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This paper considers the oscillatory motion of gases inside a long porous tube of the closed-open
type. In particular, the focus is placed on describing an analytical solution for the internal
acoustico-vortical coupling that arises in the presence of appreciable wall suction. This unsteady
field is driven by longitudinal oscillatory waves that are triggered by small unavoidable fluctuations
in the wall suction speed. Under the assumption of small amplitude oscillations, the time-dependent
governing equations are linearized through a regular perturbation of the dependent variables. Further
application of the Helmholtz vector decomposition theorem enables us to discriminate between
acoustical and vortical equations. After solving the wave equation for the acoustical contribution,
the boundary-driven vortical field is considered. The method of matched-asymptotic expansions is
then used to obtain a closed-form solution for the unsteady momentum equation developing from
flow decomposition. An exact series expansion is also derived and shown to coincide with the
numerical solution for the problem. The numerically verified end results suggest that the asymptotic
scheme is capable of providing a sufficiently accurate solution. This is due to the error associated
with the matched-asymptotic expansion being smaller than the error introduced in the Navier-Stokes
linearization. A basis for comparison is established by examining the evolution of the oscillatory
field in both space and time. The corresponding boundary-layer behavior is also characterized over
a range of oscillation frequencies and wall suction velocities. In general, the current solution is
found to exhibit features that are consistent with the laminar theory of periodic flows. By
comparison to the Sexl profile in nonporous tubes, the critically damped solution obtained here
exhibits a slightly smaller overshoot and depth of penetration. These features may be attributed to
the suction effect that tends to attract the shear layers closer the waR00® Acoustical Society
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I. INTRODUCTION modeling of mechanically assisted respiratidremodialysis
in artificial kidneys’ and mass transport in the lunffs: A

In a previous articlé,an asymptotic solution was pre- third concerns boundary-layer separation and coffrt.
sented for the acoustico-vortical field that was triggered bywhile past investigations have primarily concentrated on
small fluctuations in wall injection inside a porous enclosure nonoscillatory behavior, the intent of this article is to account
This effort was supplemented by a higher-order analyticafor possible flow periodicity that can be often introduced
approximation based on a Liouville-Green transformafion. either internally, through a self-sustaining mechanism, or ex-
The current article extends the former studies by consideringzrnally, through an oscillating boundary.
the suction-driven flow analog. In particular, the focus is The inception of unavoidable fluctuations in injection-
presently shifted to the acoustico-vortical field inside a podriven flows has been reported in several experimental
rous tube with appreciable wall suction. Despite the apparerihvestigations:*~**One source of oscillatory behavior can be
resemblance with the injection-driven problem, the presencascribed to random fluctuations in the wall injection rate.
of wall suction leads to a dissimilar physical setting requiringThese are often inevitable and take place at random frequen-
a separate mathematical treatment. The new treatment apies. Clearly, those matching the tube’s natural frequency
plies to the linearized Navier-Stokes equations obtainegjive rise to a self-sustaining acoustical figfd®Theoretical
through flow decomposition. investigations suggest that similar behavior can be expected

Suction-induced flows that are susceptible to acousticah suction-driven flows’~2°In some applications, however,

oscillations are encountered in diverse applications. One pegn externally induced oscillatory field can exist. This is true
tains to membrane filtratidrf and the separation of uranium \when the field is created from laboratory-controlled wave
isotopes by differential gas diffusioh” Another arises in the  generators, or from periodic sources supplied by autonomous
mechanisms. Examples of the latter include the peristaltic
aAcurrent address: Los Alamos National Laboratory, Engineering ScienceB1€Chanisms in control of respiratory and circulatory func-
and Applications Division-Applied Engineering TechnologiESA-AET), tions.

Los Alamos, NM 87545. Wh ;
ether the time dependence comes through self-
YAuthor to whom all correspondence should be addressed: Department of P 9

Mechanical, Aerospace and Biomedical Engineering, University of Ten-!nduced or eXtema”y trlggergd S_0urce_s! the goal Of_ this S_tUdy
nessed€UTSI), Tullahoma, TN 37388. Electronic mail: maji@utsi.edu is to incorporate these oscillations into the suction-driven
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flow. By virtue of the complexity of the resulting model, the u(x)=0 ul)=1
outcome we seek is an approximate solution only. Unlike the 1 e
mean flow counterpaf* the existence of an exact un- \\\\\_ﬁ\:\\
steady solution can be proven impossible in light of recent »

mathematical report§.?° To the author’s knowledge, the
current effort may constitute the first attempt at formulating a ~ °1
time-dependent solution for the suction-driven field inside a
porous tube.

