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This paper considers the oscillatory motion of gases inside a long porous tube of the closed-open
type. In particular, the focus is placed on describing an analytical solution for the internal
acoustico-vortical coupling that arises in the presence of appreciable wall suction. This unsteady
field is driven by longitudinal oscillatory waves that are triggered by small unavoidable fluctuations
in the wall suction speed. Under the assumption of small amplitude oscillations, the time-dependent
governing equations are linearized through a regular perturbation of the dependent variables. Further
application of the Helmholtz vector decomposition theorem enables us to discriminate between
acoustical and vortical equations. After solving the wave equation for the acoustical contribution,
the boundary-driven vortical field is considered. The method of matched-asymptotic expansions is
then used to obtain a closed-form solution for the unsteady momentum equation developing from
flow decomposition. An exact series expansion is also derived and shown to coincide with the
numerical solution for the problem. The numerically verified end results suggest that the asymptotic
scheme is capable of providing a sufficiently accurate solution. This is due to the error associated
with the matched-asymptotic expansion being smaller than the error introduced in the Navier-Stokes
linearization. A basis for comparison is established by examining the evolution of the oscillatory
field in both space and time. The corresponding boundary-layer behavior is also characterized over
a range of oscillation frequencies and wall suction velocities. In general, the current solution is
found to exhibit features that are consistent with the laminar theory of periodic flows. By
comparison to the Sexl profile in nonporous tubes, the critically damped solution obtained here
exhibits a slightly smaller overshoot and depth of penetration. These features may be attributed to
the suction effect that tends to attract the shear layers closer the wall. ©2005 Acoustical Society
of America. @DOI: 10.1121/1.1905639#

PACS numbers: 43.20.Mv, 43.28.Py@LLT # Pages: 3448–3458
-
b
re
ica
n
rin
is
o

re
nc
ng
t a
ne

ic
pe

on
nt

ed
ex-

n-
ntal
e

te.
uen-
ncy

cted
r,
ue
ve
ous
ltic
c-

elf-
udy
en

nc

nt
en
I. INTRODUCTION

In a previous article,1 an asymptotic solution was pre
sented for the acoustico-vortical field that was triggered
small fluctuations in wall injection inside a porous enclosu
This effort was supplemented by a higher-order analyt
approximation based on a Liouville-Green transformatio2

The current article extends the former studies by conside
the suction-driven flow analog. In particular, the focus
presently shifted to the acoustico-vortical field inside a p
rous tube with appreciable wall suction. Despite the appa
resemblance with the injection-driven problem, the prese
of wall suction leads to a dissimilar physical setting requiri
a separate mathematical treatment. The new treatmen
plies to the linearized Navier-Stokes equations obtai
through flow decomposition.

Suction-induced flows that are susceptible to acoust
oscillations are encountered in diverse applications. One
tains to membrane filtration3,4 and the separation of uranium
isotopes by differential gas diffusion.5–7Another arises in the
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modeling of mechanically assisted respiration,8 hemodialysis
in artificial kidneys,9 and mass transport in the lungs.10,11 A
third concerns boundary-layer separation and control.12,13

While past investigations have primarily concentrated
nonoscillatory behavior, the intent of this article is to accou
for possible flow periodicity that can be often introduc
either internally, through a self-sustaining mechanism, or
ternally, through an oscillating boundary.

The inception of unavoidable fluctuations in injectio
driven flows has been reported in several experime
investigations.14–16One source of oscillatory behavior can b
ascribed to random fluctuations in the wall injection ra
These are often inevitable and take place at random freq
cies. Clearly, those matching the tube’s natural freque
give rise to a self-sustaining acoustical field.14–16Theoretical
investigations suggest that similar behavior can be expe
in suction-driven flows.17–20 In some applications, howeve
an externally induced oscillatory field can exist. This is tr
when the field is created from laboratory-controlled wa
generators, or from periodic sources supplied by autonom
mechanisms. Examples of the latter include the perista
mechanisms in control of respiratory and circulatory fun
tions.

