate the accuracy
entailed in the above-mentioned solutions, the asymptotic results
derived from the universal approximation are compared to their
numerical counterparts in Fig. 2 at c ¼ 1:2: Graphically, it can be
seen that the error remains tolerable up to an area ratio approach-
ing unity. It can also be seen that the number of terms needed to
achieve a desired level of precision is strongly dependent on the
area ratio in question. To closely examine the behavior of the as-
ymptotic error, the absolute and relative errors at order n may be
computed viz.

En e; c; sð Þ ¼ sN � sðe; c; nÞj j and en e; c; sð Þ ¼ sN � sðe; c; nÞ
sN












(25)

where sN denotes the numerical solution for a given property
sðe; c; nÞ: To characterize the error behavior, the universal and
property specific expressions given by Eqs. (A4) and (A2) are
compared side-by-side in Fig. 3(a) using n ¼ 1 and n ¼ 2; respec-
tively. This is performed for the pressure variation with the area
ratio as a representative of the group. Using the same number of
asymptotic terms, the universal expression (broken line) is seen to
fall closer to the numerical solution (solid line) than the property
specific approximation (chained line). For further confirmation,
the relative errors entailed in each of the asymptotic approaches
are computed and displayed in Fig. 3(b). We find that the n ¼ 1
universal solution entails a relative error e1 of less than 1% for
ratios up to At=A ¼ 0:637: Furthermore, e1 remains bounded by
5% up to At=A ¼ 0:846: From an engineering perspective, a sec-
ond-order solution will be sufficiently adequate although a fourth-
order expansion may be needed to cover an appreciable range of

practical interest with a minimum of four-digit accuracy. Note
that c has no effect on the error due to the use of a regular pertur-
bation sequence that solely depends on the area expansion ratio.
From a precision standpoint, the universal expression is found to
be slightly more accurate than the property specific relation, albeit
of the same asymptotic order. This is especially true for low order
approximations where only a few asymptotic terms are retained.
As confirmed in Fig. 3(b), the relative errors incurred in either so-
lution tend to merge with successive increases in n:

3.5 Property Specific Supersonic Solution. The regular per-
turbation approach is only effective in returning the subsonic root.
This behavior can be connected to the properties of the isentropic
equations at the origin. Unlike the subsonic branch which, Bür-
mann’s theorem shows, can be written as a series expansion about
p ¼ 1; the supersonic solution cannot be obtained using classical
analysis. This may be attributed to the vanishing supersonic root
as e! 0; a condition that prevents us from expanding the solution
as a Taylor series about p ¼ 0: While the supersonic branch
appears to be more elusive to track, it succumbs, after some effort,
to the use of successive approximations. To this end, a systematic
strategy is required as delineated below.

First, the terms in each of the original equations are scrutinized
for the purpose of identifying the most dominant member in each.
The ensuing selection is performed while assuming conditions
appropriate of supersonic behavior. The dominant term is coined
the leading-order contributor. Other members of the series are
then rescaled in reference to their largest contributor. To solve for
the subsequent candidate, the procedure is repeated by searching
for the next dominant term that may be extracted from the original
equation after expansion. This process may be continued until a
certain degree of precision is reached. Unlike the regular perturba-
tion approach in which the truncation error is determined before-
hand, the successive approximation technique does not yield a

Fig. 2 Numeric and asymptotic solutions for the subsonic (a)
pressure and (b) temperature

Fig. 3 Performance comparison between (a) pressure specific
and universal approximations for the first two values of n and
(b) the percent relative error in the subsonic solution at increas-
ing asymptotic orders
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plain roadmap for estimating the error. Another exacerbating fac-
tor emerges due to the error becoming dependent on both e and c
in a nonintuitive way. For this reason, the error will be evaluated
analytically and then verified numerically using Bosley’s order
assessment technique [12].

