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This work is focused on the one-dimensional equations that prescribe the functional modes of a
converging–diverging nozzle operating under a range of chamber pressures. Specifically, our study aims
at characterizing the flow regimes that are likely to develop inside a Laval nozzle during the blowdown
process that takes place at mission’s end. Blowdown transients can lead to undesirable sideloads in
the nozzle due to flow asymmetries and shock transitions, shock excursions, flow separation, and the
formation of recirculatory zones. By representing the flowfield with one-dimensional equations, a direct
analytical solution is obtained for the key pressure ratios that control the evolving flow character:
supersonic with external shocks, supersonic with optimal expansion, supersonic with internal shocks,
or subsonic throughout. These delimiting pressure ratios are determined here using novel asymptotic
expansions that enable us to bracket the flow regimes that are particularly susceptible to sideload
excursions. The flow attributes of successive flow regimes and their corresponding shock transitions are
subsequently explained in view of the pressure evolution that accompanies chamber blowdown. We close
with a discussion of experimental observations that suggest the possibility of spin generation during tail-
off in the upper stage of a sounding rocket in which slag accumulation is reported.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Nozzle transients and corresponding flow transitions have long
been a source of concern for aerospace engineers. Though often
short in duration, transient effects, such as those entailed during
the pressure blowdown process, can lead to unpredictable vibra-
tional loads on both the nozzle and vehicle structure. Naturally,
the resulting structural vibrations are accompanied by intermittent
torques and sideloads that have been repeatedly shown to affect
the intended mission profile. For example, sideloads have been ob-
served in a number of hardware configurations including the J2-S
[1], Vulcain [18], LE-7A [16,17], and the Space Shuttle Main En-
gine [8]. In some cases, the severity of sideload transients has been
deemed responsible for the damage inflicted on both engine struc-
ture and nozzle hardware. Such unsteady motions have also been
reported in the development of advanced nozzle concepts, such as
the dual bell nozzle [12].
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In order to elucidate the physical interactions that evolve during
the startup and blowdown processes, it is essential to character-
ize the flow through a nozzle undergoing variations in the pres-
sure ratio. To this end, the normalized pressure trace of a typical
rocket motor is illustrated in Fig. 1 for a) startup and b) blow-
down events. For a fully-flowing nozzle at the end of its mission,
the nozzle often begins with under-expanded operation (i.e., sta-
tion 1!). Between stations 1! and 2!, the exit pressure p̄e remains
higher than the atmospheric back pressure, thus ensuring a super-
sonic discharge out of the nozzle. As the motor completes its burn,
the chamber pressure decreases, and the nozzle passes through the
first delimiting pressure value at 2!; this station denotes an optimal
operating condition of a supersonic nozzle with no aftershock ef-
fects. In practice, this ideal condition rarely occurs near the end of
rocket flight because of inevitable constraints on the mission pro-
file. Instead, it is realized earlier in the mission to prevent the early
stages of motor burn from experiencing severe over-expansions.

After crossing the fully-flowing supersonic nozzle pressure ra-
tio, the flow enters the slightly over-expanded regime delineated
here as 3!. At this stage, oblique shocks begin to form at the edges
of the nozzle to the extent that the lower exit pressure will in-
crease to match ambient conditions. These shocks remain external
to the nozzle and as such, do not affect vehicle performance. As
blowdown progresses, the chamber pressure continues to decline
and the flowfield passes through a non-isentropic boundary point,
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Nomenclature

A local cross sectional area
At nozzle throat area
c1, c2 coefficients given by Eq. (32)
p pressure ratio, p̄c/p̄e
popt normalized exit pressure at optimal expansion station

2!, p̄opt/p̄e
psub normalized exit pressure at the initial choking station

6!, p̄sub/p̄e
psup normalized exit pressure at station 4! with shock in

the exit plane, p̄sup/p̄e
α first exponent in the isentropic pressure equation,

−2/γ
β second exponent in the isentropic pressure equation,

−1 − 1/γ

ε perturbation parameter, (At/Ae)
2

γ ratio of specific heats
ξ constant related to γ via Eq. (4)

Subscripts and symbols

0,1 leading and first order
1!, 2!, . . . states on the pressure map
c condition in the chamber
e condition in the exit plane
n asymptotic level
t condition at the nozzle throat
− condition before a normal shock (minus)
+ condition after a normal shock (plus)

overbars denote dimensional quantities

Fig. 1. Pressure trace of a rocket motor during a) startup and b) blowdown.
namely, a standing normal shock in the exit plane, labeled 4! in
Figs. 1 and 2.