Whether the time dependence comes through s
induced or externally triggered sources, the goal of this st
is to incorporate these oscillations into the suction-driv

es
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-
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flow. By virtue of the complexity of the resulting model, th
outcome we seek is an approximate solution only. Unlike
mean flow counterpart,21–24 the existence of an exact un
steady solution can be proven impossible in light of rec
mathematical reports.17–20 To the author’s knowledge, th
current effort may constitute the first attempt at formulatin
time-dependent solution for the suction-driven field insid
porous tube.

It may be safely stated that Berman’s landmark pap5

has provided the original motivation for the suction-driv
problems. This, Berman accomplished, by showing that
Navier-Stokes equations could be reduced to a nonlinea
dinary differential equation~ODE! of fourth order. Berman
was also first in applying asymptotics to obtain a solution
the presence of small wall suction. In the process, Berm
perturbation parameter was quantified by the cross-flow R
nolds number Re[Vsa/n0. This term was based on the wa
suction velocityVs , viscosityn0 , and tube radiusa. Based
on Berman’s equation, numerous studies ensued, some
the purpose of generating closed-form descriptions
suction-driven flows over different ranges of Re. By way
example, one may cite Yuan,25,26 Sellars,27 and Terrill,28–30

who have extended Berman’s small suction case to enc
pass higher ranges of Re. While Yuan extended Berm
solution up to Re520, Sellars and Terrill developed approx
mate solutions that coincided as Re→` in both channels and
tubes. In this work, their joint solution will be used to pr
scribe the mean flow character.

A number of mathematical studies have also addres
the important aspect of solution multiplicity.17–24 In sum-
mary, a total of four solution types were detected in t
suction-driven porous tube.20 For small suction, two solu-
tions were shown to exist for 0<Re<2.3. While no solu-
tions were present in the interval 2.3,Re,9.1, four out-
comes were observed for 9.1<Re,`. Stability of the porous
tube solution was also examined by Zaturska, Drazin,
Banks.20 Their results have indicated that the Berman-ty
similarity solutions could only be stable to time-depend
perturbations in the ranges 0<Re<2.3 and 9.113<Re
,44.709. Outside these ranges, unstable solutions du
asymmetric perturbations were likely to exist. Nonethele
despite the speculations made regarding the physicalit
unstable solutions, no laboratory confirmation could
found in the technical literature. For this reason, the curr
study utilizes the leading-order solution for large Re a
model for the mean flow field in the presence of symme
oscillations.

The physical idealization starts in Sec. II with a defin
tion of the basic flow model. This is initiated with a descri
tion of the system geometry and physical criteria. In Sec.
the governing equations are presented in their general dim
sional form. Subsequently, equations and variables are
malized, linearized, and decomposed into steady and ti
dependent sets.1 The temporal field is further subdivided i
Sec. IV using the Helmholtz vector superposition theore
At the outset, acoustical and vortical equations are dis
guished. While the pressure-driven response is dealt w
immediately, the momentum equation obtained from the
tational component is simplified to a second-order ODE.
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 T. A. Jan
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Sec. V the rotational momentum equation is examined be
a solution is attempted. This is followed in Sec. VI by th
presentation of a composite solution based on match
asymptotic expansions. An exact series expansion is de
oped in Sec. VII. Finally, results are displayed and discus
in Sec. VIII. Everywhere, the scope is restricted to Re>20.

II. THE BASIC FLOW MODEL

A. The porous tube

We shall consider a long porous tube of radiusa. Fluid
is extracted from the circumferential walls at a uniform w
velocity Vs . The length of the tube is defined byL and the
system is simplified by imposing the condition of symme
about the tube’s axis. This choice permits the solution
main to become reducible to 0<x< l , and 0<r<1, where
l 5L/a is the dimensionless tube length. For illustrative p
poses, Fig. 1 sketches a cross section of the tube with
mean flow streamlines calculated from Terrill’s solution f
large suction.28

Under the influence of small variations in the sucti
rate, a tube that is closed at the head end and open at th
end can develop longitudinal pressure oscillations of am
tude Ap . The corresponding acoustical frequency can
specified by31,32

v05~m2 1
2!pa0 /L, ~1!

wherea0 is the speed of sound andm is the oscillation mode
number.