Setting S ¼ ðp; T; qÞ as the placeholder for supersonic pressure,
temperature and density ratios, we take S ¼ S0 þ S1 þ S2 þ � � � to
be a series expansion of diminishing terms. In order to ensure a
uniformly valid outcome, we insist on the solvability condition
being, as usual, Snþ1 ¼ oðSnÞ: Accordingly, successive corrections
must observe

lim
e!0

Snþ1

Sn
¼ 0 (26)

We begin the analysis by manually calculating the order of each
term in Eq. (10). Taking a cue from the largest, we then collect
the leading-order quantities and discount the trailing elements as
per Eq. (26). We promptly identify S0 ¼ enð Þ1=a and write

S0 ¼ enð Þc=2; enð Þ c�1Þ=2ð ; enð Þ1=2
h i

(27)

The first correction captures those secondary terms that are not
retained at leading order. In what follows, details of the perturba-
tive expansion are illustrated for the pressure ratio. A similar tech-
nique may be followed to obtain the remaining quantities.

After substituting p ¼ p0 þ p1 into the pressure equation, we
factor out p0 and subject the remaining part to a binomial series
expansion in p1=p0. This operation yields

p
2=c
0 1þ ð2=cÞðp1=p0Þ þ O p1=p0ð Þ2
h i
� p

ðcþ1Þ=c
0 1þ ð1þ 1=cÞp1=p0 þ O p1=p0ð Þ2

h i
� en ¼ 0 (28)

whence

p1 ¼
p0 p

2=c
0 � p

ðcþ1Þ=c
0 � en

h i
½ðcþ 1Þ=c�pðcþ1Þ=c

0 � ð2=cÞp2=c
0

(29)

The second-order correction p2 may be retrieved along similar
lines. We find

p2 ¼
p0 þ p1ð Þ p0 þ p1ð Þ2=c� p0 þ p1ð Þðcþ1Þ=c�en

h i
½ðcþ 1Þ=c� p0 þ p1ð Þðcþ1Þ=c�ð2=cÞ p0 þ p1ð Þ2=c

(30)

By linking consecutive terms in a recursive fashion (see Appendix
B), the correction at arbitrary order may be deduced. In the inter-
est of clarity, the three-term expansions of these quantities are
given below:

p ¼ enð Þc=2
zfflfflffl}|fflfflffl{p0

þ
c p

2=c
0 � p

ðcþ1Þ=c
0 � en

� �
ðcþ 1Þp1=c

0 � 2p
2=c�1
0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p1

þ
c p0 þ p1ð Þ2=c� p0 þ p1ð Þðcþ1Þ=c�en
h i
ðcþ 1Þ p0 þ p1ð Þ1=c�2 p0 þ p1ð Þ2=c�1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p2

(31)

T ¼ enð Þ c�1Þ=2ð þ
ðc� 1Þ T

2=ðc�1Þ
0 � T

ðcþ1Þ=ðc�1Þ
0 � en

h i
ðcþ 1ÞT2=ðc�1Þ

0 � 2T
ð3�cÞ=ðc�1Þ
0

þ
ðc� 1Þ T0 þ T1ð Þ2=ðc�1Þ� T0 þ T1ð Þðcþ1Þ=ðc�1Þ�en

h i
ðcþ 1Þ T0 þ T1ð Þ2=ðc�1Þ�2 T0 þ T1ð Þð3�cÞ=ðc�1Þ (32)

q ¼ enð Þ1=2þ q2
0 � qcþ1

0 � en
ðcþ 1Þqc

0 � 2q0

þ q0 þ q1ð Þ2� q0 þ q1ð Þcþ1�en
ðcþ 1Þ q0 þ q1ð Þc�2 q0 þ q1ð Þ

(33)

At first glance, the recursive nature of Eqs. (31)–(33) appears to
require more effort in comparison to the subsonic case. Upon
closer examination, however, it may be seen that after the initial
evaluation of the leading-order correction in each thermodynamic
variable, the remaining terms are easily reproducible. This formu-
lation allows for manual evaluation that may be incorporated into
a standard calculator, thus circumventing the need to use tabula-
tion, interpolation, or special programming. For the nonspecialist,
these approximations represent simple, ready-to-use expressions
that can be directly incorporated into existing spreadsheet tables
during the early stages of nozzle design, where rapid turnaround
on multiple design configurations and corresponding parametric
variations may be required.