Further decreases in the chamber pressure give rise to region 5!
where irreversible processes begin to move into the nozzle as a
consequence of both normal and oblique shocks, depending on
the nozzle’s shape and configuration. In addition to these shocks,
flow separation and regions of recirculation are likely to emerge.
As these processes unfold asymmetrically, the probability of a re-
sulting net sideload increases. Then as the pressure decreases fur-
ther, the flow passes through the choking boundary (labeled 6! in
Figs. 1 and 2). It finally enters the region of fully subsonic flow.
In this regime, the flow may no longer remain axial given the ab-
sence of supersonic gas expansion in the streamwise direction. At
the outset, the three components of the velocity vector become
of comparable magnitudes to the extent that tangential velocities
and related forces are no longer small relative to their axial coun-
terparts. This is especially true during the evacuation phase of the
chamber, which is often accompanied by the formation of bathtub
vortices and potential throat area reductions that can be induced
by vortex blockage in the nozzle entrance region. At length, as the
gaseous mixtures are cooled during the blowdown process, solidi-
fication of slag particles can play an increasingly important role in
drag generation. The ejection of slag during tail-off can also lead to
additional spin transients that are not well understood. In order to
theoretically characterize the evolution of these various processes,
the pressure blowdown cycle must be carefully tracked inside a
traditional, converging–diverging, Laval nozzle.
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Fig. 2. Various flow configurations depicting regions and threshold states during pressure blowdown.
In actuality, practical applications of Laval nozzles give rise to
a set of fundamental challenges to the theoretical analyst. On the
one hand, the flowfield may be simple enough to warrant the use
of one-dimensional models. On the other hand, even with such
an ambitious idealization, the resulting equations are often tran-
scendental to the extent of disallowing direct analytical solutions.
Modern textbooks on the subject still include compressible flow
tables for handling one-dimensional nozzle expansions. Calcula-
tions of vital quantities, such as the nozzle optimal or critical back
pressures, are carried out in multiple steps that require either in-
terpolation of tabular data or numerical root finding. In two recent
studies, several explicit analytical approximations have been de-
veloped for the isentropic thermodynamic relations [11] as well as
the area-Mach number equation [10]. These expressions not only
augment the existing body of engineering tools, they also enable
us to quickly and accurately evaluate fundamental flow properties
without resorting to numerical extrapolation or trial. A similar ap-
proach based on the Engineering Equation Solver (EES) is elegantly
described by Gaggioli [5,6]. Both methods permit the direct imple-
mentation of temperature sensitive or spatially varying properties
to the extent of improving the precision of reported results.

In its simplest form, one-dimensional, isentropic flow theory
offers two roots for the pressure ratio across a Laval nozzle: the
subsonic root, which denotes the pressure ratio at which the throat
first chokes, and the supersonic root, which corresponds to a fully
flowing, supersonic nozzle with shock-free conditions. Between
these two pressure ratios, isentropic solutions cannot exist, and a
non-isentropic process must be introduced. Evidently, a variety of
agents can give rise to entropy increases. For example, both numer-
ical simulations and experiments have shown that viscous effects
can initiate oblique shocks, flow separation, recirculation, and ex-
pansion waves [4]. Because these effects require a departure from
one-dimensional theory, an approximation can be made by intro-
ducing a single normal shock at some location within the nozzle.

In hindsight, understanding these critical values may be the
key to understanding the effects of transients on nozzle perfor-
mance. During start-up and shut-down, the pressure in the cham-
ber varies abruptly as the motor cycles up or blows down. While
the transient timescales remain short, significant sideloads can be
generated during the transition across the over-expanded regime.
Though asymmetries in the flow generally drive these sideloads,
one-dimensional theory can be faithfully relied on to systemati-
cally delineate the boundaries that separate the internal and exter-
nal shock regions.

In this study, we investigate the ability of one-dimensional noz-
zle theory to track these dynamically-evolving transition points
with an arbitrary level of precision. While this reduced-order
model cannot account for multi-dimensional effects, the predomi-
nantly axial flow through a supersonic nozzle will be approximated
through the use of quasi-one-dimensional expressions, namely
Stodola’s isentropic area ratio equation and its various derivatives.
Here, Stodola’s area ratio expression will be combined with the
equations for isentropic pressure behavior to retrieve an expres-
sion relating the pressure and nozzle area ratio. Additionally, the
equation for the pressure jump across a normal shock will be used
to directly predict the condition for which a normal shock will oc-
cur in the exit plane of a supersonic nozzle. These expressions will
be systematically inverted, using formal asymptotic tools, to pro-
duce engineering approximations that can pinpoint the transition
points directly, without resorting to numerical coding or tabula-
tion.

Before leaving this section, it may be instructive to note that, in
describing a multi-dimensional flowfield with a one-dimensional
framework, care must be taken to verify the accuracy of the
model. In a related study, the authors have compared their one-
dimensional isentropic results to a multi-dimensional CFD simu-
lation [10]. The multi-dimensional effects were showcased in the
supersonic portion of the nozzle where the computed proper-
ties along the centerline and sidewall diverged from their one-
dimensional counterparts. Nonetheless, the area-averaged CFD so-
lutions agreed quite consistently with one-dimensional predictions,
thus lending support to the nozzle equations considered here.

Evidently, additional features must be investigated in the
startup and blowdown phases of a nozzle. Since the flowfield dur-
ing these transient processes can exhibit strong irreversibilities, the
shock relations must be employed where appropriate. The present
study constitutes a first step towards a framework that can incor-
porate non-isentropic effects while retaining an analytical closure
for the pressure evolution in a Laval nozzle.

