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This work seeks to provide a closed-form analytical solution for the transverse vorticoacoustic wave in a circular

cylinderwith headwall injection. This particular configurationmimics the conditions leading to the onset of traveling

radial and tangential waves in an idealized liquid rocket engine. Assuming a short cylindrical chamber with two

injection showerheadmodels (a top hat, uniform flow, and a bell-shaped sinusoidal profile), regular perturbations are

used to linearize the problem’s conservation equations. Flow decomposition is subsequently applied to the first-order

disturbance equations, thus giving rise to a compressible, inviscid, acoustic set that is responsible for driving the

unsteady motion, and to an incompressible, viscous, vortical set that is driven by virtue of coupling with the acoustic

mode along solid boundaries. While the acoustic mode is readily recovered from the wave equation, the induced

vortical mode is resolved using boundary-layer theory and a judicious expansion of the rotational equations with

respect to a small viscous parameter, δ. After some effort, an explicit formulation is arrived at for each of the uniform

and bell-shaped injection profiles. The two solutions are then presented, verified numerically, and compared at fixed

spatial locations within the chamber. The penetration depth of the unsteady boundary layer is also characterized.

Unlike the solution based on uniformheadwall injection, the vorticoacoustic wave based on the bell-shapedmean flow

is found to be more realistic; being capable of securing the no-slip requirement at both headwall and sidewall

boundaries.

Nomenclature

a0 = speed of sound of incoming flow, �γRT0�1∕2
er, eθ,
ez

= unit vectors in r, θ, and z directions

L = chamber length
Mb = average blowing/burning Mach number at headwall
OF = overshoot factor
Pr = Prandtl number, ratio of kinematic viscosity to

thermal diffusivity
p = pressure
R = chamber radius
Rea = acoustic Reynolds number, �a0 R�∕ν0
Reb = blowing Reynolds number at the headwall,

�UbR�∕ν0
r, θ, z = radial, tangential, and axial coordinates
S = Strouhal number, kmn∕Mb � �ω0 R�∕Ub
Sp = effective penetration number
T = temperature
t = time
U = mean flow velocity vector
Ub�r� = blowing velocity profile at the headwall
u = total velocity vector
Vw = propagation velocity of vortical waves in the axial

direction
yp, zp = penetration depth of rotational elements in the y and z

directions, respectively
zOS = locus of unsteady velocity overshoot

Greek

γ = ratio of specific heats
δ = viscous parameter, �Rea�−1∕2
δd = dilatational parameter, δ

��������������������������
η0∕μ0 � 4∕3

p
ε = wave amplitude
η = bulk viscosity
λ = spatial wave length
μ = dynamic viscosity
ν = kinematic viscosity, μ∕ρ
ρ = density
Ω = mean vorticity
ω = unsteady vorticity
ω0 = nondimensional circular frequency

Subscripts

0 = mean chamber properties

Superscripts

� = dimensional variables
0 = unsteady flow variable
− = steady flow variable

I. Introduction

ACOUSTIC instability has long been recognized as one of
the fundamental technical challenges plaguing large-scale

combustors. Its preponderance in the developmental stages of
international programs, such as Ares or Ariane has clearly positioned
it as one of the chief obstacles that have historically hampered or
delayed the deployment of new rocket launch systems. Although
instabilities have been reported as early as the late 1930s, numerous
studies of solid and liquid rockets have aimed at quantifying its
sources. These have traditionally encompassed all three methods of
investigations, namely, those based on experimental [1–4], numerical
[5–8], and analytical thrusts [9–13].

In liquid rocket engines, transverse instabilities are identified by
large pressure oscillations that occur in a plane perpendicular to the
axis of the chamber and by frequencies that closely match the modes
predicted through linear chamber acoustics [14,15]. Experimental

Presented as Paper 2011-6029 at the 47th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, San Diego, CA, 31 –3 August 2011;
received 21 February 2012; revision received 18 June 2012; accepted for
publication 19 June 2012; published online 23 November 2012. Copyright ©
2012 byCharles T. Haddad and JosephMajdalani. Published by theAmerican
Institute ofAeronautics andAstronautics, Inc., with permission.Copies of this
paper may be made for personal or internal use, on condition that the copier
pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/12 and
$10.00 in correspondence with the CCC.

*Graduate Research Assistant, Department of Mechanical, Aerospace and
Biomedical Engineering. Member AIAA.

†H. H. Arnold Chair of Excellence in Advanced Propulsion, Department of
Mechanical, Aerospace and Biomedical Engineering. Associate Fellow
AIAA.

591

AIAA JOURNAL
Vol. 51, No. 3, March 2013

http://dx.doi.org/10.2514/1.J051912


observations have often suggested that instabilities entail large
amplitude oscillations with steep gradients in the direction of the
flow. In this vein, Clayton [2], Clayton et al. [3], and Sotter et al. [4]
investigated high-amplitude tangential oscillations using a heavily
instrumented, laboratory-scale, 20 klbf thrust engine. They recorded
steep-fronted pressure oscillations with peak-to-peak amplitudes that
were one order of magnitude larger than the mean chamber pressure.
Although the response rate of their pressure transducers was not
sufficiently high to capture the resulting wave character, their
acquired data displayed large amplitude spikes followed by long and
shallow pressure segments.
Along similar lines, several numerical studies have focused on the

characterization of transverse waves and their effects on acoustic
resonance in different rocket configurations. By way of example,
Ando et al. [6] simulated the generation of transverse waves in a
pulse detonation engine and deduced that the strength of the blasts
increased where transverse waves collided. Other researchers, such
as Chandrasekhar and Chakravarthy [7], deduced from their
simulations that transversewaves could be induced bywall vibrations
to the extent of producing longitudinal oscillations.
The earliest analytical studies of oscillatory waves in a ducted

environment with injectingwalls were undertaken byCulick [10,11],
Hart and McClure [16,17], and others [18–21]. Their evolving
models led to several analytical approximations that could be used to
describe the behavior of oscillatory flows inside porous chambers.
Other researchers employed asymptotic theory to linearize the
Navier-Stokes equations and deduce the predicted wave behavior.
This effort was prompted by the long-standing belief that the
presence of a tangential acoustic velocity can give rise to a traveling
shear wave. In 1956, theoretical work by Maslen and Moore [12]
suggested that tangential waves could not steepen as in the case of
longitudinal waves. However, their study of tangential wave
development focused on a circular cylinder with no mean flow
motion. In 1962, Crocco et al. [13] used small perturbations and
separation of variables to predict the stability limit of liquid rocket
engines. Their work showed that rocket stability depended on the
radial and tangential modes, as well as the chamber’s exit Mach
number. Later studies [22] took into account the effects of the mean
flow on wave growth and propagation in a cylinder with transpiring
walls, this being the traditional geometry used to simulate a solid
rocket motor.
Several studies followed and these have emphasized the need to