B. Limiting conditions

In order to simplify the analysis to the point where a
analytical solution can be arrived at, several restrictions m
be observed. First, the mean flow must be Newtonian, la
nar, and unsusceptible to mixing, swirling, or turbulenc
Furthermore, the oscillatory pressure amplitude is taken to
small in comparison with the stagnation pressure.

III. GOVERNING EQUATIONS

A. The conservation equations

Employing asterisks to designate dimensional variab
density, pressure, time, velocity, and the shear stress te

FIG. 1. Geometrical sketch showing mean flow streamlines and boun
conditions based on Terrill’s large suction-flow solution.
3449kowski and J. Majdalani: Unsteady suction-driven porous tube
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can be represented byr* , p* , t* , u* , andt* , respectively.
Continuity and conservation of momentum can then be w
ten in their general forms33

]r* /]t* 1¹* •~r* u* !50, ~2!

]~r* u* !/]t* 1¹* •~r* u* u* !52¹* p* 2~¹* •t* !.
~3!

By using continuity to simplify Eq.~3! and viscous transfe
for a Newtonian fluid, one can transform Eq.~3! into

r* @]u* /]t* 1~u* •¹* !u* #

52¹* p* 1m* @4¹* ~¹* •u* !/32¹* 3~¹* 3u* !#,

~4!

wherem* is the dynamic viscosity.
To be general, dimensionless parameters are introdu

Spatial coordinates are hence normalized bya, while veloc-
ity and time are made dimensionless bya0 andv0 , respec-
tively. In summary, we let

x5x* /a, r 5r * /a, t5v0t* , u5u* /a0 ,

p5p* /~gp0!, and r5r* /r0 , ~5!

whereg is the ratio of specific heats, andr0 andp0 are the
stagnation density and pressure. Following this nomen
ture, Eqs.~2! and ~4! become

v]r/]t1¹•~ru!50, ~6!

r@v]u/]t1~u•¹!u#52¹p1M«@4¹~¹•u!/32¹

3~¹3u!#. ~7!

Equations~6! and ~7! employ the definitions of the nondi
mensional frequencyv[v0a/a0 , the suction Mach numbe
M[Vs /a0 , and the small parameter«[1/Re.

B. Perturbed variables

With the introduction of small amplitude oscillation
the instantaneous pressure can be expressed as the linea
of time-dependent and steady components:

p5p(0)1«wp(1) exp~2 i t !, ~8!

where i 5A21, «w5Ap /(gp0), and @p(0),p(1)# are spatial
functions. Unlikep(1), p(0) can be shown to be a constant
order O(M2), namely,p(0)51/g1O(M2). Noting that the
mean flow solution is incompressible, small compressibi
effects can only influence the time-dependent field. Den
can thus be normalized by its mean component and expa
in a similar fashion viz.

r511«wr (1) exp~2 i t !. ~9!

The total velocity can also be expanded as

u5MU1«wu(1) exp~2 i t !, ~10!

where U represents the mean flow velocity normalized
Vs . Following Majdalani and Flandro,34 we impose a con-
straint on the wave amplitude, namely,

M2,«w,M, ~11!

where M,0.01.
3450 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 T
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C. Leading-order decomposition

Equations~8!–~10! can be inserted back into Eqs.~6!
and ~7!. The zeroth-order terms yield the mean flow equ
tions

¹•U50, ~12!

M2~U•¹!U52¹p(0)1M2«@4¹~¹•U!/32¹3~¹3U!#.
~13!

Following Berman,5 a steady streamfunction can be defin
by C52xF(r ). Subsequently, the velocity can be e
pressed by (Ux ,Ur)5@2xF8(r )/r ,F(r )/r #. By substituting
these definitions into Eq.~13!, Terrill has shown thatF5r 2

provides the exact mean flow solution for the infinitely lar
suction case.28 The mean pressure arising in this context c
be integrated from Eq.~13! to obtain

p(0)~x,r !51/g2M2r 2~11x2!/2. ~14!