3.6 Universal Supersonic Solution. A more generic expan-
sion may be obtained, specifically, one that simultaneously
applies to the three thermofluid quantities. Using S � X1=a and
X � X

ðcþ1Þ=2 ¼ en; we take X ¼ X0 þ X1 þ � � � and solve for the su-
personic root. Recognizing that X0 ¼ en; we separate the higher
order corrections and retrieve the common form

Xðe; c; nÞ ¼ X0 þ
Xn

m¼1

Xm; Xm ¼
vm � vðcþ1Þ=2

m � en
1
2
ðcþ 1Þvðc�1Þ=2

m � 1
;

vm �
Xm�1

j¼0

Xj;
p
T
q

8<
:

9=
; ¼

ffiffiffiffiffi
Xc
pffiffiffiffiffiffiffiffiffiffi

Xc�1
pffiffiffiffi

X
p

8<
:

(34)

Subsequently, the supersonic root to any of the thermofluid prop-
erties may be calculated from

Sðe; c; nÞ ¼ enþ
Xn

m¼1

vm � vðcþ1Þ=2
m � en

1
2
ðcþ 1Þvðc�1Þ=2

m � 1
þ Oðenþ1Þ

" #1=a

(35)

where a represents the single parameter that varies between one
property and another. Here too, the universal expression is seen to
outperform the property specific parent relation given by Eq.
(B3). For example, given e ¼ 0:1; c ¼ 1:2; and an exact value of
T ¼ 0:627051; Eq. (35) predicts 0.623046 and 0.627024 for the
temperature ratio using n ¼ 1 and n ¼ 2; respectively. For the
same case, Eq. (52) in the Appendix returns 0.654231 and
0.630479. Both approximations, however, converge to 0.627051
at n ¼ 3:

3.7 Supersonic Error Verification. For a typical c ¼ 1:2; a
comparison between Eq. (35) and the numerical solution is show-
cased in Fig. 4 using n¼ 1, 2, 3, and 4. It is clear that the merging
of asymptotic and numerical curves occurs so rapidly that the sec-
ond and third order approximations become graphically indiscern-
ible from the exact solution over an extended range of area ratios.
This behavior is further confirmed in Fig. 5 where the orders of
the relative errors in the pressure, temperature, and density esti-
mates are captured on a log-log plot using two values of c: Note
that the increased accuracy of the third order expansion, which is
observed in Fig. 4, may be attributed to the steep order jump pre-
ceding n ¼ 3 in the relative error en: Furthermore, we find that
increasing c has a favorable influence on en and that the tempera-
ture approximation exhibits the lowest relative error. For this rea-
son, it may be sufficient to use two corrections for the temperature
and three for the pressure and density. Clearly, the use of c ¼ 1:2
for the purpose of illustration stands on the conservative side as
the error only diminishes with further increases in c:
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By comparison to the subsonic case, the asymptotic character
of the supersonic approximation is more elusive to quantify. This
behavior may be attributed to the subsonic approach being based
on a simple perturbation expansion in which the truncation error

can be directly estimated from the order of the largest unused
term in the series. It can be easily seen, for example, that a three-
term expansion in Eq. (8) accrues the error E2 ¼ Oðe3Þ and that,
in general, En ¼ Oðenþ1Þ: Deducing the truncation error for the
supersonic solution may be perceived to be considerably more
elaborate, especially that the corresponding (successive) approxi-
mations do not employ an e-based sequence of gauge functions.
Instead, the dependence on e entrenches itself in each successive
correction term in a nonintuitive way.

To explore the implicit error dependence on e; it is useful to re-
examine the expanded form of X � X

ðcþ1Þ=2 ¼ en: For the sake of
illustration, we take the zeroth and first order corrections, namely,

X0 ¼ en� X
1
2
ðcþ1Þ

0 ¼ enþ O e
1
2
ðcþ1Þ

h i
; since 1

2
ðcþ 1Þ > 1

X0 þ X1 ¼ en� X
1
2
ðcþ1Þ

0 1þ X1

X0

� �1
2
ðcþ1Þ

8>><
>>:

(36)

To extract the first order solution, the second member in Eq. (36)
is subjected to a binomial expansion. This enables us to write