observe the no-slip requirement at the propellant surface while
pursuing viscous and rotational corrections to the acoustic field in a
solid rocket motor (SRM). On one hand, Brown, Dunlap and
collaborators [23,24] provided experimental data that confirmed
the behavior of longitudinal oscillations in a simulated cold-flow
chamber. Their results showed that irrotational models failed to satisfy
the actual behavior directly above the propellant surface. On the other
hand, Vuillot and Avalon [8] modeled the growth of the sidewall
boundary layer using computational fluid dynamics. Their simulations
predicted a thick Stokes layer at the sidewall, specifically one that
could extend over the majority of the chamber volume for specific
values of the control parameters. Subsequent investigations based on
asymptotic tools led to closed-form approximations to this problem. It
was found that thevorticoacoustic waves and their penetrationwithin a
rocket chamber strongly depended on the chamber acoustics along
with the internal mean flow [18,25–27]. Some of the ensuing formula-
tions confirmed the connection between the so-called penetration
depth (i.e., rotational boundary layer), and the penetration number.
This keystone parameter combined the injection Reynolds and
Strouhal numbers in a nonintuitive way.
Retrospectively, most of these studies have been primarily

concerned with the low-frequency oscillations arising in long solid
rocket motors [28]. Conversely, much fewer models have been
devoted to the liquid rocket engine (LRE) case [12,13,29]. For
example, prompted by the need to better understand the mechanism
of acoustic streaming, recent work by [21] has considered the
transverse wave propagation problem in thrust chambers. Albeit, a
secondary objective of theirs, these researchers have also tackled the
vorticoacoustic boundary layer that forms in the vicinity of the

injector faceplate. Their configuration may be viewed as somewhat
analogous to a solid rocket motor in which the sidewall is exchanged
for the headwall of a short LRE chamber.
In this article, we consider the unsteady flowfield in a short

cylindrical chamberwith a porous headwall that permits the injection of
two specificmean flowpatterns: uniform and bell shaped. In addition to
the mean flow, the presence of small-amplitude oscillatory waves will
be assumed. These self-excited waves give rise to a complex fluid
structure that we wish to explore. Following the small perturbation
approach introduced by Chu and Kovásznay [30], the equations of
motion will be recast into two sets: one controlling the mean flow
behavior, and the other describing the oscillatory motion. Then, using
the Helmholtz decomposition theorem, the first-order fluctuations will
be separated into a pair of acoustic and vortical fields. Presently, these
techniques will be used to derive an improved asymptotic solution for
the oscillatory motion in a circular chamber in general and a simulated
LRE in particular. Using a systematic application of boundary-layer
theory, an alternate mathematical formulation will be achieved and
compared to previous work on the subject [21]. In so doing, the
vorticoacousticwave approximation based on the bell-shaped injection
profilewill be shown to provide an improved physical representation of
the wave motion in a simulated thrust chamber.

II. Formulation

A. Geometry

As shown schematically in Fig. 1, the idealized thrust chamber is
simulated as a circular cylinder that extends horizontally from the
center axis at r� � 0 to the sidewall at r� � R. Vertically, the domain
extends from z� � 0 to L, and the headwall may be viewed as a
porous surface where the gases may be injected at a velocity Ub�r�.
We also show in Fig. 1 the azimuthal coordinate, θ, and the transverse
direction of unsteady velocity disturbances, u 0θ and u

0
r, which denote

both tangential and radial oscillations. Given that this study is
focused on a simulated LRE, the aspect ratio of the chamber under
consideration is taken to be small, specifically less than or equal to
unity, L∕R ≤ 1.

B. Normalized System of Equations

It is helpful to first proceed by normalizing the flow variables
according to�

p � p�∕P0 u � u�∕a0 r � r�∕R T � T�∕T0

ρ � ρ�∕ρ0 t � t�∕�R∕a0� z � z�∕R ω � ω�∕�a0∕R�
(1)

r* R
z*θ

r*

θUb

uθ′

a)

ur′

L

r* R
z*θ

r*

Ub
b)

z*

R

0

UbL

Fig. 1 Chamber geometry and coordinate system showing: a) uniform

and b) bell-shaped profiles. Also shown is a front view depicting the
coupled tangential and radial wave motions that together dictate the
transverse mode shapes.
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where reference properties are defined in the Nomenclature. The
normalized governing equations for a viscous compressible fluid
with no body forces acting on it may be expressed as

Mass∶
∂ρ
∂t
� ∇ ⋅ �ρu� � 0 (2)

Momentum∶ ρ

�
∂u
∂t
� 1

2
∇�u ⋅ u� − u × ∇ × u

�

� −
1

γ
∇p − δ2∇ × �∇ × u� � δ2d∇�∇ ⋅ u� (3)

Energy∶ ρ

�
∂T
∂t
� u ⋅ ∇T

�
� γ − 1

γ

�
∂p
∂t
� u ⋅ ∇p

�

� δ2

pr
∇2T (4)

State∶ p � ρT (5)

where Pr and γ represent the Prandl number and the ratio of specific
heats. The viscous parameters δ and δd are given by

δ �
����������
ν0
a0 R

r
� 1���������

Rea
p ; δd � δ

��������������
η0
μ0
� 4

3

s
(6)

The bulk viscosity, also known as the dilatational viscosity η, is taken
here at the reference conditions as η0. It represents viscous shear
associated with the volumetric-rate-of-strain; according to the Stokes
hypothesis this parameter may be neglected when dealing with
predominantly incompressible fluids.

C. Unsteady Disturbance Equations

As shown by Chu and Kovásznay [30], the normalized flow
variables can be decomposed in terms of a mean flow and an
oscillatory component viz:

u � MbU � u 0; ω � Ω�ω 0;

p � 1� p 0; T � 1� T 0 (7)

Substituting the instantaneous variables of Eq. (7) into Eqs. (2)–(5)
leads to two sets of equations for the steady and unsteady motions
[18,25]. The next step is to expand all unsteady variables in terms of
the primary perturbation parameter, ε. Each fluctuation a 0may hence
be written as

a 0 � εa�1� � ε2a�2� � ε3a�3� �O�ε4� (8)

Here a alludes to a generic flow variable, and ε denotes
the ratio of the superimposed oscillatory pressure amplitude to the
traditionally larger mean chamber pressure. After some algebra,
the governing equations may be separated at first order in ε and
rearranged as

8>>>>><
>>>>>:

∂ρ�1�
∂t � −∇ ⋅ u�1� −Mb∇ ⋅ �ρ�1�U�

∂u�1�
∂t � − 1

γ ∇p
�1� −Mbf∇�U ⋅ u�1�� − U × ω�1� − u�1� ×Ωg − δ2∇ × ω�1� � δ2d∇�∇ ⋅ u�1��

∂T�1�
∂ � −MbU ⋅ ∇T�1� � γ−1

γ

�
∂p�1�
∂t �MbU ⋅ ∇p�1�

�
� δ2

Pr∇
2T�1�

p�1� � T�1� � ρ�1�

(9)

Equation (9) is often referred to as the set of interaction equations in
which the influence of the mean flowfield, U on the unsteady
disturbances, u�1� is clearly seen.

D. Headwall Injection Pattern

It may be instructive to note that the system of first-order
interaction equations encapsulated above is strongly dependent onU,
the steady stream of incoming fluid across the headwall. In practice,
the injection process at the faceplate can be somewhat complex,
specifically when taking into account the multitude of possible
injector configurations and showerhead patterns. Nonetheless, it is
routinely assumed that a streamtube motion quickly develops,
especially for conventional thrust chambers [31]. Bearing these
factors in mind, only low-order representations of the incoming jet
will be considered here. In the interest of simplicity, two types of
injections will be employed. The first corresponds to a uniform, top
hat, plug flow along the chamber length, and the second implements a
self-similar, bell-shaped, half-cosine that is often attributed to
Berman [32]. The latter has been frequently used in theoretical
studies of propulsive systems with headwall injection. Examples
abound and onemay cite, for example: Culick [22], Brown et al. [23],
Proudman [33], Beddini [34], Chedevergne et al. [35], Griffond and
Casalis [36], Saad and Majdalani [37], and Majdalani [38]. The two
test cases may be represented in nondimensional form using

Uniform profile∶ U � ez (10)

Berman �bell-shaped� profile∶ U � cos
�
1
2
πr2
�
ez (11)

In what follows, the vorticoacoustic transverse wavewill be modeled
in the presence of an oscillatory pressure disturbance and a mean
flowfield corresponding to Eqs. (10) and (11).