D. Time-dependent equations

Terms ofO(«w) in Eqs.~6! and ~7! lead to

2 ivr (1)1¹•u(1)52M¹•~r (1)U!, ~15!

2 ivu(1)52M@¹~U"u(1)!2u(1)3~¹3U!

2U3~¹3u(1)!#2¹p(1)

1M«@4¹~¹•u(1)!/32¹3~¹3u(1)!#. ~16!

Equations~15! and ~16! describe the intimate coupling be
tween mean and unsteady motions. They indicate that
wall suction velocityU can strongly influence the oscillator
flow motion.

IV. MOMENTUM TRANSPORT FORMULATION

A. Irrotational and solenoidal vectors

In order to proceed, temporal disturbances can be s
into solenoidal and irrotational components.35 Using a cir-
cumflex to denote the curl-free pressure-driven part, an
tilde for the divergence-free boundary-driven part, the tim
dependent velocity component can be expressed as

u(1)5û1ũ, ~17!

with

¹3u(1)5¹3ũ, p(1)5 p̂, r (1)5 r̂. ~18!

This decomposition charges all vortices to the vortic
field ũ5(ũ,ṽ), and compressibility sources and sinks to t
acoustical fieldû5(û,v̂).

B. The linearized Navier-Stokes equations

Insertion of Eqs.~17! and ~18! into Eqs.~15! and ~16!
leads to two independent sets that are coupled through
boundary conditions at the wall. These responses are byp
ucts of pressure-driven and vorticity-driven oscillatio
modes atO(«w). While the acoustical, compressible, an
irrotational equations collapse into

2 ivr̂1¹•û52M¹•~ r̂U!, ~19!
. A. Jankowski and J. Majdalani: Unsteady suction-driven porous tube
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2 ivû52¹ p̂14M«¹~¹•û!/32M@¹~ û•U!

2û3~¹3U!#, ~20!

the rotational and incompressible set comprises of

¹•ũ50, ~21!

2 ivũ52M«¹3~¹3ũ!2M@¹~ ũ"U!2ũ3~¹3U!

2U3~¹3ũ!#. ~22!

C. Coupling conditions

Two boundary conditions must be satisfied by the u
steady velocity componentu(1). These are the no-slip cond
tion at the wall u(1)(x,1)50, and centerline symmetry
]u(1)(x,0)/]r 50.

D. Pressure-driven solution

When Eq.~19! is multiplied by2 iv, the divergence of
Eq. ~20! can be evaluated; resulting terms can be adde
produce the following wave equation:

¹2p̂1v2p̂54M«¹2~¹•û!/32M$ iv¹•~Up̂!

1¹2~ û"U!2¹•@ û3~¹3U!#%. ~23!

At this juncture, a solution atO~M! can be achieved throug
separation of variables and closed-open boundary conditi
The ensuing acoustical pressure and velocity are

p̂5cos~vx!1O~M!, û5 i sin~vx!ex1O~M!. ~24!

E. Vortical equations

Assuming that the ratio of the normal to axial velocity
of the same order as the Mach number@i.e. ṽ/ũ5O(M)], ṽ
can be dropped at leading order. This assumption can
justified in view of the arguments presented by Flandro36

Applying this condition, along with the definition of th
mean flow velocity, the axial momentum equation reduce

iSrũ5
]~ ũU!

]x
1v0

]ũ

]r
2

«

r

]

]r S r
]ũ

]r D1O~M!, ~25!

where Sr5v/M is the Strouhal number. When expressed
terms of the mean flow streamfunction, Eq.~25! becomes

S iSr1
F8

r D ũ5
F

r

]ũ

]r
2

xF8

r

]ũ

]x
2

«

r

]

]r S r
]ũ

]r D1O~M!.

~26!

A solution for Eq.~26! will be presented next.

