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Foremost amongst rocket nozzle relations is the area–Mach number expression linking the local velocity
normalized by the speed of sound to the area ratio At/A, and the ratio of specific heats. Known as
Stodola’s equation, the attendant expression is transcendental and requires iteration or numerical root
finding in extracting the solution under subsonic or supersonic nozzle operation. In this work, a novel
analytical inversion of the problem is pursued to the extent of providing the local Mach number directly
at any given cross-section. The inversion process is carried out using two unique approaches. In the first,
Bürmann’s theorem is employed to undertake a functional reversion from which the subsonic solution
may be retrieved. In the second, the Successive Approximation Approach is repeatedly applied to arrive
at a closed-form representation of the supersonic root. Both methods give rise to unique recursive
approximations that permit the selective extraction of the desired solution to an arbitrary level of
accuracy. Results are verified numerically and the precision associated with the supersonic solution is
shown to improve with successive increases in the ratio of specific heats.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

For isentropic flow through a de Laval nozzle with throat area
At (see Fig. 1), a transcendental equation named after Stodola [11]
relates the area ratio At/A and the Mach number M at any cross-
section of surface area A:
(

A

At

)2

= 1

M2

{
2

γ + 1

[
1 + 1

2
(γ − 1)M2

]} γ +1
γ −1

(1)

where γ denotes the ratio of specific heats. Due to the nature
of this expression, a perturbation parameter may be defined as
ε ≡ (At/A)2, where ε � 1 except for flow in the direct vicinity
of the throat section. In practice, ε will reach its lowest value in
the nozzle exit plane where εe = (At/Ae)

2 represents the square
of the so-called area expansion ratio. Naturally, the calculation of
the corresponding local or exit Mach number Me is of interest to
the propulsion and power generation subdisciplines with particu-
lar areas of concentration in nozzle design and optimization. This
can be attributed to the connection between exit Mach numbers
and ideal thrust coefficients, rocket specific impulses, characteris-
tic exhaust velocities, gas turbine efficiencies, and so on, as well
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Fig. 1. Converging–diverging nozzle schematic showing relevant properties and
Mach numbers.

as the relevance of Stodola’s relation to the problem of sizing and
shape selection in a variety of combustion devices in which gases
are expanded, such as rockets, ramjets, scramjets, and afterburners
[1,2,9].

Despite its simplicity and one-dimensional form, Eq. (1) con-
tinues to find uses in modern propulsion-related studies. In this
context, one may cite Najjar et al. [10] who employ this relation
to set up the initial conditions in their compressible flow solver
Rocflo [6]. Along similar lines, Haselbacher et al. [7] use this ex-
pression to establish a test case for their slow-time acceleration
problem in which time scales are estimated. Thakre and Yang [12]
and Zhang et al. [14] also make use of the relation in question for
the purpose of verifying their codes on nozzle erosion.

In order to determine the local and/or exit Mach numbers at
a given cross-section, one can solve for M straightforwardly using
either numerical root finding or compressible flow tables. On this
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Nomenclature

A local cross-sectional area
At nozzle throat area
M local Mach number
α constant exponent in Eq. (4), 1

2 (γ + 1)/(γ − 1)

ε perturbation parameter, (At/A)2

γ ratio of specific heats, cp/cv

κ constant exponent, (γ − 1)/(γ + 1)

ζ constant related to γ in Eq. (4), [ 1
2 (γ + 1)]α

Subscripts and symbols

0,1,2 leading, first and second order
c chamber stagnation condition
e exit plane condition
n asymptotic level

O(ϕ) Landau’s big-O symbol, of same order as ϕ
o(ϕ) Landau’s little-o symbol, of smaller order than ϕ
sub, sup subsonic or supersonic
t nozzle throat condition
subject, Gaggioli [5] illustrates an elegant framework for compress-
ible flow modeling using the Engineering Equation Solver (EES)
program. These tools can also be used to handle highly nonlinear
problems such as those arising in the calculation of the friction
factors in pipe flow [4]. However, to solve the problem analytically,
it is helpful to rearrange Eq. (1) into

ε
1
2

[
1 + 1

2
(γ − 1)M2

] γ +1
2(γ −1)

− M

[
1

2
(γ + 1)

] γ +1
2(γ −1)

= 0 (2)

In this study an explicit solution for the Mach number will be
presented in terms of the area ratio A/At and the ratio of specific
heats γ .

2. Analysis

For a fixed nozzle area ratio, two mathematically and physically
possible Mach number roots exist: one subsonic and the other su-
personic. In what follows, the techniques leading to each root will
be separately described. Subsonic and supersonic solutions at or-
der n ∈ N will be denoted by M(n)

sub and M(n)
sup, respectively.