E. Flowfield Decomposition

In comparable studies leading to analytical solutions of wave
motions, the first-order fluctuations are invariably separated into an
acoustic and a vortical field [39,40]. On the one hand, the acoustic
part produces a potential motion that is compressible, irrotational,
inviscid, and isentropic. On the other hand, the vortical part gives rise
to an incompressible, rotational, and viscous field [27]. At the onset,
the potential solution, being inviscid, proves incapable of satisfying
the velocity adherence condition along solid boundaries. Both
physically andmathematically, a correction is required, namely in the
formof a vorticalwave. The latter is generated at the boundary in such
a manner as to offset the acoustic part at the wall. Using a circumflex
to denote the pressure-driven potential part, and a tilde for the
boundary-driven vortical component, the unsteady variables may be
once more decomposed into

u�1� � û� ~u; ω�1� � ω̂� ~ω; p�1� � p̂� ~p;

ρ�1� � ρ̂� ~ρ; T�1� � T̂ � ~T (12)

Substituting Eq. (12) into Eq. (9) yields two independent sets of
equations that remain coupled by virtue of the no-slip requirement at
the headwall [40]. These are
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Acoustic set∶

8>>><
>>>:

∂ρ̂
∂t � −∇ ⋅ û −MbU∇ ⋅ ρ̂; ∂û

∂t � − 1
γ ∇p̂ −Mb�∇�U ⋅ û� − û ×Ω�

∂T̂
∂t � −MbU ⋅ ∇T̂ � γ−1

γ

�
∂p̂
∂t �MbU ⋅ ∇p̂

�
p̂ � T̂ � ρ̂; ρ̂ � γρ̂

(13)

Vortical set∶

8>>><
>>>:
∇ ⋅ ~u � 0; ∂ ~u

∂t � − 1
γ ∇ ~p −Mb�∇�U ⋅ ~u� − U × ~ω − ~u ×Ω� − δ2∇ × ~ω� δ2d∇�∇ ⋅ ~u�

∂ ~T
∂t � −MbU ⋅ ∇ ~T � γ−1

γ

�
∂ ~p
∂t �MbU ⋅ ∇ ~p

�
� δ2

Pr∇
2 ~T

~p � ~T � ~ρ

(14)

F. Boundary Conditions

The fundamental disparities between acoustic and vortical fields
warrant the use of two dissimilar sets of boundary conditions. In the
case of the acoustic wave, a closed boundary must be maintained, as
usual, along all solid surfaces, including the injection site (i.e., at
r � 1, z � 0 and z � L∕R). In the case of the rotational wave, the no
slip at the headwall must be secured first and foremost, being the
counterpart of the sidewall boundary in the inverted analog of an
axially traveling wave within an elongated porous cylinder [21,40].
In both geometric configurations, the velocity adherence constraint is
imposed at the injecting surfaces, and these correspond to either the
headwall or the sidewall of the simulated LRE and SRM,
respectively. Along the noninjecting surface (sidewall), slip may be
allowed in the vortical wave formulation. At the downstream end of
the chamber, z � L∕R, the vortical wave must remain bounded and,
being sufficiently removed from the headwall, its rotational effects
are expected to have died out. Naturally, with the attenuation of the
unsteady vorticity component, thewave reduces to its potential form.
A summary of the physical constraints entailed in the resultingmodel
is given in Table 1.

III. Solution

This section describes the boundary-layer approach that we follow
to reduce the time-dependent vortical system into amoremanageable
set. The ensuing formulations are provided for both mean flow
profiles. However, because the vortical field is engendered by the
acoustic wave, the latter must be considered first.

A. Acoustic Formulation

Although Eq. (13) consists of an assortment of five equations, it
can be systematically reduced to a single equation that represents a
modified form of the wave equation. Using a well-established
manipulation of the acoustic set, the time derivative of the acoustic
mass conservation may be subtracted from the divergence of the
momentum equation to arrive at an extended form of the wave
equation [21], namely

∂2p̂
∂t2
� ∇2p̂�Mb

�
γ∇2�U ⋅ û� − γ∇ ⋅ �û ×Ω� − ∂

∂t
�U∇ ⋅ p̂�

�
(15)

Note that Eq. (15) incorporates the effects of the mean flow, albeit, at
the order of the blowing Mach number. At this juncture, it may be
useful to recall that the inlet or blowing Mach number is usually
smaller than unity (Mb ≤ 0.3). As such, it may be used as a secondary

perturbation parameter. This enables us to expand the acoustic
pressure in successive powers ofMb, viz

p̂ � p̂�0� �Mbp̂
�1� �M2

bp̂
�2� �O�M3

b� (16)

Forthwith, backward substitution into Eq. (15) renders, at leading
order

∂2p̂�0�

∂t2
� ∇2p̂�0� (17)

As usual, we recover the classical wave equation in three dimensions.
The solution of this partial differential equation (PDE)may be readily
extracted using the separation of variables. One gets

p̂�0��t; r; θ; z� � e−ikttJm�kmnr� cos�mθ� cos�klz� (18)

where t, m, n and l are positive integers that refer to the temporal,
tangential, radial, and longitudinal mode numbers, respectively. In
the same vein, kmn designates the transverse wave number that
depends on the joint tangential and radialmodes,m andn. In practice,
it may be deduced numerically by solving J 0m�kmn� � 0 and
generating, in successive fashion [21], the first radial, first tangential,
first radial and tangential modes, etc., according to

8<
:
k01 ≈ 3.83170597 k10 ≈ 1.84118378 k11 ≈ 5.33144277

k02 ≈ 7.01558667 k20 ≈ 3.05423693 k22 ≈ 9.96946782

k12 ≈ 8.53631637 k21 ≈ 6.70613319 etc.

(19)

To simplify the forthcoming analysis, we note that for a short
cylindrical enclosure in general, or a simulated LRE in particular, the
tangential and radial oscillations tend to dominate over their longitu-
dinal counterpart, mainly due to the short length of the chamber.
Hence, in our effort to emphasize the contribution of the transverse
modes, and given that cos�klz� remains close to unity for small z, one
may set kl ≈ 0 and reduce the leading-order acoustic pressure into

p̂�0��t; r; θ; z� � e−ikmntJm�kmnr� cos�mθ� (20)

The corresponding acoustic velocity may be deduced by integrating
the momentum equation and evaluating

û�0� � −
1

γ

Z
∇p̂�0� dt (21)

As such, a complete leading-order acoustic solution is realized,
specifically

�
p̂ � e−ikmntJm�kmnr� cos�mθ�; ûr � − i

kmnγ
e−ikmntJ 0m�kmnr� cos�mθ�

ûθ � i
kmnγ

m
r e

−ikmntJm�kmnr� sin�mθ�; ûz � 0

(22)