It may be safely stated that Berman’s landmark paper B e
has provided the original motivation for the suction-driven 5 4 & T8

problems. This, Berman accomplished, by showing that theIG LG rical sketch showi low st i 4 bound

. . . A eometrical sketch snowing mean tlow streamlines an oundary
(l;!awer-(??kes t_eqluatlonts_ %%JSE?G fr?duiﬁd t?j a n;nllnear 0Eonditions based on Terrill's large suction-flow solution.

inary differential equatio of fourth order. Berman

was also first in applying asymptotics to obtain a solution in . o ]
the presence of small wall suction. In the process, Berman’$€C- V the rotational momentum equation is examined before
perturbation parameter was quantified by the cross-flow Rey? Solution is attempted. This is followed in Sec. VI by the
nolds number ReV.a/v,. This term was based on the wall presentation of a composite solution based on matched-
suction velocityVy, viscosity vo, and tube radius. Based asymptotic expansions. An exact series expansion is devel-

on Berman’s equation, numerous studies ensued, some Wi_@ped in Sec. VII. Finally, results are (_jisplay_ed and discussed
the purpose of generating closed-form descriptions fofn S€c. VIl Everywhere, the scope is restricted to=rR6.

suction-driven flows over different ranges of Re. By way of

example, one may cite Yugn??® Sellars?” and Terrill22-30 Il THE BASIC FLOW MODEL
who have extended Berman’s small suction case to encom-
pass higher ranges of Re. While Yuan extended Berman. The porous tube

solution up to Re=20, Sellars and Terrill developed approxi- We shall consider a long porous tube of radiusFluid
mate solutions that coincided as-Rev in both channels and g extracted from the circumferential walls at a uniform wall
tubes. In this work, their joint solution will be used to pre- velocity V. The length of the tube is defined hyand the

scribe the mean flow character. system is simplified by imposing the condition of symmetry
A number of mathematical studies have also addresseghoyt the tube’s axis. This choice permits the solution do-

the important aspect of solution multiplicty=>* In sum-  1ain to become reducible to<Ox<|. and O<r<1. where
mary, a total of four solution types were detected in the|—| /a is the dimensionless tube length. For illustrative pur-
suction-driven porous tulfé. For small suction, two solu- poses, Fig. 1 sketches a cross section of the tube with the

tions were shown to exist for9Re<2.3. While no solu-  mean flow streamlines calculated from Terrill's solution for
tions were present in the interval 2Re<9.1, four out- |arge suctiorf®

comes were observed for &sRe<. Stability of the porous Under the influence of small variations in the suction
tube solution was also examined by Zaturska, Drazin, angate, a tube that is closed at the head end and open at the aft
Banks®® Their results have indicated that the Berman-typeend can develop longitudinal pressure oscillations of ampli-
similarity solutions could only be stable to time-dependentyge A,. The corresponding acoustical frequency can be
perturbations in the ranges<(Re<2.3 and 9.11%Re specified by>%?

<44.709. Outside these ranges, unstable solutions due to
asymmetric perturbations were likely to exist. Nonetheless,
despite the speculations made regarding the physicality afherea, is the speed of sound amalis the oscillation mode
unstable solutions, no laboratory confirmation could benumber.

found in the technical literature. For this reason, the current

study utilizes the leading-order solution for large Re as a

model for the mean flow field in the presence of symmetricB. Limiting conditions

oscillations. _ _ o In order to simplify the analysis to the point where an
_ The physical idealization starts in Sec. Il with & defini- 5n4ytical solution can be arrived at, several restrictions must
tion of the basic flow model. This is initiated with a descrip- be observed. First, the mean flow must be Newtonian, lami-
tion of the system geometry and physical criteria. In Sec. lllna, and unsusceptible to mixing, swirling, or turbulence.
the governing equations are presented in their general dimefyrthermore, the oscillatory pressure amplitude is taken to be

sional form. Subsequently, equations and variables are Nogm g in comparison with the stagnation pressure.
malized, linearized, and decomposed into steady and time-

dependent sefsThe temporal field is further subdivided in

Sec. IV using the Helmholtz vector superposition theorem)||. GOVERNING EQUATIONS
At the outset, acoustical and vortical equations are distin- _ _
guished. While the pressure-driven response is dealt Witﬁ" The conservation equations

immediately, the momentum equation obtained from the ro-  Employing asterisks to designate dimensional variables,
tational component is simplified to a second-order ODE. Indensity, pressure, time, velocity, and the shear stress tensor

— x ur(x,O) =0

=0

(0.1}

.

u

wo=(m—3)mag/L, @
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can be represented I, p*, t*, u*, and*, respectively. C. Leading-order decomposition
Continuity and conservation of momentum can then be writ-  Equations(8)—(10) can be inserted back into Eqe)

ten in their general forn3 and (7). The zeroth-order terms yield the mean flow equa-
¢9p*/¢9t* +V* '(P* u*)=0, 2) tions
Ap*u*)at* +V* . (p*uru*)=—-V*p* —(V*. 7). v-U=0, (12
) MAU-V)U=-VpO+M2Z[4V(V-U)/3— VX (VXU)].
By using continuity to simplify Eq(3) and viscous transfer (13
for a Newtonian fluid, one can transform Eg) into Following Bermarr, a steady streamfunction can be defined
p*[IU*[9t* + (U* - V*)u*] by ¥=-—xF(r). Subsequently, the velocity can b(_e ex-
pressed by, ,U,)=[—xF'(r)/r,F(r)/r]. By substituting
== V*p* + u*[4V* (V> u*)/3—V* X (V* xXu*)], these definitions into Eq13), Terrill has shown thaF =r?