2. Formulation

While the generation of sideloads cannot be handled using a
one-dimensional framework, the present model provides a fun-
damental starting point to separate these more complicated flow
regions while retaining analytical closure. The boundaries labeled
2! and 6! in Fig. 1 are generated using the isentropic pressure rela-
tion, reformulated in terms of the area ratio rather than the Mach
number. Based on Liepmann and Roshko [9], we have

p2/γ
(
1 − p1−1/γ

) = ε

(
γ − 1

γ + 1

)(
2

γ + 1

) 2
γ −1

(1)

Here ε is the inverse of the expansion ratio squared, p is the pres-
sure ratio p̄e/p̄c, and γ is the ratio of specific heats. Based on
Eq. (1), two branches emerge for a given isentropic expansion. The
first denotes the subsonic pressure ratio 6! at which the throat
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is first choked. The second refers to the supersonic root 2! lead-
ing to optimal design conditions, with shock-free supersonic flow
throughout. From an asymptotic standpoint, two possible routes
may be taken: (a) solving for the faster converging ratio and then
inverting the final solution so that the chamber pressure appears
in the numerator, or (b) inverting the ratio upfront and then solv-
ing the modified expression. Results from both methods will be
compared in the following sections.

Before addressing the alternate formulations, it may be useful
to recall that no isentropic solutions exist between popt and psub,
or states 2! and 6! in Fig. 1. The surface of demarcation between
externally and internally occurring shocks corresponds to state 4!
in the exit nozzle plane where psup may be calculated using the
normal shock relation given by:

P = 2εγ

[(
2

γ + 1

)(
1 + γ − 1

4γ
P

)] γ +1
γ −1

, P = p̄+

p̄− (2)

In Eq. (2), P represents the pressure change across a shock, with
p̄+ being the larger pressure after the shock and p̄− , the smaller
pre-shock pressure. This relation may be related to the cham-
ber pressure using the supersonic branch of the isentropic pres-
sure expansion captured by Eq. (1). The equations themselves re-
main transcendental to the extent of requiring numerical solutions.
However, using asymptotic techniques, a set of analytical approxi-
mations may be developed for expansion ratios common to most
propulsive applications. The solutions may be readily recovered us-
ing a recursive form to an arbitrary level of precision. In practice,
most propulsive applications only require two terms for a solution
with acceptable engineering accuracy (i.e. within 5% of reported
measurements).

2.1. Subsonic formulation with regular perturbations

To demonstrate the flexibility of the asymptotic framework, the
isentropic equation will be solved for the two different pressure
ratio formulations: the faster converging solution with p̄c in the
denominator, and the direct solution with p̄c in the numerator.
First, after some manipulation [11], Eq. (1) may be rewritten as

pα − pβ = εξ (3)

where α ≡ 2/γ , β ≡ 1 + 1/γ , and

ξ ≡ γ − 1

2

(
2

γ + 1

) γ +1
γ −1

= γ − 1

γ + 1

(
1

γ + 1

) 2
γ −1

(4)

Determining the subsonic root of Eq. (3) requires a regular pertur-
bation expansion which, to arbitrary precision, can be expressed
as

p = p0 + εp1 + ε2 p2 + · · · + εn−1 pn−1 + O
(
εn) (5)

The resulting form may be substituted into Eq. (3) and then ex-
panded. For the reader’s convenience, the expanded equation is
presented below at O (ε2):

(
pα

0 − pβ

0

) + ε
(
αp1 pα−1

0 − βp1 pβ−1
0 − ξ

) + O
(
ε2) ≡ 0, ∀ε

(6)

Because quantities between parentheses must vanish identically
for all values of ε, Eq. (6) may be separated into n independent
equations that can be sequentially solved for the individual values
of p at each order. This operation yields
psub = 1 + ε

(
ξ

α − β

)
+ ε2

[
ξ2(α + β − 1)

2(α − β)2

]

+ ε3
[

ξ3(2α + β − 1)(α + 2β − 1)

6(α − β)3

]

+ ε4
[

ξ4(2α + 2β − 1)(α + 3β − 1)(3α + β − 1)

24(α − β)4

]
+ O

(
ε5) (7)

The benefit of this representation lies in the solution being appli-
cable to both pressure ratios. By redefining α and β as negative
values of the same constants, the solution to the inverted pressure
ratio, with the chamber pressure in the numerator, may be readily
deduced from the same solution. While the general form of these
solutions remains identical, their actual rate of convergence differs.
Due to its fractional size, the (smaller) ratio with p̄c in the denom-
inator converges more rapidly than its converse. Nonetheless, the
disparities in convergence remain small and become indiscernible
when carried out to O (ε5). At the outset, excellent agreement may
be expected even with the slower converging approach in which
p̄c appears in the numerator; the latter is taken here as it enables
us to solve for the chamber pressure directly.