Table 1 Boundary conditions for the acoustic and vortical fields

Boundary

r � 1 z � 0 z � L∕R
Acoustic field n ⋅ ∇p̂ � 0 n ⋅ ∇p̂ � 0 n ⋅ ∇p̂ � 0
Vortical field No condition imposed u 0r � u 0θ � u 0z � 0 Bounded
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In Eq. (22) and what follows, a prime will be used to denote the
differentiation with respect to the radial coordinate.
For the reader’s convenience, the four parts of Fig. 2 are produced

to illustrate the instantaneous pressure distribution in a cylindrical
chamber at four sequential mode numbers. These correspond to four
zeroes of J 0m that are enumerated in Eq. (19). Everywhere, the
pressure contours represent snapshots taken in a polar plane at
t � 0.01 s, ∀ z, where darker and lighter shades denote higher and
lower values, respectively. It is interesting to note the evolution of the
nodal lines going from a) to d), thus giving rise to double-D and
alternating cross patterns that characterize the acousticmodes shapes.
In a) and b), the first and second radial modes are featured along with
the first tangential modewhere alternating double-D contours appear
either a) once or b) twice, with the second set brushing along the outer
periphery. In c) and d), the second tangential configuration is depicted
at the first and second radial modes. The last contour clearly captures
the symmetrically alternating wave structure in both tangential and
radial directions.

B. Vortical Formulation

Before proceeding with the solution of the vortical disturbance, it
may be useful to clarify the origin of the driving mechanisms for the
waves in question, while paying special attention to the reason for
the decoupling of the incompressible continuity and momentum
equations from the remaining members in Eq. (14). To this end, we
recall that the acoustic wave is induced by the pressure differential in
the chamber, but remains uninfluenced by the no-slip requirement at
the boundaries or the mean flow at the leading order in Mb. In
contrast, the vortical waves are entirely driven by the acoustic motion
at the boundaries and appear only as a dissipating correction that is
impacted by the chamber’s geometry, themean flow, and the acoustic
field. It may hence be argued that the rotational pressure contribution
may be dismissed in view of the pressure differential being mainly

prescribed by the acoustic field. This assumption enables us to ignore
~p as a first-cut approximation in the reduced momentum equation
[18], which simplifies the remaining set into

�
∇ ⋅ ~u � 0
∂ ~u
∂t � −Mb�∇�U ⋅ ~u� − U × ~ω − ~u ×Ω� − δ2∇ × ~ω (23)

Interestingly, the system in Eq. (23) becomes overdetermined, being
comprised of four equations with three unknowns: the three velocity
components, ~ur, ~uθ, and ~uz. A solution based on any three equations
has the propensity to generate a large error in the fourth equation,
depending on which three are chosen. To mathematically close the
system, one can retain the small vortical pressure wave ~p in the
momentum equation. The amended set becomes

�
∇ ⋅ ~u � 0
∂ ~u
∂t � − 1

γ ∇ ~p −Mb�∇�U ⋅ ~u� − U × ~ω − ~u ×Ω� − δ2∇ × ~ω (24)

In seeking an ansatz for ~u, we note that, in Eq. (24), the rotational
velocity disturbance stands as a function of time and three spatial
variables. Moreover, ~u�t; r; θ; z� must be chosen in a manner to
identically cancel the acoustic motion at the headwall, ∀ t. The time
dependence of the vortical field must, therefore, match that of the
acoustic motion at the headwall. This can be achieved when the
unsteady vortical wave exhibits the form

~u � e−ikmntf�r; θ; z� or
∂ ~u
∂t
� −ikmne−ikmntf�r; θ; z� � −ikmn ~u

(25)

This ansatz will be later used to secure a closed-form vortical
approximation.

C. Uniform Mean Flow

The transverse wave subject to a uniform mean flow is briefly
explored by [21], particularly, in the investigation of the acoustic
streamingmechanism in a simulatedLRE.The present extension begins
by applying a regular perturbation expansion to a well-established
variant of the conservation equations. For the case of a uniform mean
flow, Eq. (24) may be expanded in scalar notation to produce

8>>>>>>>>><
>>>>>>>>>:

~ur
r �

∂ ~ur
∂r � 1

r
∂ ~uθ
∂θ �

∂ ~uz
∂z � 0

−ikmn ~ur �Mb
∂ ~ur
∂z � 1

γ
∂ ~p
∂r � δ2

�
∂2 ~ur
∂z2 �

1
r2

∂2 ~ur
∂θ2 − 1

r2
∂ ~uθ
∂θ − 1

r
∂2 ~uθ
∂r∂θ −

∂2 ~uz
∂r∂z

�

−ikmn ~uθ �Mb
∂ ~uθ
∂z � − 1

γr
∂ ~p
∂θ � δ2

�
1
r2

∂ ~ur
∂θ − 1

r
∂2 ~ur
∂r∂θ −

~uθ
r2
� ∂2 ~uθ

∂z2 �
1
r
∂ ~uθ
∂r �

∂2 ~uθ
∂r2 − 1

r
∂2 ~uz
∂θ∂z

�

−ikmn ~uz �Mb
∂ ~uz
∂z � − 1

γ
∂ ~p
∂z − δ2

�
1
r
∂ ~ur
∂z �

∂2 ~ur
∂r∂z� 1

r
∂2 ~uθ
∂θ∂z −

1
r2

∂2 ~uz
∂θ2 − 1

r
∂ ~uz
∂r −

∂2 ~uz
∂r2

�
(26)

Recognizing that the vortical wave is dominant near the boundaries,
Eq. (26) may be transformed using boundary-layer theory, with the no-
slip boundary condition being enforced at the headwall. Because the
vortical wave can grow or decay in the axial direction, we rescale the
axial variable using a stretched inner coordinate

ζ � z
δ

(27)

Fig. 2 Pressure contours in a polar slice for transverse oscillations corresponding to: a) k11 � 5.3314, b) k12 � 8.5363, c) k21 � 6.7061, and
d) k22 � 9.9695.
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The next step is to perturb the vortical variables that appear in Eq. (26)
with respect to the viscous parameter using

~a � ~a�0� � δ ~a�1� � δ2 ~a�2� � δ3 ~a�3� �O�δ4� (28)

Collecting the terms of the same order in δ and rearranging leads to two
vortical sets that must be solved successively.

1. Leading-Order Solution

At O�1�, Eq. (26) begets

∂ ~u�0�ζ
∂ζ
� 0 (29)

−ikmn ~u
�0�
r �

Mb

δ

∂ ~u�0�r
∂ζ

−
∂2 ~u�0�r
∂ζ2

� −
1

γ

∂ ~p�0�

∂r
(30)

−ikmn ~u
�0�
θ �

Mb

δ

∂ ~u�0�θ
∂ζ

−
∂2 ~u�0�θ
∂ζ2

� −
1

γr

∂ ~p�0�

∂θ
(31)

1

γ

∂ ~p�0�

∂ζ
� 0 (32)

From one perspective, solving Eq. (32) leads to an axially invariant
~p�0� that is only a function of the radial, tangential, and timevariables.
One confirms that the axial propagation of the vortical wave is driven
solely by the no-slip condition at the headwall. At this order, the
vortical pressure does not affect the wave generated and must be
set equal to zero to preserve the physicality of the case at hand.
Similarly, Eq. (29) leads to a vanishing leading-order axial velocity
contribution. In short, we collect

~p�0� � 0; ~u�0�ζ � 0 (33)