(4) provides the exact mean flow solution for the infinitely large
suction casé® The mean pressure arising in this context can

wherew™ is the dynamic viscosity. _ be integrated from Eq13) to obtain
To be general, dimensionless parameters are introduced.
Spatial coordinates are hence normalizedabyvhile veloc- pO(x,r)=1/y—M?r?(1+x?)/2. (14)
ity and time are made dimensionless &yand wq, respec-
tively. In summary, we let D. Time-dependent equations
x=x*la, r=r*la, t=wot*, u=u*/ag, Terms ofO(e,,) in Egs.(6) and(7) lead to

—iwp® b= — (pD
p=p*/(ypo), and p=p*/pq, (5 lopt VU= =MV (pT), (15)

wherey is the ratio of specific heats, angg andp, are the —iou®=-M[V(U-uM)—u®x(VxU)
stagnation density and pressure. Following this nomencla- . (AN v )

ture, Eqgs.(2) and(4) become UX(VXUT)]=Vp
+Me[4V(V-uD)/3—Vx(Vxud)]. (16)

wdpldt+V-(pu)=0, (6)
_ _ Equations(15) and (16) describe the intimate coupling be-
plodu/ot+(u-Viu]=—Vp+Me[4V(V-u)/3-V tween mean and unsteady motions. They indicate that the
X (VXu)]. (7)  wall suction velocityU can strongly influence the oscillatory

flow motion.
Equations(6) and (7) employ the definitions of the nondi-

mensional frequency= wealay, the suction Mach number
M=V,/a,, and the small parameter=1/Re. IV. MOMENTUM TRANSPORT FORMULATION

) A. Irrotational and solenoidal vectors
B. Perturbed variables . .
In order to proceed, temporal disturbances can be split

With the introduction of small amplitude oscillations, jnto splenoidal and irrotational componefsUsing a cir-
the instantaneous pressure can be expressed as the linear Stifhflex to denote the curl-free pressure-driven part, and a

of time-dependent and steady components: tilde for the divergence-free boundary-driven part, the time-
p=p@+e,p® exp —it), (8) dependent velocity component can be expressed as
wherei=\—1, e,=A,/(ypo), and[p®,p™] are spatial uM=0+T, (17)

functions. Unlikep™), p(® can be shown to be a constant at it

order O(M?), namely,p®=1/y+®(M?). Noting that the ) B no. N

mean flow solution is incompressible, small compressibility ~ VXu®”=VxT, pW=p, pW=p. (18)
effects can only influence the time-dependent field. Density  This decomposition charges all vortices to the vortical
can thus be normalized by its mean component and expandeid|d ti= (Ti,7), and compressibility sources and sinks to the

in a similar fashion viz. acoustical fieldi= (0,5).
p=1+g,p® exp —it). 9)
The total velocity can also be expanded as B. The linearized Navier-Stokes equations
u=MU+ g, u® exp( —it), (10) Insertion of Eqs(17) and(18) into Egs.(15) and (16)

leads to two independent sets that are coupled through the
boundary conditions at the wall. These responses are byprod-
ucts of pressure-driven and vorticity-driven oscillation
modes atO(e,,). While the acoustical, compressible, and
M2<g, <M, (11 irrotational equations collapse into

where M<0.01. —iwp+V-0=—MV-(pU), (19

where U represents the mean flow velocity normalized by
V. Following Majdalani and Flandré, we impose a con-
straint on the wave amplitude, namely,
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—iwl=—-Vp+4MeV(V-0)/3—M[V({-U) wherex,>0 is the separation eigenvalue. Integration of the
X equation can be performed easily and then inserted into Eq.

— X (VXU)], (200 (27). The outcome is
the rotational and incompressible set comprises of
v.i=0. (21 r>=§ CaX 1Y (1), (29
—iwl=—=MeV X (VXU)—M[V(U-U)-TX(VXU) wherec, is the integration constant for eagly. Satisfaction

of the no-slip condition at the wall requires setting the acous-

—UX(VXT)]. (22) tical and vortical velocity components equal and opposite at
r=1. One finds
C. Coupling conditions o
TU(x,1)=—isin(wX). (30

Two boundary conditions must be satisfied by the un-
steady velocity componenf?). These are the no-slip condi- Using a series expansion of the sine function, and setting the
tion at the wall u®(x,1)=0, and centerline symmetry, result equal to Eq(29), one gets
auM(x,0)/ar =0. o 1) (wx) 201