F. The separable boundary-layer equation

A solution for Eq.~26! can be developed through the u
of separation of variables. Assuming the form

ũ~x,r !5X~x!Y~r !, ~27!

substitution into Eq.~26! leads to

x

X

dX

dx
5

F

F8Y

dY

dr
2

«r

F8Y

d2Y

dr 2 2
«

F8Y

dY

dr
2

ir Sr

F8
21

5kn , ~28!
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 T. A. Jan
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wherekn.0 is the separation eigenvalue. Integration of t
x equation can be performed easily and then inserted into
~27!. The outcome is

ũ~x,r !5(
n

cnxknYn~r !, ~29!

wherecn is the integration constant for eachkn . Satisfaction
of the no-slip condition at the wall requires setting the aco
tical and vortical velocity components equal and opposite
r 51. One finds

ũ~x,1!52 i sin~vx!. ~30!

Using a series expansion of the sine function, and setting
result equal to Eq.~29!, one gets

(
n

cnxknYn~1!52 i (
n50

`
~21!n~vx!2n11

~2n11!!
. ~31!

Equating terms necessitates that

kn52n11, cn52 i
~21!nv2n11

~2n11!!
, Yn~1!51, ~32!

wheren50,1,2,...,̀ . The rotational velocity component be
comes

ũ~x,r !52 i (
n50

`
~21!n~vx!2n11

~2n11!!
Yn~r !. ~33!

In order to bring closure to Eq.~33!, Yn needs to be deter
mined from Eq.~28!. One finds thatYn must be obtained
from the doubly perturbed boundary-value problem, nam

«
d2Yn

dr 2 1@~«2F !/r #
dYn

dr
1@ iSr1~2n12!F8/r #Yn50,

~34!

where

Yn~1!51, Yn8~0!50. ~35!

These two boundary conditions stem from the no-slip a
core symmetry requirements.

V. BOUNDARY-LAYER ANALYSIS

Substitution of Terrill’s mean flow solutionF5r 2 into
Eq. ~34! leads to

«
d2Yn

dr 2 1~2r 1«/r !
dYn

dr
1~ iSr14n14!Yn50. ~36!

In what follows, Eq. ~36! will be solved using the
method of matched-asymptotic expansions. To that end,
perturbation parameters need to be first identified. Since
concern is with solutions corresponding to large Re, the
mary perturbation parameter is clearly«5Re21!1. Further-
more, one must recognize that the condition of Sr@1 is nec-
essary to ensure a sufficiently oscillatory flow. It may
instructive to note that, according to~25!, the Strouhal num-
ber depends on the product of the circular frequency and t
radius (v0a) divided by the suction velocityVs . SinceVs is
usually two to three orders of magnitude smaller than
speed of sound, Sr is about two to three orders of magnit
3451kowski and J. Majdalani: Unsteady suction-driven porous tube
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larger than the aeroacoustic Strouhal number based oa0

instead of Vs . Recalling that the latter extends ov
@1023,10# with a peak in the noise spectrum at Sr'0.2, the
current Strouhal number extends over the range@1,103# with
typically reported values of Sr'20– 50.

Asymptotic approximations to Eq.~36! depend on the
development of a relationship between the two perturba
parameters present in the problem. By inspection of num
cal simulations carried out for the large suction case,
comes to the conclusion that the problem exhibits a typ
second-order wave-type response that bears a strong re
blance to a critically damped wave. On that account, a
tinguished limit will be needed to relate« and Sr in a manne
to produce the expected response.

To start, an order of magnitude relationship between
control parameters must be posited. Without loss in gene
ity, one can let

Sr;O~«2z!. ~37!

Subsequently, rescaling of the viscous domain requires a
tortion of the independent variable in the form

12r 5«kz. ~38!

In order to determine the distinguished limit, one may ap
the stretching transformation and use Sr5«2z in Eq. ~36!.
The result is

«122k
d2Yn

dz2 1«2k~r 2«/r !
dYn

dz
1@ i«2z1~4n14!#Yn50.

~39!