From another perspective, the solutions of Eqs. (30) and (31) may be
straightforwardly extracted. The radial, now homogeneous PDE
precipitates

~u�0�r � Ar0�t; r; θ�eX1ζ � Br0�t; r; θ�eX2ζ (34)

where
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Mb
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At this juncture, two physical constraints may be brought to bear:
the physicality of the solution in the farfield and the no-slip
requirement at the headwall. First, because the real part ofX2 remains
positive, Br0�r; θ; t� must be suppressed to prevent the unbounded,

unphysical growth of the velocity as ζ tends to infinity. Equation (34)
reduces to

~u�0�r � Ar0�t; r; θ�eX1ζ (37)

Second, the velocity adherence condition at the headwall (ζ � 0)
demands that

~u�0�r �t; r; θ; 0� � ûr�t; r; θ; 0� � 0 (38)

and so

Ar0�t; r; θ� �
i

kmnγ
e−ikmnt cos�mθ�J 0m�kmnr� (39)

or

~u�0�r �
i

kmnγ
e−ikmnteX1ζ cos�mθ�J 0m�kmnr� (40)

A similar procedure can be used to solve Eq. (31) with the outcome
being

~u�0�θ � −
i

kmnγ

m

r
e−ikmnteX1ζ sin�mθ�Jm�kmnr� (41)

2. First-Order Solution

At O�δ�, Eq. (26) yields

∂ ~u�1�ζ
∂ζ
� −

1

r
~u�0�r −

∂ ~u�0�r
∂r

−
1

r

∂ ~u�0�θ
∂θ

(42)

ikmn ~u
�1�
r −

Mb

δ

∂ ~u�1�r
∂ζ
� ∂2 ~u�1�r

∂ζ2
� 1

γ

∂ ~p�1�

∂r
�

∂2 ~u�0�ζ
∂r∂ζ

(43)

ikmn ~u
�1�
θ −

Mb

δ

∂ ~u�1�θ
∂ζ
� ∂2 ~u�1�θ

∂ζ2
� −

1

γr

∂ ~p�1�

∂θ
� 1

r

∂2 ~u�0�ζ
∂θ∂ζ

(44)

1

γ

∂ ~p�1�

∂ζ
� ikmn ~u�0�ζ −

Mb

δ

∂ ~u�0�ζ
∂ζ

(45)

The vanishing leading-order axial velocity returns ~p�1� � 0.
Subsequently, Eq. (43) reduces to

ikmn ~u
�1�
r −

Mb

δ

∂ ~u�1�r
∂ζ
� ∂2 ~u�1�r

∂ζ2
� 0 (46)

The solution of this homogenousPDE is analogous to that ofEq. (37),
namely

~u�1�r � Ar1�t; r; θ�eX1ζ (47)

Here too, the no-slip condition must be fulfilled. However, since the
cancellation of the acoustic velocity has been accomplished at the
previous order, the leading-order contribution at the headwall must
not interfere. This implies

~u�1�r �t; r; θ; 0� � 0 (48)

Equation (48) results in a vanishing first-order radial velocity. A
parallel procedure applies to the tangential component in Eq. (44),
which mirrors Eq. (43). We get

~u�1�r � ~u�1�θ � 0 (49)
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At this point, the axial component may be resolved. By substituting
Eqs. (40) and (41) into Eq. (42), we obtain

∂ ~u�1�ζ
∂ζ
� ikmn

γ
e−ikmnteX1ζ cos�mθ�Jm�kmnr� (50)

Equation (50) may be integrated and made to satisfy the headwall
boundary condition. This operation entails

~u�1�ζ �
ikmn
γ
e−ikmnt

eX1ζ

X1

cos�mθ�Jm�kmnr� � Aζ1�t; r; θ� (51)

and ~u�1�ζ �t; r; θ; 0� � 0 or

Aζ1�t; r; θ� � −
ikmn
γ

1

X1

e−ikmnt cos�mθ�Jm�kmnr� (52)

whence ~u�1�ζ �
ikmn
γ

1

X1

e−ikmnt cos�mθ�Jm�kmnr��eX1ζ − 1�

(53)

D. Bell-Shaped Mean Flow

It may be argued that the one-dimensional bell-shaped mean flow
stands to provide a better physical approximation to the faceplate
injectionmechanism.While the uniformprofile allows for slippage at
the boundary, the bell-shaped motion overcomes this deficiency by
forcing the fluid to vanish at the sidewall. Through the use of a more
realistic representation of themean flow, an improved solution for the
transverse oscillations may hence be achieved. In this case, the
expansion of Eq. (24) with respect to the mean flow in Eq. (11)
produces
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The next step is to invoke boundary-layer theory to stretch the axial
coordinate and reduce Eqs. (54–57) asymptotically by perturbing the
resulting set with respect to δ.

1. Leading-Order Solution

Using ζ � z∕δ and a series after Eq. (28), Eqs. (54–57) may be
expanded and segregated at O�1� into

∂ ~u�0�ζ
∂ζ
� 0 (58)
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The treatment of Eqs. (61) then (58) mirrors the case of uniform
injection. The leading-order pseudopressure and axial velocity are
both determined to be vanishingly small, or ~p�0� � ~u�0�ζ � 0.
However, the solution of Eq. (59) leaves us with

~u�0�r � Ar�t; r; θ�eX1cζ � Br�t; r; θ�eX2cζ(62)

where
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Because all cosine terms remain positive in the domain of interest, the
real part ofX2C stays positive as well. One must setBr�t; r; θ� � 0 to
mitigate the exponential growth of ~u�0�r as ζ → ∞, a condition that
materializes at the outer edge of the boundary layer. This implies

~u�0�r � Ar0�t; r; θ�eX1ζ (65)

Lastly, prevention of slippage at the headwall enables us to deduce
Ar0�t; r; θ� and, therefore,

~u�0�r �
i

kmnγ
e−ikmnteX1Cζ cos�mθ�J 0m�kmnr� (66)

A nearly identical procedure leads to the identification of the
tangential component, specifically

~u�0�θ � −
i

kmnγ

m

r
e−ikmnteX1Cζ sin�mθ�Jm�kmnr� (67)
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2. First-Order Solution

The first-order expansion of Eqs. (54–57) precipitates
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By virtue of ~u�0�ζ � 0, Eq. (71) can be solved to obtain ~p�1� � 0. The
outcome may be substituted into Eq. (69) to arrive at a second-order
homogeneous PDE in ~u�1�r , namely
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δ
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The physical solution of Eq. (72) mirrors its counterpart at leading
order with

~u�1�r � Ar1
�
t; r; θ

�
eX1Cζ (73)

Consistently with the uniform flow case, it is possible to deduce that
~u�1�r � ~u�1�θ � 0. Lastly, to extract the axial correction, Eqs. (66) and
(67) may be inserted into Eq. (68) to retrieve
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Recalling that ~u�1�ζ � 0 at the headwall, Eq. (74) may be integrated
with respect to ζ and simplified into

~u�1�ζ �
i

kmnγ

1

X1C

e−ikmnt
�
k2mnJm�kmnr��eX1Cζ − 1�

−
X 01C
X1C

J 0m�kmnr��ζeX1CζX1C � 1 − eX1Cζ�
�
cos�mθ� (75)

Figure 3 showcases the unsteady velocity vectors in a chamber cross
section taken at t � 0.01 s and an axial distance of ζ � 1 from the
headwall. The four parts correspond to the same representative cases
andmode numbers used to describe the acoustic pressure in Fig. 2. As
one would expect, the rich vorticoacoustic wave structures that
emerge are strongly influenced by the acoustic mode shapes. The
nodal lines appear to be at either 90 or 45 deg angles with respect to
the pressure, thus leading to the horizontal (instead of vertical)
symmetry in parts a) and b) where m � 1, and straight crosses
(instead of oblique crosses) in parts c) and d) where m � 2. In
comparison to the acoustic pressure distribution displayed in Fig. 2,
the nodal lines of the vorticoacoustic waves are shifted by a phase
angle of π∕�2m�.