E CX Y (1)=—i >, —. (31
; : Ao (2n+1)!
D. Pressure-driven solution

When Eq.(19) is multiplied by —iw, the divergence of Equating terms necessitates that

Eqg. (20) can be evaluated; resulting terms can be added to (1)@t

produce the following wave equation: kp=2n+1, cp=-I “Zn+r Ya(1)=1, (32
V2p+w’p=4MeVX(V-0)/3-M{iwV- (Up) wheren=0,1,2,..s. The rotational velocity component be-
+V2(0-U) = V-[aX (VX U)]}. (23 ~ comes
At this juncture, a solution aD(M) can be achieved through W)= —i i (—1)”(wX)2”+lYn(r). 33
separation of variables and closed-open boundary conditions. n=0 (2n+1)!

The ensuing acoustical pressure and velocity are .
g P y In order to bring closure to Eq33), Y,, needs to be deter-

p=cogwx)+O(M), O=isifwx)g+OM). (24  mined from Eq.(28). One finds thaty,, must be obtained
from the doubly perturbed boundary-value problem, namely,
E. Vortical equations 2

a7y, dy, .
Assuming that the ratio of the normal to axial velocity is € gz T [(e ~F)/r]1—=+[iSr+(2n+2)F'/r]Y,=0,
of the same order as the Mach numbeg. 7/ti=0O(M)], T (34)
can be dropped at leading order. This assumption can be
justified in view of the arguments presented by Flarfiro. where
Applying this condition, along with the definition of the Yo(1)=1, Y/ (0)=0. (35

mean flow velocity, the axial momentum equation reduces tq'hese two boundary conditions stem from the no-slip and

4(uv) JqU e 9 ( Ju core symmetry requirements.
ar

iSiti= +
St ax V% T oar

+O(M), (25)

where Se w/M is the Strouhal number. When expressed in\V. BOUNDARY-LAYER ANALYSIS
terms of the mean flow streamfunction, E85) becomes
F’ Fdu xF' du e d ( o[V}

iSr+ —|T r—
r ar

Substitution of Terrill's mean flow solutiof =r? into
Eq. (34) leads to

+
r ar r ox ror O(M).

(26)

dy, .
—r+s/r)w+(|8r+4n+4)Yn=0. (36
A solution for Eq.(26) will be presented next.

In what follows, Eq.(36) will be solved using the
method of matched-asymptotic expansions. To that end, the
perturbation parameters need to be first identified. Since our
A solution for Eq.(26) can be developed through the use concern is with solutions corresponding to large Re, the pri-

F. The separable boundary-layer equation

of separation of variables. Assuming the form mary perturbation parameter is cleady: Re '<1. Further-
X, =XX)Y(r), (27) ~ more, one must recognize that the condition o#Sris nec-
o essary to ensure a sufficiently oscillatory flow. It may be
substitution into Eq(26) leads to instructive to note that, according (@5), the Strouhal num-
xdX F dY er d?Y e dY irSr ber depends on the product of the circular frequency and tube
Xd_ EYd EYd?Z FEva F 1 radius (ga) divided by the suction veI_OC|tyS. SinceVy is
usually two to three orders of magnitude smaller than the
=Kp, (28 speed of sound, Sr is about two to three orders of magnitude
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larger than the aeroacoustic Strouhal number basedqon transformed equation is needed to capture the rapid varia-
instead of V5. Recalling that the latter extends over tions near the wallinside the viscous boundary layein

[10 3,10] with a peak in the noise spectrum atS).2, the  both cases, we find it convenient to multiply E&6) by r
current Strouhal number extends over the rgrig&®®] with and write the governing equation as

typically reported values of $r20-50. Py av
Asymptotic approximations to Eq36) depend on the el —— +(—r2+&) —— +r[iSr+(4n+4)]Y,=0.
development of a relationship between the two perturbation dr dr

parameters present in the problem. By inspection of numeri- (42

cal simulations carried out for the large suction case, one )
comes to the conclusion that the problem exhibits a typicaP- The outer solution
second-order wave-type response that bears a strong resem- Using regular perturbations to construct the outer solu-
blance to a critically damped wave. On that account, a distion Y, one may start by putting
tinguished limit will be needed to relateand Sr in a manner
to produce the expected response. Yo=Yo+eY{+0(s?). (43)
To start, an order of magnitude relationship between thefnserting Eq.(43) into Eq. (42) gives
control parameters must be posited. Without loss in general-

ity, one can let d?Ys . dYS day$  dy}
Y er drzo—rzwo—rzsd—rlﬂd—r°+r[(4n+4)+iSr]
Sr~0O(g%). (37
o 0 2y —
Subsequently, rescaling of the viscous domain requires a dis- X(YoteYy)+0O(e9)=0. (44)
tortion of the independent variable in the form Keeping in mind that St O(s 1), the equations defining
1—r=gky (38) the first two terms in the outer solution become
H o__
In order to determine the distinguished limit, one may apply 1SrYo=0, (45)
the stretching transformation and use=%r ¢ in Eq. (36). dy?s
The result is iSrsY‘l’=r2W—r(4n+4)Y8. (46)
172I<dZYn —k d¥n —¢ Solving these equations leads to
€ 02 +e (r—s/r)a—l—[ls +(4n+4)]Y,=0.
(39) Yo=Y{=0, Yp=0+0(&?). (47)