2.1. Subsonic treatment based on Bürmann’s theorem

In previous work by the authors [8], the subsonic solution to
Stodola’s equation was pursued using regular perturbation theory.
At present, we provide a simple alternative based on classical anal-
ysis, namely, by means of Bürmann’s theorem [13]. This form will
lead to the establishment of a general recursive formulation from
which the solution may be generated to any order. Bürmann’s the-
orem forms an extension of a Taylor series reversion for arbitrary
functions. In layman’s words, if a function can be expanded about
a particular point in terms of a second function, the converse is
true, and one may express the second function in terms of the
first. This theorem enables us to write an expression for the Mach
number in terms of the local area ratio to arbitrary precision.

To start the analysis we revisit Stodola’s equation and simplify
it such that

ε
1
2 = φ(M) = Mζ

[
1 + 1

2
(γ − 1)M2

]−α

(3)

where

α ≡ γ + 1

2(γ − 1)
and ζ ≡

(
γ + 1

2

)α

(4)

In the above, φ(M) constitutes an analytic function over the closed
region associated with the subsonic branch of solution, 0 � M � 1.
To ensure that an expansion is valid in this region, we examine
the behavior of the function and its first derivative as ε → 0. We
identify, in particular, the point M0 ≡ 0 where
φ(0) = 0 and φ′(0) �= 0 (5)

Since φ(M0) is finite and the derivative is non-zero, Bürmann’s
theorem can indeed be applied in this situation [13]. We sub-
sequently define f (M) = M and use M0 as the anchor point to
construct

ψ(M) = f (M) − f (M0)

φ(M) − φ(M0)
= M

φ(M)
(6)

Given ψ(M), a straightforward application of the theorem leads to
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where Rn+1 represents the truncation error remaining at that or-
der. Substituting Eq. (6) into Eq. (7) yields
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whence
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Evaluating the first three terms of the summation renders
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Each member of this series may be separately determined from the
limit of the corresponding derivative at M0. We get, for the first,
zeroth-order member,

lim
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Similarly, the second member gives
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It may be easily proven that all terms containing whole powers of
ε, {1, ε, ε2, ε3, . . .} vanish identically. Finally, the cubic term may
be calculated from
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Higher-order terms may be readily extracted using symbolic pro-
gramming of Eq. (9). At length, the subsonic solution to order

O(ε
7
2 ) may be arrived at, specifically
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Eq. (14) compares quite well with the numerical solution. For most
propulsive applications, the three terms retained above are quite
sufficient for engineering accuracy. The attending error remains
smaller than 5% up to ε = 0.77 or an area ratio of 0.88. Nonethe-
less, should further supplementary terms be required, Eq. (9) may
be slightly modified to generate a solution to arbitrary order of
precision viz.
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After some effort, a recursive relation may be seen to exist, thus
permitting the direct extraction of the subsonic solution to any
desired order of accuracy:
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As shown in Fig. 2, this expression is nearly identical to the
numerical solution. A three-term approximation is more than ad-
equate for the subsonic Mach number, even for large ε. For op-
erational area ratios up to At/A = 0.47 and an extreme case of
γ = 1.7, retaining one term leads to a viable approximation that
accumulates an error of less than 5%. The range of ε increases as
more terms are retained or as γ is lowered.
2.2. Supersonic treatment based on Successive Approximations

It seems that all regular and non-regular perturbation attempts
fail in extracting the supersonic root directly from Eq. (2). Instead,
we find it necessary to elevate Stodola’s equation to the power of
α−1 = 2(γ − 1)/(γ + 1). The exponent-inverted form becomes

ε
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[
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2
(γ − 1)M2
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[
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2
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]
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The resulting expression may then be multiplied by 2 and rear-
ranged into

(γ + 1)M
2(γ −1)
γ +1 − (γ − 1)ε

γ −1
γ +1 M2 − 2ε

γ −1
γ +1 = 0 (18)

or

(γ + 1)M2κ − (γ − 1)εκ M2 − 2εκ = 0

κ ≡ (γ − 1)/(γ + 1) (19)

Eq. (19) is a keystone relation that can be managed to produce the
supersonic root. In what follows, we apply the Successive Approxi-
mation Method to obtain the first three terms of the solution from
which a recursion formula may be deduced. We also recognize that
1 � γ � 5

3 and so 0 � κ � 1
4 . Then for M > 1, the members in

Eq. (19) may be presented in descending order, with the largest
and smallest terms corresponding to (γ + 1)M2κ and 2εκ , respec-
tively. Assuming M = M0 + o(M0) one gets, at leading order:

(γ + 1)M2κ
0 − (γ − 1)εκ M2

0 − 2εκ = 0 (20)

In view of M0 > 1 and κ < 1, the last term may be ignored, being
of higher order. This enables us to achieve balance between the
first two terms by setting
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Next, we let M = M0 + M1 + o(M1) and expand Eq. (20) into
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where a binomial series is used. This allows the extraction of the
first order correction from

2κ(γ + 1)M2κ−1
0 M1 − 2(γ − 1)εκ M0M1 − 2εκ = 0 (23)

whence

M1 = εκ M0
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0
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0 − M0)

(24)

To determine O(M1) and, with it, the order of leading order trun-
cation error, we evaluate
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Fig. 2. Comparison between numerical and asymptotic solutions for γ = 1.2. The dashed line in (a) denotes the region enlarged in (b).
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Repeating once more, we substitute M = M0 + M1 + M2 + O(M2)

into Eq. (20) and collect
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)
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2
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The second order correction may thus be retrieved. We obtain

M2 = 2εκ − (γ + 1)(M0 + M1)
2κ + (γ − 1)εκ (M0 + M1)

2

2κ(γ + 1)(M0 + M1)2κ−1 − 2(γ − 1)εκ (M0 + M1)

(27)

An asymptotically expanded form of the above may be expressed
as
M2 
 − M3
1

2
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0
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The corresponding order may be deduced using binomial expan-
sions and simplifications leading to the identification of

M2 ≈ 1

2
(γ − 1)M3

1 = O
(
ε

3
4 (γ −1)

)
(29)

It is clear that for i � 1, a recursive relation exists for Mi in terms
of Mi−1 from which all terms beyond M0 may be extrapolated.
Higher order approximations may be realized by adding each suc-
cessive correction to the sum:

M(n)
sup = M0 +

n∑
i=1

Mi

Mi = 2εκ − (γ + 1)[M(i−1)
sup ]2κ + (γ − 1)εκ [M(i−1)

sup ]2

2κ(γ + 1)[M(i−1)
sup ]2κ−1 − 2(γ − 1)εκ M(i−1)

sup

M(i−1)
sup =

i−1∑
j=0

M j (30)

Results displayed in Fig. 2 are taken with expansions up to
n = 2 so both the supersonic and subsonic solutions will contain
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three terms. We note a substantial agreement with the use of three
terms, even at large ε. In addition to the present work, we feature
in Fig. 2 the solution predicted by Thakre and Yang [12] in their
numerical investigation of nozzle erosion. Their treatment employs
a density-based finite volume solver that accounts for chemical re-
actions. Their results are taken at the centerline of the nozzle and
agree quite favorably with the one-dimensional model employed
here.

Before leaving this subject, it may be useful to remark that
one potential advantage of the analytical form over compressible
flow tables or basic numerical routines (unlike EES) lies in the
handling of the specific heat ratio. Compressible flow tables only
catalogue values for fixed specific heat ratios. In many situations,
solving Eq. (1) numerically becomes limited to a single value of γ ,
though more sophisticated solvers can incorporate variable specific
heat ratios [5]. The present formulation can readily accommodate
temperature variations using empirically determined equations. For
example, a proposed linear function [3] may be written as

γ = γ0 − K1(T − Tref)/1000 (31)

where γ0 and K1 denote pure constants while Tref represents a
reference temperature. For cases with known temperature profiles,
Eq. (31) can be directly substituted into the subsonic or supersonic
expressions to the extent of providing a solution with the requi-
site temperature-dependent specific heat ratio. Other empirically
developed relations with polynomial or exponential dependence
could just as easily be incorporated into the present work.

3. Concluding remarks

In this study, two asymptotic formulations are presented as
numerical equivalents to the traditional area–Mach number rela-
tionship that is ubiquitously used in rocket nozzle analysis. The
first is derived from Bürmann’s theorem and the second, using the
Method of Successive Approximations. Both techniques unravel the
distinct dependence of the Mach number on the nozzle area ratio
and the ratio of specific heats. The tacit relations that we arrive
at allow for swift and robust computation of essential flowfield
properties in a de Laval nozzle under either subsonic or supersonic
operation. This is accomplished by granting the use of selectively
controlled recursive formulations that produce the desired branch
of solution to any degree of accuracy. The present work leads to
simple and novel recursions with well prescribed truncation or-
ders. These increase our repertoire of engineering approximations
for compressible flows and enable us to compute the subsonic
and supersonic Mach numbers at any cross-section and to an arbi-
trary degree of precision. In practice, a maximum of three non-zero
terms in each approximation may be sufficient to yield a satisfac-
tory level of precision.
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