IV. Results and Discussion

The analytical approximations obtained heretofore can be
collected into two sets of expressions for the vorticoacoustic velocity
and pressure distributions. The significance of these results and the
behavior of their corresponding waves will now be discussed.
Furthermore, thewave behavior associatedwith each of the twomean
flow profiles will be compared and contrasted.
To start, a summary of the vorticoacoustic wave components will

be provided through the superposition of potential and rotational
contributions. The resulting unsteady fluctuations are given by
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(76)

and

Bell-shaped injection∶

8>>>>><
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d) b) c)
 

a)  
Fig. 3 Vorticoacoustic velocity vectors in a polar slice taken at ζ � 1 and transverse mode numbers corresponding to: a) k11 � 5.3314, b) k12 � 8.5363,
c) k21 � 6.7061, and d) k22 � 9.9695.
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For the sake of illustration, Figs. 4–6 are used to display the behavior
of the radial, tangential and axial disturbances versus the axial
coordinate at decreasing values of the inlet Mach number. This is
achieved at t � 0, r � 0.4, θ � 1

3
π, δ � 0.000647, and a thrust

chamber with a unit aspect ratio (L∕R � 1) [21]. The corresponding
plots capture the oscillatorymotion for the first tangentialmode using
k10. Furthermore, Figs. 4–6 display the unsteady velocities at two
inlet Mach numbers that differ by two orders of magnitude: Mb �
0.3 and 0.003.

A. Numerical Verification

Byway of verification, a numerical solver is written to compute the
solutions corresponding to Eqs. (29–32), (42–45), (58–61), and
(68–71). The solver uses a shooting scheme in conjunction with
Mathematica’s built-in numerical integrators to perform the
necessary calculations. To ensure numerical stability and reduce
interpolation errors, we find it essential to begin integrating at the end
of the domain, where z � 1, and work our way back to the headwall.
In order to ensure conformity between the derived analytical

solutions and their numerical counterparts, we evaluate the system of
vortical equations for the cases described in the previous sections,
i.e., for t � 0, r � 0.4, θ � 1

3
π, δ � 0.000647, the first tangential

mode, and two Mach numbers that bracket the range of
0.003–0.3. The numerical results are shown using black dots in
Figs. 4–6. Given that the level of agreement between numerics and
asymptotics is quite favorable, we now proceed to characterize the
vorticoacoustic waves based on the analytical solutions given by
Eqs. (76) and (77).

B. Wave Characterization

It should be noted that the expressions for unsteady radial and
tangential velocities in Eqs. (76) and (77) are nearly identical. The
effect of specific mean flow motion is manifested through the axial
constantsX1 andX1C.Were it not for this mean flow dissimilarity, the
two sets in the radial and tangential directions would have been
identical. The corresponding spatial distributions are, hence,
expected to behave similarly, with minor shifts that are caused by
differences in their mean flow speeds. This observation is confirmed
by the plots in Figs. 4–6. For example, at r � 0.4, the mean flow
speed takes on a value of unity for the uniform flow and 0.9686 for the
bell-shaped profile. This small difference may explain the slower
downstream propagation of the unsteady traveling wave associated
with the bell-shaped profile relative to the solution connectedwith the
uniform mean flow.
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Fig. 5 Unsteady tangential velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003.
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Fig. 6 Unsteady axial velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003.
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Fig. 4 Unsteady radial velocity at inlet Mach numbers corresponding to: a) 0.3 and b) 0.003.
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Interestingly, an inspection of the asymptotic orders reveals that
the radial and tangential vortical velocities appear at order δ2 (hence,
of order Re−1a ). This is an important observation since, in classical
fluid dynamics, the normalization and subsequent analysis are
traditionally based on the reciprocal of the Reynolds number, a
quantity that is often taken as the primary perturbation parameter in
lieu of the viscous parameter, δ. In short, it can be shown that these
two velocity corrections skip every odd order and, therefore, appear
only at even powers of δ. Then one may argue whether their
derivation could have been achieved using the more traditional
expansion in the reciprocal of the Reynolds number. The answer is
negative, and this is owed in large part to the behavior of ~uz. Unlike ~ur
and ~uθ, the expansion of the axial vortical velocity ~uz is shifted by an
order of δ from its tangential and radial counterparts, as onemay infer
from Eqs. (76) and (77). This also justifies the strategy used in the
present approach, including the coordinate transformation that
requires stretching the axial coordinate using theviscous parameter in
lieu of the inverted Reynolds number.
Concerning the vortical pseudopressure, it may be instructive to

note that, although ~p is not dismissed at the onset from the rotational
momentum equation, it is carefully derived and shown to be strictly
zero for the first two orders in δ. We can, therefore, project that the
vortical wave will only affect the acoustic pressure distribution
starting at order δ2. This observation confirms the analogous treat-
ment of the longitudinal wave problem in a simulated SRM, where
the vortical pressure is discarded throughout the analysis [18,40].
Here, its dismissal is formally established.
Returning to the wave velocity, the behavior of the vortical

component in the axial direction deserves particular attention.
Recalling that the acoustic component of the axial wave is discounted
here (assuming a short chamber), the unsteady axial wave, u 0z,
becomes confoundedwith the vortical part, ~uz. The latter is needed to
compensate for the more dominant tangential and radial components
and, in the process, ensure that continuity is firmly satisfied.
Figure 6 illustrates the behavior of u 0z for two injection Mach

numbers. In these snapshots, the average unsteady velocity appears to
be negative in the uniform injection case. Although the same average
for the bell-shaped profile proves to be negative at this chamber
location, itsmagnitude exhibits a smaller absolutevalue. The resulting
behavior may be elucidated by turning our attention to the source of
the axial solution. Given that the asymptotically reduced form of the
continuity equation stands at the basis of u 0z, the actual determination
of the axial fluctuation remains intertwined with the behavior of the
transverse wave gradients at any prescribed location. The negative
oscillations in the axial direction are, therefore, required to locally
satisfy continuity. Regarding the speed of the mean flow at r � 0.4,
the bell-shaped pattern, in comparison to the uniform motion,
possesses less energy to sustain the traveling wave motion. This
explains why its propagation is accompanied by faster attenuation.
To further explore this point, an inspection of the axial constant

X1C in Eq. (63) confirms that, at the centerline, the bell-shaped
pattern yields a value of unity, which matches the uniform flow case.
Moreover, as we move away toward the sidewall, the cosine function
approaches zero. In close proximity of the sidewall, the axial constant
tends to negative infinity, having a negative real part. It may,
therefore, be seen that at the sidewall, Eq. (77) reduces to

8>><
>>:
p 0 � e−ikmntJm�kmnr� cos�mθ� �O�Mb; δ

2�
u 0r � 0�O�Mb; δ

2�
u 0θ � im

kmnγ
e−ikmntJm�kmn� sin�mθ� �O�Mb; δ

2�
u 0z ≈ 0�O�δ3�

(78)

Equation (78) shows that through the use of a bell-shapedmean flow,
the ensuing transverse wave motion can intrinsically satisfy the
no-slip requirement, not only at the headwall, but at the sidewall as
well. This is true for the dominant component of the wave u 0r, while
being asymptotically correct for the axial component u 0z. As for the
contribution of the tangential component u 0θ its value at the sidewall
mirrors that of the acoustic component because the vortical
contribution vanishes locally. It may hence be argued that the ability

of this model to satisfy the physical requirements along all
boundaries grants it more generality than its predecessor with
uniform headwall injection.