X1 ¼ �X
1
2
ðcþ1Þ

0 1þ X1

X0

� �1
2
ðcþ1Þ

¼ �X
1
2
ðcþ1Þ

0 1þ 1

2
ðcþ 1ÞX1

X0

þ 1

8
ðcþ 1Þðc� 1Þ X1

X0

� �2

þ � � �
" #

(37)

and therefore retrieve

X1 ¼ �
X

1
2
ðcþ1Þ

0

1þ 1

2
ðcþ 1ÞX

1
2
ðc�1Þ

0

1þ O
X1

X0

� �2
" #

(38)

Recalling that X0 � e; it follows that X
1
2
ðcþ1Þ

0 � e
1
2
ðcþ1Þ and, by vir-

tue of Eq. (36), X1 � e 1=2ð Þðcþ1Þ: This leaves us with a truncation
error of order

E1 ¼ O X
1
2
ðcþ1Þ

0

X2
1

X2
0

� �
¼ O X

1
2
ðcþ1Þ

0

Xcþ1
0

X2
0

" #
¼ O e

1
2
ð3c�1Þ

h i
(39)

The same procedure may be repeated to the extent of identifying
the form of the error at arbitrary order. We find

En ¼

O X
1
2
ðcþ1Þ

0 1þ X1

X0

þ � � � þ Xn�1

X0

� �1
2ðcþ1Þ X2

n

X0 þ X1 þ � � � þ Xn�1ð Þ2

" #

(40)

Then realizing that the leading X0 term controls the order of the
denominator, it can be readily factored out and simplified. This
reduces Eq. (40) into

En ¼ O e
1
2
ðc�3ÞX2

n

h i
(41)

At this point, a recursive relation for the order of Xn will be
required before any further headway can be made. After some
effort, we deduce that

Xn ¼ En�1e
c�1; n 	 2 (42)

and, consequently,

Fig. 4 Numeric and asymptotic solutions for the supersonic
(a) pressure and (b) temperature

Fig. 5 Percent relative error in the supersonic pressure, tem-
perature, and density ratios based on the universal asymptotic
representation
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E0 ¼ O e
1
2
ðcþ1Þ

h i
; E1 ¼ O e

1
2
ð3c�1Þ

h i
En ¼ O E2

n�1e
1
2
ð5c�7Þ

h i
; n 	 2

8><
>: (43)

While Eq. (43) may be evaluated to render the error recursively, it
requires an increasing number of algebraic operations before
yielding the truncation order at successive values of n: Because
our objective remains to seek a direct expression for the error,
Eq. (43) is only used to determine the first ten members of the
sequence of supersonic truncation orders. At the outset, the coeffi-
cients of c in the various error exponents are judiciously collected
and analyzed. After some effort, an exact order relationship is
arrived at, namely,

En ¼ OðejnÞ; jn ¼ 2nþ1 c� 1ð Þ þ 1
2

7� 5cð Þ; n ¼ 1; 2; :::

(44)

The correct supersonic error is thus at hand. In piecewise fashion,
it may be written as

En ¼ OðejnÞ; jn ¼
1
2
ðcþ 1Þ; n ¼ 0

1
2
ð2nþ2 � 5Þcþ 7� 2nþ2½ �; n 	 1

(
(45)

It should be emphasized that Eq. (45) applies equally uniformly to
the absolute errors entailed in the specific thermofluid properties.
Their parallelism is depicted in Fig. 5 and confirmed asymptoti-
cally through Eq. (35). Their theoretical values are catalogued in
Table 1 for the first six successive expansions and a wide spec-
trum of c ¼ ½1:1� 1:6�: Their rapidly escalating error exponents
are gratifying to note as they suggest substantially improved accu-
racy in corresponding formulations. At n ¼ 4; for example, the
order of convergence increases from a conventional 3.95 at
c ¼ 1:1 to a remarkable value of 9.85 at c ¼ 1:4; to a whopping
18.7 at c ¼ 1:6: As for the continual error reduction with upward
increments in c; it is attributable to the strictly positive coefficient
of c in Eq. (45), where it can be seen that 2nþ2 � 5 > 0 for all
n 	 1:

Finally, to verify Eq. (45) numerically, the absolute supersonic
error is computed and plotted in Fig. 6 at select values of c: Here
we follow Bosley [12] in the use of a log-log scale so that jn may
be graphically inferred from the slope of the error curves. While the
actual error is not strictly linear, it can be seen that the theoretical
order expression captures quite favorably the fundamental character
of the numerically computed error over a range of e and c: Further-
more, the magnitude of the absolute error can be seen to rapidly
decrease as more terms are brought to bear. In fact, for sufficiently
small values of e; the error of the five-term expansion drops below
the round-off error produced by the numerical solution; this intro-
duces artificial noise in the n ¼ 4 curves of Figs. 6(b) and 6(c).

4 Conclusions

In this study, we consider three basic relations that arise in the
context of isentropic flow analysis. Their numerical solutions
appear in classic monographs on thermodynamics and compressible
gas dynamics. Inasmuch as their transcendental nature precludes an
explicit inversion, we overcome their intractable character by
means of asymptotic expansions. This process requires the imple-
mentation of two dissimilar asymptotic techniques, with one being
original for the M > 1 case, to retrieve both subsonic and super-
sonic roots. The former branch of solution is also obtained using
Bürmann’s theorem that is borrowed from classical analysis. At the
outset, the analytical solutions are presented using both a property
specific expansion and a universal form that applies equally to all
three properties. In addition to obtaining the solutions for the main
thermofluid properties to any desired order, recursive expressions
are produced for their generic formulations with arbitrary exponents
(see Table 2). These are thoroughly verified both analytically and
numerically. Although the details of the present derivation are
shown for at least one representative property, the main results may
be deduced directly from Eqs. (A4) and (35) for the subsonic and
supersonic branches, respectively.

It should be noted that variants of these techniques are used in a
number of physical contexts to provide analytical closure to previ-
ously intractable problems [14–16]. For example, geometrical pertur-
bations are considered while approximating the mean flowfield in
tapered [17,18] or star-shaped solid rocket chambers [19]. Along simi-
lar lines, surface regression effects are systematically captured using
both regular perturbation tools [20–22] and a new parameter-free
technique, akin to Adomian decomposition, known as the homotopy
analysis method [23]. In the treatment of swirl-dominated, confined
vortex engines, with either hybrid [24] or liquid configurations [25],
the resolution of core and sidewall boundary layers can be achieved
using judicious scaling and the theory of matched-asymptotic expan-
sions [26]. Furthermore, special expansions of the Wentzel–Kramers–
Brillouin (WKB) type, known for their relevance to oscillatory phe-
nomena, may be adequately employed in the construction of asymp-
totic solutions for the damped motion of vortico-acoustic waves in

Table 1 Theoretical prediction of the asymptotic order in the
universal supersonic solution

c

n Error order 1:1 1:2 1:3 1:4 1:5 1:6

0 1
2
ðcþ 1Þ 1.05 1.1 1.15 1.2 1.25 1.3

1 1
2
ð3c� 1Þ 1.15 1.3 1.45 1.6 1.75 1.9

2 1
2
ð11c� 9Þ 1.55 2.1 2.65 3.2 3.75 4.3

3 1
2
ð27c� 25Þ 2.35 3.7 5.05 6.4 7.75 9.1

4 1
2
ð59c� 57Þ 3.95 6.9 9.85 12.8 15.75 18.7

5 1
2
ð123c� 121Þ 7.15 13.3 19.45 25.6 31.75 37.9

6 1
2
ð251c� 249Þ 13.55 26.1 38.65 51.2 63.75 76.3

Fig. 6 Absolute error in the supersonic solution using the uni-
versal representation
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rocket chambers [27–29]. Naturally, perturbation parameters may be
connected with the familiar nondimensional properties of fluid
mechanics, such as the Mach number. In this vein, the Rayleigh–Jan-
zen expansion method, a classical approach for the treatment of high
speed flow phenomena (such as those arising in gas turbine engines),
may be worthy of note. By adopting the Mach number squared as a
gauge function, this approach has been shown to capture compressi-
bility effects in transonic regimes quite effectively [30,31].