2.2. Supersonic formulation with undetermined gauges

The supersonic solution may be determined using the Method
of Undetermined Gauges. Our starting point is the relation for the
new, inverted pressure ratio given by Eq. (3). Through scaling anal-
ysis, the leading order is promptly found to be p0 = (εξ)1/α . Then
using binomial expansions, Eq. (3) may be transformed into

pα
0

[
1 + α(p1/p0) + O (p1/p0)

2]
− pβ

0

[
1 + β(p1/p0) + O (p1/p0)

2] − εξ = 0 (8)

Furthermore, when solved for p1, Eq. (8) returns

p1 = p0[pα
0 − pβ

0 − εξ ]
βpβ

0 − (2/γ )pα
0

(9)

Additional terms may be calculated using the recursive relation

pm = qα
m − qβ

m − εξ

βqβ−1
m − αqα−1

m

, qm ≡
m−1∑
j=0

p j (10)

The optimal pressure ratio at station 2! may hence be deduced
by summing all individual contributions, starting with the leading-
order approximation. We simply get

popt(ε,γ ,n) = p0 +
n∑

m=1

pm (11)

The solutions for both branches are provided in Table 1. Com-
pared to the subsonic solution, the inverse problem exhibits a
somewhat slower convergence rate when a small number of terms
is retained. In practice, the difference between the two approaches
becomes insignificant after three terms.

2.3. Shock formulation with flipping and undetermined gauges

The pressure ratio across a normal shock is given by the famil-
iar relation [9]:

p+

p− = 1 + 2γ

γ + 1

[(
M−)2 − 1

]
or

(
M−)2 = 1

[
p+

− (γ + 1) + γ − 1

]
(12)
2γ p
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Table 1
Comparison of solutions using γ = 1.6.

ε Subsonic, psub Supersonic, popt

n n

1 3 1 3

0.05 1.0130 1.0132 58.645 58.764
1.0128 1.0132 55.840 58.764

0.1 1.0263 1.0270 31.739 31.798
1.0256 1.0270 29.007 31.796

0.3 1.0834 1.0910 11.355 11.281
1.0770 1.0906 8.5034 11.250

0.5 1.1472 1.1732 6.7619 6.5728
1.1283 1.1702 3.6792 6.4902

The pressure ratio p+/p− for a normal shock inside a nozzle can
be determined as function of the area ratio by substituting the pre-
shock Mach number into Stodola’s relation, viz.

(
A

At

)2

= 1

(M−)2

{
2

γ + 1

[
1 + γ − 1

2

(
M−)2

]} γ +1
γ −1

(13)

The resulting expression becomes

(γ + 1)
p+

p− + γ − 1

= 2εγ

[(
2

γ + 1

){
1 + γ − 1

4γ

[
(γ + 1)

p+

p− + γ − 1

]}] γ +1
γ −1

(14)

The transcendental nature of Eq. (14) precludes a direct solution.
However, using successive approximations, an accurate representa-
tion may be achieved. This may be accomplished by first choosing
P = (γ + 1)p+/p− + γ − 1 and then reducing Eq. (14) into

P = 2εγ

[(
2

γ + 1

)(
1 + γ − 1

4γ
P

)] γ +1
γ −1

(15)

Eq. (15) can be solved numerically for P . For values typical of noz-
zle applications, P is found to be a large quantity. This prompts us
to introduce X = 1/P and solve for X asymptotically. The X trans-
formed relation becomes

X = (εγ X)κ (aX + b) (16)

where

a ≡ 4
γ

γ +1
κ

γ − 1
, b ≡ 4− 1

γ +1
κ

γ
, κ ≡ γ − 1

γ + 1
(17)

Assuming X = X0 + o(X0), one may use the Method of Undeter-
mined Gauges to obtain, at leading order:

−(εγ )κb Xκ
0 + X0 − (εγ )κaXκ+1

0 = 0 (18)

Realizing that X0 � 1 and κ < 1, the last term may be ignored,
being of higher order. This enables us to balance the first two
members of Eq. (18) by setting

X0 − (εγ )κb Xκ
0 = 0 or

X0 = b
1

1−κ (εγ )
κ

1−κ = 1

2

[
γ − 1

γ (γ + 1)

] γ +1
2

(εγ )
γ −1

2 (19)

Next, we let X = X0 + X1 + o(X1) and expand into

X0 + X1 − [
εγ (X0 + X1)

]κ [
a(X0 + X1) + b

] = 0 (20)

Factoring out the leading term can be achieved by putting
X0 + X1 − (εγ X0)
κ

(
1 + X1

X0

)κ

(aX0 + aX1 + b) = 0 (21)

Recalling that X1/X0 � 1, a binomial expansion leaves us with

X0 + X1 − (εγ X0)
κ

[
1 + κ X−1

0 X1 + κ(κ − 1)

2
X−2

0 X2
1 + · · ·

]
× (aX0 + aX1 + b) = 0 (22)

To expedite matters, we dismiss terms of O (X−2
0 X2

1) that entail
negligible contributions. The resulting equation, when solved for
X1, produces

X1 = (εγ X0)
κ (aX0 + b) − X0

1 − εκ Xκ
0 [a(κ + 1) + bκ X−1

0 ] (23)

The same technique may be employed to generate higher-order ap-
proximations from the following recursive expression,

X = X0 +
n∑

k=1

Xk, Xk = (εγ xk)
κ (axk + b) − xk

1 − εκ xκ
k [a(κ + 1) + bκx−1

k ]

xk ≡
k−1∑
j=0

X j (24)