C. Penetration Number and Rotational Layer Thickness

Figures 4–6 illustrate the dependence of the wave’s boundary-
layer thickness on the injection Mach number. It is apparent that the
viscous forces dominate over the inertial forces as the injectionMach
number is reduced. Conversely, when the injection Mach number is
increased, the boundary layer is blown off the headwall [41]. It may
be noted that the faster decay of the wave (caused by a lower Mach
number) results in a lower propagation wavelength as measured by
the peak-to-peak distance.
Physically, the behavior of the propagation wavelength may

be attributed to the wave’s Strouhal number, or dimensionless
frequency, defined by S � kmn∕Mb. A decrement in the injection
Mach number and its corresponding increment in the Strouhal
number lead to a larger number of reversals per unit time. Further-
more, the increased frequency results in a higher interaction rate
between fluid particles, and the increased friction between shear
layers leads to a more rapid attenuation of the wave amplitude.
Algebraically, the same behavior may be deduced by rewriting the

axial decay terms X1 and X1C of Eqs. (35) and (63) in terms of the
Strouhal number and another dimensionless parameter. To this end,
two-term Maclaurin series approximations of X1 and X1C are
required to capture the wave amplitude and propagation parameters.
These are

X1 ≈ i
kmnδ

Mb

−
k2mnδ

3

M3
b

� δ

�
iS −

1

Sp

�
(79)

and

X1C ≈ i
kmnδ

Mb cos �1
2
πr2�

−
k2mnδ

3

M3
b cos3�1

2
πr2�

� δ

�
iS sec



1
2
πr2
�
−
sec3�1

2
πr2�
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�
(80)

where the effective penetration number Sp emerges in the form

Sp �
M3
b

k2mnδ
2
�
�
U3
b

a30

��
a0R

ν0

��
a20

ω2
0R

2

�
� U3

b

ν0ω
2
0R

(81)

This parameter, first discovered by Majdalani in 1992 and discussed
by [25], plays a key role in the characterization of the boundary-layer
thickness of the longitudinal vorticoacoustic wave in a simulated
SRM. Note that an increase in Sp leads to a deeper penetration of the
wave. From a physical standpoint, the penetration number gauges the
balance between two basic forces: unsteady inertia and viscous
diffusion of the radial and tangential velocities in the axial direction.
For the radial velocity, Sp may be viewed as the ratio of

unsteady inertial force

viscous force
≈

∂u�r
∂t�

ν ∂2u�r
∂z�2

≈
u�r
t�

ν u
�
r

z�2

� z
�2

νt�

≈
�Ub∕ω0�2
ν�R∕Ub�

� U3
b

ν0ω
2
0R
� Sp (82)

In the present study, the wave expressions may be recast using the
Strouhal and penetration numbers. For the bell-shaped injection
profile, the (real)magnitudes of thewaves in Eq. (77) are governed by

u 0r ∼ J 0m�kmnr�
�
1 − exp

�
−

z

Sp cos3 η

��
(83)

u 0θ ∼ Jm�kmnr�
�
1 − exp

�
−

z

Sp cos3 η

��
(84)

and
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u 0z ∼ Sp cos3 η

8><
>:
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h
exp
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− z
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�
− 1

i
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h
z

Sp cos3 η
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− z
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�
− exp
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− z
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�
� 1

i
9>=
>; (85)

where η ≡ 1
2
πr2.

An inspection of Eqs. (83–85) reveals that, at the sidewall, the
radial and axial components vanish, while the tangential component
scales with Jm (kmn); this behavior is consistent with the observations
of the previous section. The rotational boundary layer can also be
deduced from Eqs. (83) and (84). The penetration of rotational
elements is traditionally defined as the distance from the injecting
wall to the point where the contribution of the vortical wave becomes
negligible, traditionally taken at 1% of the acoustic wave [41].
Because the axial component of the potential field vanishes in the
farfield, the penetration depth may be deduced for the radial and
tangential components by putting

exp

�
−

z

Sp cos
3 η

�
� α ≡ 0.01 (86)

where α corresponds to 1% and zp denotes the axial thickness of the
rotational boundary layer. Rearranging Eq. (86) renders

zp � Sp cos3
�
1

2
πr2
�
ln�α−1� � M3

b

k2mnδ
2
cos3

�
1

2
πr2
�
ln�α−1�

(87)

Figure 7 correlates the thickness of the vorticoacoustic boundary
layer to the injection Mach number and viscous parameter. In
conjunction with the expression in Eq. (87), Fig. 7 shows that the
boundary layer is thick for large injection Mach numbers, exceeding

by far the length of the chamber. When this case occurs, the linear
oscillations have no time to decay before exiting the chamber. On the
other hand, in the case of a small injection Mach number, the
oscillations would take their toll almost entirely in the injector zone
before fading out elsewhere. Moreover, the particular dependence on
the injection pattern may be inferred from the expression of the
penetration depth. The boundary-layer thickness reaches its peak at
the centerline, where disturbances are convected into the chamber at
the largest headwall velocity and then depreciates precipitously to
zero at the sidewall where the mean flow is forced to rest.
Figure 8 compares the rotational boundary layers in the axial

(SRM) and transverse (LRE) cases along with their dependence on
the penetration number. In a simulated SRM, particles injected
radially at the sidewall must turn before merging in the longitudinal
direction, parallel to the chamber axis. This causes the penetration
depth to increase in the direction along which unsteady vorticity is
swept by virtue of the mean flow. Conversely, in a simulated LRE,
injection takes place at the headwall and remains unaffected by the
downstream convection of unsteady vorticity. The thickness of the
boundary layer is, thus, dependent only on the speed of injection.
Throughout the chamber, a linear correlation, given by Eq. (87),
controls the depth of penetration. Unlike the axially dominated wave
problem for which the wall-normal depth of penetration yp
approaches a maximum inviscid upper limit as Sp → ∞, the axial
depth of penetration, zp, continues to grow linearly with Sp until the
physical limitations of the model are exceeded. This behavior is also
captured in Figs. 4 and 5 where the sweeping motion of vorti-
coacoustic waves over the entire chamber volume is accompanied by
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no discernible attenuation for the case of Mb � 0.3. In contrast,
Figs. 4 and 5 confirm that the wave decay in the vicinity of the
headwall is much more pronounced for a reduced value of
Mb � 0.003.

D. Wave Properties

In addition to the penetration depth, three properties must be
investigated to complete our characterization of the vorticoacoustic
wave behavior. These consist of the spatial wavelength, λ, the
unsteady velocity overshoot factor, OF, and its spatial locus, zOS.
Granted that the radial and tangential components have nearly
identical expressions, the following analysis is performed using the
radial component only. Nonetheless, the upcoming procedure is
applicable to both waves.