For a critically damped response to occur near the wall, % The inner solution
balance between all three terms in E§9) must be estab- '

lished. Clearly, all terms will be in balance whér-k=1. Having realized that the outer solution is zero, the
These distinctive orders indicate that the boundary-layestretching transformation must now be applied to the original
thickness is 0f0(e) and that coordinate in order to obtain the inner equation. This proce-

dure converts Eq42) into
Sr=0(sY). (40) s Eq42) _
2Y| YI
It may be interesting to note that these distinguished limit§1— &z2) d_zn +[1-e(2z+1)+&%2] d—"+ (e—&22)
are dissimilar from those realized in the injection flow z z
analogi’™** including those arising in the rectangular  x[(4n+4)+iSfYi=0. (49)
cavity* The disparity can be attributed to the reversal inthe _ o ny
physics of the problem, namely, in the relocation of the vis-The inner sc2>Iut|on can be similarly expanded usifig=Yg
cous boundary layer to the vicinity of the suction wall. +eY;+0(e%). The outcome is
d?Y} a2y

(1—82)?"1‘(8_822)?4-[1—8(224— l)+822]
VI. MATCHED-ASYMPTOTIC EXPANSIONS ) )
ayh  dvl

A. The relevant scales te—0ot
dz dz

+(e—&%2)[(4n+4)+iSH]

In order to proceed, one has to identify the length scale _ _
needed to magnify the thin viscous region near the wall. X (Yo+e&Y;)=0. (49

From the foregoing or_der of magn_|tude analysis, the_ relevangince the inner equation is of second order, two conditions
scales can be recognized tober in the outer domain and must be imposed on the inner solution at each perturbation
z=(1-r1)le (41  level. While the first can be determined from the no-slip at
the wall, the second must be deduced by matching with the

in the inner region. Solving the problem with matched- gyter domain. Using Eq35) and the expansion for’ , the
asymptotic expansions involves the formulation of two sepahoundary condition at the wall gives

rate solutions over the domain of interest. While E2f) is : i
only valid in the outer domaifii.e., the inviscid regiop a Yo(z=0)=1, Y3(z=0)=0. (50

3452 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 T. A. Jankowski and J. Majdalani: Unsteady suction-driven porous tube



At this juncture, the leading and first-order correction terms 1 (4n+9Y
can be readily found. From E¢9), the O(1) equation reads Y ={ ¢, —B,e+¢,ze| = — ———n
o Y TP T2 (1—dise
PY, dvy
o7 g TISEYeT0 Y xex3(\1-4iSe-1)7]
wherefore daenemercy 1+ (4n+ 9
» -C —C1)Ze| 5+ ———=
Yi=c, et (VI—4 S —1)z] N Ve 2T 1-dise
+cy,exd — 3(y1—4iSre+1)z]. (52 xexd — 3(J1—4iSre+1)z]. (60
Straightforward application of the boundary condition at the
wall yields D. Asymptotic matching
c,=1-cy, (53 Inner and outer solutions can be readily matched using
h Prandtl’s matching principl& By requiring the inner solu-
so that tion in the outer domain to match the outer solution in the
Yi=cexd (s [1-4iSre—1)z] inner domain, one may set
i _ 0O _
+(1—cy)exd — 3(VI—4iSre +1)z]. (54) Yn(2=2)=Yy(r—=0)=Yncp, (61)
Next, theO(e) equation can be collected from E¢9). One  WhereY, s represents the common part in the overlap region
obtains shared by both inner and outer solutions. In our problem,
" : Ui : both the outer and common parts are zero. The inner solution
vy d¥a o v, 9 Yo (224 1)% in the outer domain will also vanish according to E6f) if,
dz? = dz 1% dz? dz and only if,c;=B,=0. These constants bring closure to the
) i inner solution by permitting the construction of a uniformly
—(4n+4—iSrez)Yy. (55

valid composite solution. Hence, by adding the inner and
While the homogeneous solution can be evaluated by inspe@uter solutions, les¥, ¢,, one finally obtains