In terms of laboratory coordinates, one may use the direct expres-
sion

p+

p− = 1

(γ + 1)X
− κ = 1

γ + 1

[
1 − γ +

(
X0 +

n∑
k=1

Xk

)−1]

(25)

In order to compare this result to the other threshold values, it is
necessary to relate the solution to the chamber pressure. This can
be accomplished by multiplying Eq. (25) with the supersonic ex-
pansion relationship previously determined in Eq. (11). We readily
obtain

psup = p+

p−
p−

pc
= p+

p− popt

= 1

γ + 1

(
1 − γ +

{
1

2

[
γ − 1

γ (γ + 1)

] γ +1
2

(εγ )
γ −1

2

+
n∑

k=1

Xk

}−1)

×
{[

ε

(
γ − 1

γ + 1

)(
2

γ + 1

) 2
γ −1

] γ
2

+
n∑

m=1

pm

}
(26)

With Eqs. (7), (11), and (26) in hand, the operational modes of
a Laval nozzle can be pinpointed as the back pressure is reduced
from stagnation to under-expanded conditions.

2.4. Alternate shock formulation with undetermined gauges

For the sake of completeness, the slower converging solution is
presented here. The corresponding route follows a similar proce-
dure but does not invoke the X = 1/P variable change. The result-
ing relation becomes

P = 2εγ

[
2

γ + 1

(
1 + γ − 1

4γ
P

)] γ +1
γ −1

P = (γ + 1)
p+

− + γ − 1 (27)

p
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Table 2
Summary of one-dimensional relations for nozzle flow characterization.

Boundary name Asymptotic approximation

Choking Line 6! psub = p̄sub

p̄e
= −

n∑
m=0

∏m−1
j=1 [(m − j)α + jβ − 1]
(−1)(2m)!m!(β − α)m

(εξ)m + O
(
εn+1

)
Optimal Design 2! popt = p̄opt

p̄e
= εξ +

n∑
m=1

pm , where pm = (
∑m−1

j=0 p j)
2/γ − (

∑m−1
j=0 p j)

(γ+1)/γ − εξ

γ + 1

γ
(
∑m−1

j=0 p j)
1/γ − 2

γ
(
∑m−1

j=0 p j)
2/γ−1

Nozzle Shock 4! psup = p̄sup

p̄e
= 1

(γ + 1)X
− m, where X = X0 +

n∑
k=1

Xk , Xk = (εγ xk)
m(axk + b) − xk

1 − εmxm
k [a(m + 1) + bmx−1

k ] , xk ≡
k−1∑
j=0

X j
The leading-order term in Eq. (27) may be determined from a ju-
dicious balance of dominant terms; in this case, we extract

P0 = 2γ ε
1−γ

2

(
γ + 1

γ − 1

) γ +1
2

(28)

The remaining corrections may be calculated using successive ap-
proximations. For the first-order equation, we obtain

(P0 + P1)
γ −1
γ +1 = (2εγ )

γ −1
γ +1

(
2

γ + 1

)[
1 + γ − 1

4γ
(P0 + P1)

]
(29)

The solution for P1 can be retrieved using the binomial expansion
technique that leads to

P1 =
(2εγ )

γ −1
γ +1 ( 2

γ +1 ) + (2εγ )
γ −1
γ +1 [ γ −1

2γ (γ +1)
]P0 − P

γ −1
γ +1

0

γ −1
γ +1 P

− 2
γ +1

0 − (2εγ )
γ −1
γ +1 [ γ −1

2γ (γ +1)
]

(30)

or

P1 =
[

c1

(
2

γ + 1

)
+ c1c2 P0 − P

γ −1
γ +1
0

]

×
(

γ − 1

γ + 1
P

− 2
γ +1

0 − c1c2

)−1

(31)

where

c1 = (2εγ )
γ −1
γ +1 and c2 = γ − 1

2γ (γ + 1)
(32)

Higher-order terms may be determined from the recursive expres-
sion,

Pn =
[

c1

(
2

γ + 1

)
+ c1c2

n−1∑
i=1

Pi0 −
(

n−1∑
i=1

Pi

) γ −1
γ +1

]

×
[

γ − 1

γ + 1

(
n−1∑
i=1

Pi

)− 2
γ +1

− c1c2

]−1

(33)

With the advent of Eq. (33), a comparison between the inverted
and non-inverted formulations may be carried out. The inverted
values in this case converge more rapidly as they consist of the
solution that employs the smaller ratio of the two.

3. Results and discussion

With the one-dimensional boundary values clearly established,
it is possible to evaluate existing performance data with the goal
of examining the operating pressure ratios during blowdown. It is
also possible to determine the range and duration of the pressure
variation through which the profile remains susceptible to side-
loads. In this vein, the relations in Table 2 are plotted in Fig. 3
versus the expansion ratio of the nozzle to provide a map of the
operating boundaries as the pressure ratio across the nozzle varies.
The resulting graph displays the boundary curves that conform to
the nozzle map. The regions are labeled consistently with Figs. 1
and 2. Throughout, analytical expressions with either 4 or 5 terms
are compared to their numerical counterparts to provide a com-
prehensive map for the nozzle transition points. Practically, for the
high expansion ratios common to most propulsion configurations,
a few terms of the present approximations provide sufficient accu-
racy.