The strategies presented heretofore may hence find applicability
in other physical settings where similar equations arise. For exam-
ple, accounting for the normal shock wave relation constitutes a nat-
ural extension of this work. Capturing nonisentropic behavior
would provide a more complete framework for the pressure
response that regulates supersonic nozzle flow. The outcome could
prove useful in the analysis of nozzle transients, specifically in the
prediction of structural loads introduced during startup and shut-
down of a gas turbine or rocket chamber. What is most interesting,
perhaps, concerns the techniques that are developed for the purpose
of determining the supersonic solution and its unconventional trun-
cation order. It is hoped that such an efficient procedure may be
used in the treatment of other intransigent equations. It is also hoped
that the compact relations presented here will be used to comple-
ment the collection of isentropic flow approximations that are often
employed in the propulsion and power generation industries.
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Appendix A: Subsonic Formulation

The equation for the subsonic root can be rewritten in a recursive
expression that facilitates the extraction of higher order terms.
The recursive relation takes the general form of

sðe; c; nÞ ¼ �
Xn

m¼0

Q
m�1
j¼1 m� jð Þaþ jb� 1½ �
�1ð Þð2mÞ!m! b� að Þm

enð Þm þ Oðenþ1Þ

¼ 2þ
Xn

m¼0

�1ð Þ�ð2mÞ! enð Þm

m! a� bð Þ Pochhammer

� að1� mÞ � bþ 1

a� b
;m� 1

� �
þ Oðenþ1Þ (A1)

where, according to Abramowitz and Stegun [32],
Pochhammerða; nÞ � ðaÞn ¼ Cðaþ nÞ=CðaÞ: Note that Eq. (A1)
represents the general asymptotic solution to any transcendental

relation of the form sa � sb ¼ en: However, due to the intercon-
nectivity of the properties given by Eq. (10), one may fully elimi-
nate b and write the identical expression

sðe; c; nÞ ¼ �
Xn

m¼0

Q
m�1
j¼1 a mþ 1

2
j c� 1ð Þ

� �
� 1

� �
�1ð Þð2mÞ!m! 1

2
c� 1ð Þa

� �m enð Þm þ Oðenþ1Þ

¼ 2� 2

a c� 1ð Þ
Xn

m¼0

enð Þm

�1ð Þð2mÞ!m!

�C mþ 2ðm� 1=aÞ=ðc� 1Þ½ �
C 1þ 2ðm� 1=aÞ=ðc� 1Þ½ � þ Oðenþ1Þ (A2)

The universal form has a similar recursion, simplified by the elim-
ination of the a terms. To arbitrary order, this is

xðe; c; nÞ ¼ �
Xn

m¼0

Q
m�1
j¼1 m� 1þ 1

2
jðc� 1Þ

� �
�1ð Þð2mÞ!m!

2en
c� 1

� �m

þ Oðenþ1Þ

¼ 2� 2

c� 1

Xn

m¼0

enð Þm

�1ð Þð2mÞ!m!
Pochhammer

� 2mþ c� 3

c� 1
;m� 1

� �
þ Oðenþ1Þ (A3)

The actual thermofluid properties may be deduced from Eq. (A3)
using s ¼ x1=a or

p
T
q

8<
:

9=
;¼

ffiffiffiffi
xc
pffiffiffiffiffiffiffiffiffi

xc�1
pffiffiffi

x
p

8<
: or

sðe;c;nÞ¼ �
Xn

m¼0

Q
m�1
j¼1 �1þ1

2
jðc�1Þ

� �
�1ð Þð2mÞ!m!

2en
c�1

� �m

þOðenþ1Þ
( )1=a

(A4)

Appendix B: Supersonic Formulation

The supersonic solution may be expressed in terms of a recursive
formula to arbitrary order. For the pressure equation, we find

pm ¼
P

m�1
j¼0 pj

� �2=c
�
P

m�1
j¼0 pj

� �ðcþ1Þ=c
�en

½ cþ 1ð Þ=c�
P

m�1
j¼0 pj

� �1=c
� 2=cð Þ

P
m�1
j¼0 pj

� �2=c�1
; m 	 1

(B1)

Table 2 Summary of fundamental thermodynamic approximations

Type Subsonic Supersonic

Universal x;X �
Pn

m¼0

Q
m�1
j¼1

m�1þ 1
2

jðc� 1Þ
� �
�1ð Þð2mÞ!m!