tion via
, Yo(n)={1+(1=r)[3+(4n+ 3)/1—4iSre]}
Yy =Biexd 3 (V1—4iSre—1)z]
xXexd — 3(V1—4iSre+1)(1-r)/e]. (62
+B,exd — 3(V1—4iSre+1)z], (56)
the right-hand side of Eq55) can be rearranged into E. The oscillatory velocity
Ci[L(V1—4iSre—1)2z+(z+ 4)(J1—4iSre—1) Insertion of Eq.(62) into Eq. (33) results in an expres-
sion for the rotational velocity component. The addition of
—(4n+4-iSrez)]exd 5 (V1-4iSre—1)z] the acoustical component, given by Hg4), enables us to

express the total axial velocity as an infinite sum, namely,

+(1—cy)[3(V1—4iSre+1)%z— (z+ 3)(J1—4iSre

o . o (=D (wx)**
+1)—(4n+4—iSrez)exd — 3(V1—4iSre+1)z]. utt(x,r) =i Sln(wx)—gow
(57) .
. : 1 (4n+3)
A particular solution must therefore be assumed such that X114+ (1=T1)| = + ———
i - : 2 J1-4isr
1p= (Baz+Byz%)exfd 3 (V1—4iSre —1)z]
+(Bsz+Bgz?)exd — 3(V1—4iSre+1)z]. (59 X exp[— 3( \/1—4iSrs+1)(1—r)/s]) :

After differentiating and substituting Eq458) into the left-

hand side of Eq(55), equating terms of order 1 arrf re- (63)
quires that Since (1-r) is small near the wall, one may use=0
5 in the secondary term arising from the first-order inner cor-
By=c, E_ (4n+ 3) B,=0 rection. The resulting expression can be summed, at leading
2 1-4iSre | ’ order, over all eigenvalues, and placed in closed form by
recognizing and grouping the implicit sine function expan-
Bo=(1—cp)| -+ (4n+ 3) B.—0 (59 sion. This manipulation produces
5= 5T T/ 6— Y-
L2 Ni-aise UDO6r) =i sin(@X){1 —[1+ 2(1—r)(1+9/\1—4iSrm)]
By writing Y} =Y ,+ Y’ , and enforcing Eq(50), the inner
solution turns into xexp[— 3(V1—4iSre+1)(1—r)/e]}. (64)
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Being practica_lly gquivalent to Ec(6_3), this _formula com- Bux+[o— 2(X2—1/X?)]B=0; o=5+4n+iS (71)
pletes our derivation of the acoustico-vortical contribution.

Equation(64) clearly displays the key parameters affecting _

the unsteady wave behavior. B. Complete solution

The foregoing methodology sketches the procedural ¢ this point, two additional variable transformations are

steps needed to arrive at a field approximation based on geded. The first applies to the dependent variable via
matched-asymptotic solution of the vorticity wave. The samqy(x) =B(X) X. Equation(71) becomes

approach can be employed in other suction-driven problems

exhibiting more sophisticated mean flow functions. For ap-

preciable suction, however, an exact solution of the rota-  Hxx—Hx/X+ (o~ X+ 1X*)H=0. (72

tional contribution is possible. This will be presented next. . ) i
The second transformation, namefis= X</2, affects the in-

dependent variable. This results in
VIl. EXACT SOLUTION

. d’H 1 o 1
A. Motivation - — =
; @*( 4+zz+ﬁ)H 0 73
For the case oF=r*, Eq. (34) can be solved exactly.
This requires setting whose solution can be written as
X=¢, B(X)=y¢Y,, 65
¢ (X)=9y (65 H(Z)=CiM (113 5, o(Z) + CoW(1/2) 4,0(Z), (74
where¢ and are functions of the radial coordinateThese
transformations yield where C; and C, are constants to be determined from
boundary conditions; the functiond andW, on the other
dy,, o' ¢ dB  d?Y, ¢'?dB hand, are the Whittaker functions of the first and second
=Bt ——©, —m = kind. The Whittaker functions are related to the Kummer or
dr s ¢ dX dr ¢ dX ) )
confluent hypergeometric functions throdgh
¢// 2¢/ lﬂ/ dB lﬂ” 2¢_/2
+(E_ g2 Jdx \yg? YR B, (66) (12) + pp—(112) Zggy ¢ 1
MK,M(Z):Z “e (I)(§+M_K,1+2/-L;Z),

where primes stand for differentiation with respect t&ub-

stitution into Eq.(34) gives
“9 9 W, ,(2) =202 e (W22 (44— 1+ 201,7),

dZB 1 ) 2(1),1,0, ’ d)/ dB wn (75)
W+W( Y “rRe¢ T )ax T oy wherefrom
12 ’ 2
+2L2+rRe¢ —¢—+Re(iSr+4n+4) ;B,2=0. _ 1 11 .
v v Ty b H(Z)=VZexp - $2)[C1®(5 - 30.1:2)
(67) +C, V(A - 10,1:2)]. (76)

At this point, » and ¢ are chosen so that the variable coef- _ o _
ficients in Eq.(67) are turned into pure constants. For that Returning to original variables, one gets
purpose, the coefficient of the first derivative is suppressed

via Yo(1)={Re/4C,®(3 ~ }0,1;3Rer?)
¢"—=2¢" ' Iy—r Rep’'+¢'/r=0, +C,¥(3— 30,1;3Rer?)]. 77
g ly=1(d"l¢p'—r Re+r 1), (68) Note that{/Re/4 is a constant that can be absorbed Do

andC,. Thus, without loss in generality, one puts
Integrating Eq.(68) gives ¢=Ty\r ¢’ exp(— Rer?/4), ?

whereT, is constant. Equatiof67) simplifies into

Yn(r)=Cy®(5 - 30,1; 3Rer?)