3.1. Nozzle operational modes and chamber pressure

As mentioned above, Fig. 3 enables us to identify different noz-
zle operating modes over a range of back pressure values. In area
1! the nozzle remains under-expanded; expansion fans develop in
the exit plane as the relatively higher pressure gas seeks to match
ambient conditions. Area 3! introduces external oblique shocks,
and one-dimensional theory no longer provides an adequate rep-
resentation of the flowfield. In area 5!, shock activities become
internal, and the flow undergoes a normal standing shock at some
location within the nozzle. Finally, in area 7!, the flow throughout
the nozzle turns subsonic. The unbounded nature of the nozzle
shock and optimal expansion curves for small values of ε increase
the size of computations in the propulsive range of expansion ra-
tios.

In complementing the data on this graph, we reproduce in
Fig. 4 the same nozzle map using the faster converging pressure
convention wherein all ratios are referenced to the chamber pres-
sure p̄c. As a result, the unbounded behavior is eliminated, and
both pressure and ε are rescaled to a [0,1] interval. It is inter-
esting to note that the skewed triangular, supersonic-to-subsonic
transition region 5! appears to be quite sensitive to the area ra-
tio ε. On the one hand, the normal shock zone 5! displays an
inverse correlation, with the normal shock region increasing at
lower and, therefore, more practical values of ε. On the other
hand, the oblique shock region 3! maintains a relatively constant
size for most expansion ratios, with a circumferential boundary
that closely resembles a semi-oval in which large excursions only
appear for substantially small or large expansion ratios. In most
propulsive applications, the expansion ratios ε fall well below 0.1;
as such, they lead to a wide range of exit pressures in region 5!
for which internal shocks may be initiated. At low values of ε, it
is clear from Fig. 4 that the internal shock region extends over a
much larger pressure range compared to the external shock region
3!. This may explain the increased internal shock activities and
separation patterns that can occur inside a nozzle during blow-
down.

3.2. Comparison to existing studies

To validate the simplified shock model, we apply our asymp-
totic solution to a number of case studies in the literature. In the
first work (see Hagemann et al. [7]), a truncated ideal nozzle with
an area ratio of 20.66 and a parabolic nozzle with an area ratio of
30 are examined. Nitrogen gas with γ = 1.4 is used in this cold
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Fig. 3. Pressure map versus ε during chamber blowdown. The vertical axis represents the chamber-to-exit pressure ratio.

Fig. 4. Inverted pressure map versus ε using the chamber pressure as a benchmark.
flow test configuration. Given the attendant geometric character-
istics, one may employ the aforementioned formulation to predict
normal shock formation for pressure ratios of p̄c/p̄a = 15.2 and
p̄c/p̄a = 21.7 using the truncated ideal and parabolic nozzles, re-
spectively.

During startup, the truncated ideal nozzle is reported by Hage-
mann et al. [7] to sustain a relatively low magnitude sideload
with a local peak occurring near a pressure ratio of 5 (see Fig. 5).
This value corresponds to our theoretical prediction of the nor-
mal shock behavior as ratios below 15.2 can lead to the initiation
of strong shocks according to the last entry in Table 2. After the
localized peak, the pressure drops precipitously and then slowly
recovers back to a maximum value at a pressure ratio of approx-
imately 32. As the pressure decreases during the blowdown pro-
cess, a similar phenomenon is observed with sideload forces that
slowly diminish with the pressure ratio until a localized maximum
is reached at a pressure ratio of 5.
Early in the pressure profile, the parabolic nozzle exhibits a
similar local maximum: Fig. 5 displays a local peak between a
pressure ratio of 7 and 10. This range is justifiable, as the thresh-
old value for the parabolic nozzle is expected to exceed that of the
truncated ideal configuration; thus, a delay in the occurrence of
sideload peaking seems consistent with theory. The chief dissimi-
larity between the two contour shapes occurs later in the pressure
profile as shown in Fig. 5. Therein, rapid spikes develop near a
nozzle pressure ratio (NPR) of 30 and again at 36. These extrema
coincide with the transition of the nozzle flowfield from free-shock
separation (FSS) to restricted-shock separation (RSS). Free shock
separation occurs when the separated flow creates a jet that ex-
its the nozzle undisturbed. In a restricted shock separation, the
separated flow reattaches to the nozzle wall, thus generating a re-
circulation bubble. At the first point (NPR = 30), the flow in the
nozzle progresses from FSS to RSS with the recirculation region
forming in the nozzle. At the larger pressure ratio of NPR = 36,
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Fig. 5. Normalized sideload during startup versus nozzle pressure ratio based on Hagemann et al. [7]. RSS: Restricted Shock Separation; FSS: Free Shock Separation.

Fig. 6. Normalized sideload during blowdown versus nozzle pressure ratio based on Hagemann et al. [7].
the recirculation region exits the nozzle, thus causing the flow to
return to the FSS state.