1. Spatial Wavelength

The spatial wavelength, λ, refers to the distance traveled by awave
during one period. It also denotes the distance between two
consecutive peaks. To calculate λ, the wave propagation speed in the
axial directionmust be determined. To this end, the radial component
of the vortical wave in Eq. (77) can be first rewritten as

~ur � F�r; θ; z� exp
n
i
h
S sec

�
1
2
πr2
�
z − kmnt

io
(88)

where F represents the amplitude of the wave. With the propagation
of the wave in the axial direction being our primary concern,
differentiation of the axial component is required to find the
corresponding velocity. We have

S sec
�
1
2
πr2
�
dz − kmn dt � 0 or Vw �

dz

dt

�
kmn cos �1

2
πr2�

S
� Mb cos

�
1
2
πr2
�

(89)

Knowing that the period of oscillation is τ � 2π∕kmn, the spatial
wavelength is retrieved as

λs � Vwτ �
cos �1

2
πr2�
S

(90)

Consistent with the classic theory of periodic flows [42], we note that
the velocity of propagation is dependent only on the medium and
conditions, i.e., the injection Mach number and the radial distance
from the centerline. Moreover, the wavelength depends on the mode
number, which is embedded in the Strouhal number. Higher modes
reduce the peak-to-peak distance between oscillations, as one would
expect.An important characteristic of thismodel is the dependence of
all properties on the radial distance from the centerline. Accordingly,
oscillations in the vicinity of the sidewall propagate at a much slower
rate than those located near the chamber core.

2. Unsteady Velocity Overshoot

The presence of the Strouhal number in the argument of the
vortical solution serves to control the phase difference between
the strictly acoustic and vortical waves. Due to their phase difference,
the two waves will periodically couple at nearly the same phase,
thus, resulting in an overshoot of the unsteady velocity that can reach,
in some cases, twice the acoustic wave amplitude. This type
of overshoot was first reported by Richardson [43], and then
Richardson and Tyler [44], before becoming known officially as
the ‘Richardson’s annular effect.’ In the corresponding classical
experiments, Richardson originally anticipated that the maximum
axial velocity measurements would occur near the centerline of his
resonator tubes, as would be expected of viscous flows in circular
cylinders. Instead, the largest amplitudeswere detected in the vicinity
of the sidewall, a behavior that was deemed unusual at first. Upon
further scrutiny, the observed velocity amplifications were attributed
to the phase shift that existed between the main acoustic oscillations
and viscous-generated rotational waves at the wall. In the case of
transverse waves in LREs, it is essential to evaluate whether such an
overshoot can occur especially that it stands to increase the amplitude
of the vorticoacoustic waves near the headwall. Naturally, more
severe damage to the injector faceplates can be induced as a result of
this potential doubling in acoustic wave amplitude.
Knowing that the overshoot takes place when both waves travel in

phase, this condition may be recreated according to Eq. (88) when
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~ur � −F�r; θ; z� exp�−ikmnt�; the locus of the overshoot can thus be
deduced to be

zOS �
π

S
cos

�
1
2
πr2
�

(91)

Given our underlying normalization, the induced overshoot factor
can be determined by combining the axial contribution of the vortical
correction to that of the acoustic wave. The overshoot factor OF can
be extracted fromEq. (77) and (80) by evaluating the amplitude of the
vorticoacoustic velocity at z � zOS. Starting with

OF � 1 − exp

�
iS sec

�
1
2
πr2
�
zOS −

sec3�1
2
πr2�

Sp
zOS

�
(92)

we have
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2
πr2�

S

Reb

�
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π

cos2�1
2
πr2�

1

SSp
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Figure 9 quantifies the overshoot factor and its locus for different
control parameters. Note that on one hand, OF depends on the
Strouhal number, the distance from the centerline, and the average
chamber viscosity; the latter is accounted for through the blowing
Reynolds number at the headwall, Reb � MbRea � UbR∕ν0. On
the other hand, the different figures and their families of curves
collapse into single lines (depicted in Fig. 10a) when plotted versus
the product of the Strouhal and penetration numbers. Figure 10a
shows that the strength of the overshoot decreases as we move away
from the chamber centerline and increases at higher values of SSp,
i.e., with larger injection velocities or smaller frequencies. However,
the locus of the overshoot depends solely on the Strouhal number and
the distance from the centerline. For practical values of the Strouhal
number, the overshoot takes place in the neighborhood of the
headwall within 25% of the chamber radius. Recalling that faceplate
injectors protrude inwardly, they can be subjected to oscillations
reaching twice the strength of the predicted acoustic waves, even in
the linear range. Additionally, it appears that the distance from the
centerline affects the overshoot and its properties. The slower
injection rate near the sidewalls leads to a smaller overshoot factor.
Furthermore, as one may infer from Eq. (91) and Fig. 10b, zOS
diminishes away from the centerline and vanishes along the sidewall.
This behavior shifts the line of maximum wave amplitude closer to
the headwall as the sidewall is approached. In the case of a liquid
rocket engine, these spatial excursions of peak transverse amplitudes
serve to amplify shearing stresses on the injectors, where coupling
between modes can lead to further steepening and shock-like
behavior.

V. Conclusions

In this study, asymptotic expansion tools are used to capture small-
to-moderate amplitude oscillations that are dominated by their
transverse motion in a short circular cylinder that mimics the cold
flow environment of a simple liquid rocket engine. Two particular
formulations are advanced, and these correspond to either uniform or
bell-shaped cosine-like injection patterns at the chamber headwall.
After decomposing the unsteady wave into potential and rotational
fields, the latter is resolved using a boundary-layer formulation that
relies on a small viscous parameter, δ. This parameter corresponds to
the square root of the inverted Reynolds number based on viscosity
and the speed of sound. At the outset, several fundamental flow
features are unraveled including the radial, tangential, and axial
velocities of the time-dependent vortical field. For example, the
pseudopressure associated with the rotational motion is rigorously
derived and shown to be immaterial to the present analysis. The
penetration number, a keystone parameter that controls the depth of
penetration of unsteady vorticity, is also identified. It is seen to be
nearly identical to its counterpart arising in the longitudinal wave
analog encountered in the treatment of oscillatory motion in solid
rocket motors (SRMs). The advent of this parameter enables the full
characterization of the depth of penetration in the direction normal to
the injecting surface. Furthermore, the formulation for the unsteady
motion connected with uniform headwall injection is found to be
consistent with a previous study aimed at investigating acoustic
streaming in a cylindrical cavity. The zeroth-order injection model,
however, leads to a transversewave solution that allows slip along the
sidewall. An improved formulation is presented here based on a bell-
shaped injection profile. The latter is shown to satisfy the no-slip
boundary at both headwall and chamber sidewall for the radial and
axial components.
With the vorticoacoustic solution at hand, fundamental wave

propagation properties are carefully extracted and discussed. These
include the depth of penetration and Richardson’s overshoot factor of
the transversewaves. These are found to be strongly dependent on the
Strouhal and penetration numbers. The latter represents a keystone
parameter that seems to recur whenever oscillatory wave motion is
considered above an injecting surface. The locus of peak wave
amplitude, in particular, is found to be smaller than a quarter radius,
thus placing the maximum shearing stresses (resulting from
transverse wave motion) in the close vicinity of the headwall. In
futurework, the steepening of thesewaveswill be examined. It is also
hoped that a similar mathematical strategy will be later pursued to
achieve more general and higher order models of multidimensional
waves in various geometric settings.
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