H r—2 —
Byxt+[ReiSr+4n+4)¢' <+ B]B=0, (69 +C2‘I’(%— %a,l;%Rerz),
where (78)
1y 2y 1)y Ya(r)=rRe(; = 30)[C1® (3~ 30,2; 3 Rer?)
B—W{—E-i—?‘f' rRe—F>?. (70)

—C,¥ (32— 10,2;iRer?)].

By setting ReiSr+4n+4)/¢'?=const, one obtainsy’

=\Re andX = ¢=r \/Re. Without losing generality, one puts To find C,, ¥(a,b;z) must be expressed in terms of
To=1//Re so thaty(r) = r exp(~Rer%4). The outcome is ®(a,b;z) usind*
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T ®(a,b;x) using the boundary condition at the wall. One finds

\If(a,b,x): SIn(’7Tb) F(1+a_b)r(b)

Ya(r)=®(; - 30,1;7Rer?)/®(3 - ;0,1;3Re), (80)

_p @(1+a—b,2-b;x) L - _ _
(790 which indicates that the characteristic coordinate scales with
I'(a)r'(2=b) rvRe/2. Following the same lines as before, one can sum the
This expression leads to an infinite value at the corebfor acoustical and vortical contributions to obtain the unsteady
>1 except whenC,=0. The remainingC, is determined velocity component. This takes the form

_Xl

(=DM wx)®"T1d(—2n—2— %iSr,1;iRer?)
uWx,r)=i| sinfwx)— >, = : . (81)
n=0 (2n+1)!®(—2n—2— 3iSr,1;3Re)

Unlike the matched-asymptotic solution given by KEG2), match computational data obtained independently by Yang
the physical clarity of the exact solution is encumbered byand Roh who utilized a fully compressible, finite-volume

the infinite summation of the Kummer function. Navier-Stokes solvéP
VIIl. DISCUSSION C. Graphical confirmation
A. A formerly tested methodology Figure 2 illustrates the agreement between the exact or

- . . numerical solutions and Ed62). Over typical ranges of
The decomposition of the time-dependent governin . ; ; .
. . . hysical parameters, the graphical comparison clearly indi-
equations presented in Sec. IV, during the momentum trans- : N
. T cates that the matched-asymptotic solution is in close agree-
port formulation, was first introduced by Flan&t@nd fur-

ther developed by Majdalani and R&hEor injection-driven ment with the numerical results. Graphically, the accuracy of

: d o - . the approximate formulation is seen to increase with increas-
flows with superimposed oscillations, a similar analytical.

. : 7 ing Reynolds and Strouhal numbers. This observation is re-

framework has provided accurate flow field predictions. . : oo . i
. ) ) assuring since it indicates that the solution exhibits the
Those could be substantiated using fully nonlinear computa- . . ) 1
) . L7 . proper asymptotic behavior as= Re *—0 and Sr-—0. It
tional models. The asymptotic approximations obtained pre: e o
viously were also shown to agree favorably with experimenIS also satisfying to note the nearly critical damped-wave
tal data obtained in cold-flow simulations of transpiring response. This rapid damping in both depth and amplitude is

surfaces®-2 Although the physical nature of the problem consistent with the arguments introduced in Sec. V regarding

2 . the scaling orders of Sr and Also note that the wave be-
changes when suction is introduced, the assumptions used (i

. ) : ) ) t%avior is different from the highly under-damped wave solu-
redu_cmg the goveming equations remain valid, regardles_,s Ylon associated with injection-driven flows. In the latter, nu-
the inflow or outflow boundary conditions. By analogy with '

L : merous peaks of diminishing amplitude appear as the
the injection-driven problem, one can expect a Comparabl%istance from the wall is increaséd

level of agreement between the asymptotic formulations In order to assess the truncation error associated with

given here and either numerical or experimental studies o 62) th ) bsol b .
the model at hand. However, in the absence of experimenta a. (62), t € maximum absolute error between asymptotics
) ' nd numerics is shown in Fig. 3 for the first three eigenval-

[)neez:j:g?trggr:;s to compare with, numerical simulations mustajfes and a range of Sr and Re. When plotted versubis

error is seen to exhibit a clear asymptotic orderasO. It
also decreases in magnitude with successive increases in Sr.
B. Numerical confirmation It can also be seen that the slope of the error curves and, in

) _turn, the order of the truncation error approach unity for
Due to the lack of experimental data for the suction-

driven flow, we have compared the matched-asymptotic ex-
pansion to a numerical solution of E(6) obtained from a

code that was originally developed for injection-driven flows

by Majdalani and Van Moorheri?. The same code was tested r
by comparing its results to the exact solution derived in Sec.