During blowdown, a similar process is observed, with the first
peak appearing at an NPR of 35 (see Fig. 6). In this case, how-
ever, the second peak is delayed, and the transition back to FSS
does not occur until p̄c/p̄a = 15 (a value that falls clearly within
the range prescribed by the present model). From these values,
it may be seen that RSS transitions develop between NPRs of 1.4
and 1.6 times the normal shock pressure ratio predicted by one-
dimensional theory.

In separate work, Shimizu et al. [14] conduct a numerical in-
vestigation of the RSS transition mechanism and its associated
sideloads. Unlike the work by Hagemann et al. [7], this investi-
gation is more concerned with the sensitivity of RSS transition
points on the O/F mixture ratio. The ensuing variability in the O/F
mixture ratio can be partially accounted for in the present model
by changing the specific heat ratio accordingly. In fact, the find-
ings by Hagemann et al. [7] grant us the opportunity to verify the
predicted RSS transition point determined from one-dimensional
analysis. The geometry for this case is taken to be the truncated
perfect nozzle with an area ratio of 52, in which their simulations
detect an RSS transition at NPR = 52. Using a specific heat ratio of
1.4, one may use Eq. (33) to calculate psup = 36.9. Dividing the RSS
transition NPR by psup produces a ratio of 1.4, namely, a value that
belongs to the range established in the example above. Shimizu et
al. [14] further state that varying the oxidizer fuel ratio from 2.8
to 4.1 triggers a shift in the RSS transition point from 35 to 59. By
varying the specific heat ratio in the present model and applying
the 1.4 multiplier, an RSS transition zone may be readily predicted
between 39.9 and 55.3 for γ = 1.1–1.5. This agreement is satisfy-
ing considering the one-dimensional nature of the present study
and its independence of three-dimensional aspects of nozzle con-
touring.

While these preliminary results lead to quick approximations,
it is clear that more research into the nature of the RSS transi-
tion points is necessary. Despite the useful correlations developed
here, the limitations owed to one-dimensionality must be borne in
mind. For example, the model cannot predict if RSS transitions will
appear, especially in the absence of a strategy to account for local
contour changes that drive RSS behavior. Furthermore, the present
work treats both truncated ideal and parabolic nozzles examined
by Hagemann et al. [7] similarly, despite the lack of RSS transi-
tion data for the truncated ideal nozzle case. Refining the model
to further account for contour variations would greatly enhance its
predictive capability.

3.3. Motor blowdown data and slag accumulation

Before leaving this subject, we consider in passing the flight
data obtained for a sounding rocket tested recently. In this par-
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Fig. 7. Grain burnback cross-section versus time (sec) for a sounding rocket upper
stage.

ticular case, the formation of nozzle shocks does not constitute
the only driving force behind the observed behavior. The sound-
ing rocket test data is therefore presented to simply highlight the
additional activities and mechanisms that can accompany pressure
blowdown and the need for further refinement of existing theories
on the subject.

For this particular sounding rocket motor, flight telemetry
shows a significant increase in roll torque as propellant burnback
reaches its terminal phase. The motor in question is approximately
43.2 cm in diameter and 533.4 cm in length, including the noz-
zle. The propellant is aluminized and hence produces a substantial
amount of slag during motor burn. The motor itself forms the
upper stage of a spin-stabilized sounding rocket. At its nominal
operating altitude, aerodynamic drag acting on the stabilizing fins
becomes so small that the slightest vortical force on the nozzle in-
ner wall can increase the vehicle spin rate. Furthermore, the grain
design comprises two opposed slots as shown in Fig. 7. Based on
the burnback cross-sections, it may be seen that two diametrically
opposed (black) pools of slag materialize near motor blowdown.
These are retained behind the final increment of propellant and
appear to be trapped on the case wall due to the centrifugal force
exerted by the spinning motor.

The spin rate of the motor and its corresponding pressure trace
during tail-off are displayed in Fig. 8 as a function of flight time.
The declining motor pressure starts around t = 31 sec and trig-
gers a linear doubling of roll frequency as the chamber gases blow
down. Radar and accelerometer data suggest that a massive expul-
sion of slag is also initiated simultaneously at 31 sec due to its
sudden volumetric expansion from dissolved chamber gases. It is
speculated that the slag-laden gas may be swirling at this point
to the extent of inducing roll torques that are sufficiently large to
cause the vehicle to spin in response to wall friction. Additionally,
the sudden accumulation of slag after tail-off may be exacerbated
by corner circulation and the drop in both pressure and temper-
ature in the chamber. These factors can promote solidification of
the gaseous fraction of aluminum oxide remaining in the chamber.