2en
c�1

� �m
X0 þ

Pn
m¼1 Xm; Xm ¼

vm � vcþ1=2
m � en

cþ1
2

vc�1=2
m �1

; vm �
Pm�1

j¼0 Xj

p
T
q

8<
: �

Pn
m¼0

Q
m�1
j¼1

m� 1þ 1
2

jðc� 1Þ
� �

�1ð Þð2mÞ!m!

2en
c�1

� �m
� �1=a

X0 þ
Pn

m¼1 Xm

	 
1=a
; a ¼

2=c
2=ðc� 1Þ
2

8<
:

Pressure p ¼ �p=�pc

�
Pn

m¼0

Q
m�1
j¼1

2
c mþ 1

2
j c� 1ð Þ

� �
� 1

n o
�1ð Þð2mÞ!m!

1
c c�1ð Þ
h im enð Þm

p0 þ
Pn

m¼1 pm; pm ¼
P2=c

m � P
cþ 1ð Þ=c

m � en
cþ 1

c
P1=c

m �
2

c
P2=c�1

m

; Pm �
Pm�1

j¼0 pj

Temperature T ¼ �T= �Tc

�
Pn

m¼0

Q
m�1
j¼1

2
c�1

mþ 1
2

j c� 1ð Þ
� �

� 1
n o

�1ð Þð2mÞ!m!
enð Þm

T0 þ
Pn

m¼1 Tm; Tm ¼
H2= c�1ð Þ

m �H cþ1ð Þ= c�1ð Þ
m � en

cþ 1

c� 1
H2= c�1ð Þ

m � 2

c� 1
H 3�cð Þ= c�1ð Þ

m

; Hm �
Pm�1

j¼0 Tj

Density q ¼ �q=�qc �
Pn

m¼0

Q
m�1
j¼1

2 mþ 1
2

j c� 1ð Þ
� �

�1
� �
�1ð Þð2mÞ!m! c�1ð Þm

enð Þm
q0 þ

Pn
m¼1 qm; qm ¼

H2
m � Hcþ1

m � en
cþ 1ð ÞHc

m � 2Hm
; Hm �

Pm�1
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Since the total pressure is the summation of its constituents, we
simply collect

pðe; c; nÞ ¼ p0 þ
Xn

m¼1

pm (B2)

To be more general, the governing equation may be recast in the
form Sa � Sb ¼ en: The supersonic placeholder S may then be
expanded and substituted as usual to the extent of retrieving

Sðe; c; nÞ ¼ S0 þ
Xn

m¼1

Sm;

Sm ¼
P

m�1
j¼0 Sj

� �a
�
P

m�1
j¼0 Sj

� �b
�en

b
P

m�1
j¼0 Sj

� �b�1

�a
P

m�1
j¼0 Sj

� �a�1

(B3)

The specific expansions for the temperature and density correc-
tions follow suit. We find

Tm ¼
P

m�1
j¼0 Tj

� �2= c�1ð Þ
�
P

m�1
j¼0 Tj

� � cþ1ð Þ= c�1ð Þ
�en

cþ1
c�1

P
m�1
j¼0 Tj

� �2= c�1ð Þ
� 2

c�1

P
m�1
j¼0 Tj

� � 3�cð Þ= c�1ð Þ

qm ¼
P

m�1
j¼0 qj

� �2

�
P

m�1
j¼0 qj

� �cþ1

�en

cþ 1ð Þ
P

m�1
j¼0 qj

� �c
�2

P
m�1
j¼0 qj

� �
(B4)

Nomenclature
A ¼ cross-sectional area

At ¼ throat area
En ¼ absolute error

p;T;q ¼ dimensionless pressure, temperature and density
s; S ¼ subsonic or supersonic property

e ¼ perturbation parameter, At=Að Þ2
c ¼ ratio of specific heats

Subscripts and Symbols
c; e; t ¼ condition at chamber, exit, or throat

n ¼ level of the asymptotic sequence
N ¼ numerical solution
– ¼ dimensional property
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