VIl. The algorithm employs a fixed step fifth-order Runge- Re=120
Kutta method with shooting to handle the boundary condi- 0.5
tions. For the suction case, the step size used wa$ &0 a
normalized interval. In former StUdlég’M the same code FIG. 2. HereY, is plotted forn=0 over a range of Reynolds and Strouhal

was shown to prov'ide satisfactory agreement with experinympers. The figures show the slightly under-damped response=2(Re
mental data. Therein, the code was also shown to closelynd 50.

100 50 Sr=20
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FIG. 3. Plot of the maximum error in the approximate solution veesus

sufficiently smalle. This confirms the order claimed for this
approximation. In particular, it may be useful to note that the
slight increase in the error intercept at higher eigenvalues
does not affect the summed up solution. This is due to the
rapid convergence of the series in E63) asn is increased.

D. Variation of flow parameters

The four subsets of Fig. 4 illustrate the effect of varying 0 0.2L 0.4L
e_|ther the suction vqumty or the oscillation frequency on th_eFIG. 5. The spatial distribution of the oscillatory velocit§") exp(—it) is
time-dependent solution. In all four cases, the velocity isilustrated for the first three acoustical oscillation modes by plotting the
seen to be a wave traveling in time. While a viscous andelocity modulus at sev_eral eve'nly _spaced axial positions fo#Rband
rotational layer is present near the wall, a broad inviscid an(ﬁ;r:. 10. The corresponding longitudinal mode shapes of the acoustical ve-
. . . . . ocity component are also shown at nine equally dispersed times. In addition
!rrotatlonal region Cover§ the remaining Qoma'”- lnterest'to the head end location, the smallest disturbances occur athhiaternal
ingly, the unsteady velocity reaches a maximum value insidgcoystical node located at/L=n/(m— 1), n<m, m=1,2,3, etc.
the viscous layer where a small velocity overshoot is realized
near the wall. This phenomenon is well known as Richardyation peak stemming from a favorable coupling between
son’s annular effect and seems to be characteristic of oscil;

: ) : acoustical and vortical waves will then form closer to the
latory flows in tubes and channels with and without wall\\ 4 since the rotational component diminishes with the dis-

p_ermeatlorf.e The small percentage overshoot that accompagsnce from the wall, a larger vortical contribution augments
nies a suction-driven flow is of the same order as that assQpg acqustical wave when their coupling occurs closer to the
_C|at_ed Wlth the exact Sexl profile inside a nonporous tube. It i1 (e.g., at higher frequenciesThe reduction in spatial

is significantly smaller than the 100% overshdict., veloc-  \ayelength at higher Strouhal numbers increases the rate of
ity doubling) that recurs near the walls of injection-driven \;scqus dissipation and causes the boundary-layer thickness
flows. to decreasé’ The latter is often referred to as the penetration

According to the theory of laminar periodic flows, one yenth and is a measure of the viscous and rotational layer
could expect the magnitude of the velocity overshoot to in-;p,ve the solid boundary.

crease at higher oscillation frequenctéghe reason is this. The top two subsets in Fig. 4 illustrate the effects of

As the Strouhal number is increased, the spatial wavelengty reasing the Reynolds number while decreasing the Strou-
diminishes, being inversely proportional to Sr. The first 0S-5| humber via an order of magnitude increas¥/jn As the
suction speed is increased, the rotational layer is reduced in

= i ) both depth and overshoot. While the reduction in overshoot
'270' 18070 i can be attributed to the smaller vortical contribution associ-
L I ated with a smaller Sr, the smaller depth may be attributed to
| 315° Re the increased Re. Evidently, the increased fluid withdrawal
225° rate has the effect of attracting the viscous layer closer to the
0.5 wall.
The bottom two subsets, on the other hand, confirm the
! P previous statements made regarding the oscillation fre-
e guency. Clearly, through an order of magnitude increase in
- L % Sr, the penetration depth is decreased, while Richardson’s
. ; effect is made more appreciable.
]
05 i I R E. Oscillation modes
1.0 0.5

In closing, we use Fig. 5 to show the spatial evolution of

FIG. 4. The oscillatory velocitu® exp(-it) is shown at four different o oscillatory velocity for the first three oscillation modes
times form=1 andx/I =0.5. Angles in the figures represent dimensionless )

time. Properties correspond to an order of magnitude variation in Reynoldé_lsO plotted are the am_p”tUdes _Of _the inViSCid_ velocity at
and Strouhal numbers. nine equally scattered times. This is done to illustrate the
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