Pursuant to the strategy described above, we expect two of the
threshold values to be of key importance. The first corresponds to
the chamber pressure p̄sup for which a shock may occur in the
nozzle exit plane. As in the previous examples, any pressure be-
low p̄sup can induce shocks within the nozzle. These shocks are
prone to spiral around and generate random lateral moments that
are accompanied by fluctuations in pitch, yaw, and roll. For the
configuration used in this flight test, psup = p̄c/p̄sup = 18, which
corresponds to a p̄c of 45 kPa and an exit pressure of 2.5 kPa.
The second threshold pressure corresponds to the minimum cham-
ber pressure psub = 1 that will still induce choked conditions at
the throat. Below this reference value, the flow becomes subsonic
throughout. In the process, the supersonic axial velocity magnifi-
cation in the streamwise direction will cease to occur. The swirling
angular momentum becomes of the same order as that of the axial
component. For this test, the subsonic pressure ratio approaches
unity, which results in an even lower chamber pressure as the
test is conducted at high altitude. Furthermore, it may be clearly
inferred that internal shock-separation behavior of the type in-
vestigated here is not the cause of the increased rotation shortly
after burnout. Instead, the rotational effects exhibited must be ac-
counted for in some other manner.

A theoretical explanation of the observed behavior is as follows.
When accounting for the effects of a spinning system with vari-
able mass, the spin rate can depend on both the total mass and
its spatial distribution. If variations in mass distribution remain
slight, it is possible to isolate the effects of mass variability. Mass
exiting the vehicle produces an increased spin rate. The growth
Fig. 8. Grain burnback pressure trace and roll frequency versus time for a sounding rocket upper stage.
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normally occurs smoothly, being driven by the constant mass flow
rate resulting from choked conditions at the throat. During the slag
expulsion event, however, the mass exiting the vehicle increases
suddenly. This surge in system mass can induce an increased spin
rate on the order of that observed in the flight data.

During normal operation, the high pressure in the motor en-
sures choking conditions and supersonic expansion in the axial
direction. As usual, transonic expansions through the nozzle are
dominated by axial motion, thus rendering the effects of the nor-
mal (cross-streamwise) and tangential (spin) components negligi-
ble. After blowdown, this scenario changes in that, as the pressure
diminishes, the axial velocity follows suit. Suddenly, an increase in
roll, pitch, and yaw may arise. Such behavior can be attributed to
the resurgence of the tangential and normal forces as appreciable
contributors. Moreover, a bathtub vortex is typically formed during
chamber evacuation, and this causes the spin velocity to increase.
From this perspective, the spiraling motion of the slag-laden mix-
ture through the nozzle may be partly responsible for the increase
in roll. When the normal and tangential forces are no longer neg-
ligible (i.e., when they become of the same relative order as the
depreciating axial force), sudden redirections in pitch and yaw may
be sensed throughout the motor, in addition to a doubling in roll
with the passage of time. As shown in Fig. 8, the sustained dou-
bling in roll frequency occurs shortly after the initiation of pressure
blowdown. The linear increase in f continues until the time that
marks the beginning of the sliver burnout period. This phase is ac-
companied by a substantial diminishment in thrust, along with a
horizontal flattening in the roll frequency. It is clear from a vehi-
cle dynamics point of view that nozzle transients constitute only a
portion of the total contribution to the time-dependent sideloads
experienced during flight.

3.4. Other considerations

The present study is not meant to be a comprehensive in-
vestigation into blowdown, but rather a first cut towards a sim-
ple framework for its modeling and prediction. While the one-
dimensional equations treated here provide general breakpoints
for nozzle behavior, the limitations of the analysis prevent it from
predicting actual sideloads. In practice, experimental investigations
have determined that separation inside a nozzle and its associ-
ated sideloads are influenced by the local nozzle contour [7]. The
present study cannot account for such variations. The asymmet-
ric nature of the separation process causing sideloads requires at
least a modified two-dimensional approach to make any sort of
prediction possible. In addition, the FSS–RSS transition points ex-
hibit hysteresis when comparing pressurization to blowdown [3,14,
15] that the present model cannot accommodate. Finally, it is well
known that, in conjunction with steady-state sideloads, oscillatory
loads can be experienced during blowdown [2], and these require
a time-dependence that the present model lacks.

4. Conclusions

In summary, two threshold pressure ratios are important to
note. The first, p̄sup, corresponds to the chamber pressure for
which a shock will occur in the nozzle exit plane. Any chamber
pressure below this value will trigger shocks inside the nozzle.
These shocks can spiral around while producing random lateral
moments that induce fluctuations in pitch, yaw, and roll. The next
threshold pressure is the minimum chamber pressure, p̄sub, that
will still maintain choked conditions at the throat. Below this
value, the flow will turn subsonic everywhere, and the supersonic
axial acceleration in the streamwise direction will no longer oc-
cur. The swirling angular momentum becomes of the same order
as that of the axial momentum. In practice, this situation un-
folds when the chamber pressure falls under 1.894 (i.e., 1/0.528)
times the outer pressure, thus signaling the onset of subsonic flow
throughout the motor.

Today, most nozzle transient predictions are performed using
empirical methods that can be refined through engine test corre-
lations, as in the skewed plane method [13], or through numerical
simulations [14,15]. An improved analytical framework can help to
guide these experimental and numerical investigations, as well as
provide insight into the physical processes that affect some of the
attendant phenomena. Future research efforts would include incor-
poration of two-dimensional effects as well as oscillatory models
to account for both steady and unsteady forces observed during
the blowdown process. It is hoped that these effects will be further
investigated, as it seems that they have been habitually avoided in
the past.
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