For a critically damped response to occur near the wal
balance between all three terms in Eq.~39! must be estab-
lished. Clearly, all terms will be in balance whenz5k51.
These distinctive orders indicate that the boundary-la
thickness is ofO~«! and that

Sr5O~«21!. ~40!

It may be interesting to note that these distinguished lim
are dissimilar from those realized in the injection flo
analog,37–42 including those arising in the rectangul
cavity.1,2 The disparity can be attributed to the reversal in
physics of the problem, namely, in the relocation of the v
cous boundary layer to the vicinity of the suction wall.

VI. MATCHED-ASYMPTOTIC EXPANSIONS

A. The relevant scales

In order to proceed, one has to identify the length sc
needed to magnify the thin viscous region near the w
From the foregoing order of magnitude analysis, the relev
scales can be recognized to ber 5r in the outer domain and

z5~12r !/« ~41!

in the inner region. Solving the problem with matche
asymptotic expansions involves the formulation of two se
rate solutions over the domain of interest. While Eq.~36! is
only valid in the outer domain~i.e., the inviscid region!, a
3452 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 T
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transformed equation is needed to capture the rapid va
tions near the wall~inside the viscous boundary layer!. In
both cases, we find it convenient to multiply Eq.~36! by r
and write the governing equation as

«r
d2Yn

dr 2 1~2r 21«!
dYn

dr
1r @ iSr1~4n14!#Yn50.

~42!

B. The outer solution

Using regular perturbations to construct the outer so
tion Yn

o , one may start by putting

Yn
o5Y0

o1«Y1
o1O~«2!. ~43!

Inserting Eq.~43! into Eq. ~42! gives

«r
d2Y0

o

dr 2 2r 2
dY0

o

dr
2r 2«

dY1
o

dr
1«

dY0
o

dr
1r @~4n14!1 iSr#

3~Y0
o1«Y1

o!1O~«2!50. ~44!

Keeping in mind that Sr5O(«21), the equations defining
the first two terms in the outer solution become

iSrY0
o50, ~45!

iSr«Y1
o5r 2

dY0
o

dr
2r ~4n14!Y0

o . ~46!

Solving these equations leads to

Y0
o5Y1

o50, Yn
o501O~«2!. ~47!

C. The inner solution

Having realized that the outer solution is zero, t
stretching transformation must now be applied to the origi
coordinate in order to obtain the inner equation. This pro
dure converts Eq.~42! into

~12«z!
d2Yn

i

dz2 1@12«~2z11!1«2z#
dYn

i

dz
1~«2«2z!

3@~4n14!1 iSr#Yn
i 50. ~48!

The inner solution can be similarly expanded usingYn
i 5Y0

i

1«Y1
i 1O(«2). The outcome is

~12«z!
d2Y0

i

dz2 1~«2«2z!
d2Y1

i

dz2 1@12«~2z11!1«2z#

3S dY0
i

dz
1«

dY1
i

dz D 1~«2«2z!@~4n14!1 iSr#

3~Y0
i 1«Y1

i !50. ~49!

Since the inner equation is of second order, two conditio
must be imposed on the inner solution at each perturba
level. While the first can be determined from the no-slip
the wall, the second must be deduced by matching with
outer domain. Using Eq.~35! and the expansion forYn

i , the
boundary condition at the wall gives

Y0
i ~z50!51, Y1

i ~z50!50. ~50!
. A. Jankowski and J. Majdalani: Unsteady suction-driven porous tube
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At this juncture, the leading and first-order correction ter
can be readily found. From Eq.~49!, theO~1! equation reads

d2Y0
i

dz2 1
dY0

i

dz
1 iSr«Y0

i 50, ~51!

wherefore

Y0
i 5c1 exp@ 1

2 ~A124iSr«21!z#

1c2 exp@2 1
2 ~A124iSr«11!z#. ~52!

Straightforward application of the boundary condition at t
wall yields

c2512c1 , ~53!

so that

Y0
i 5c1 exp@ 1

2 ~A124iSr«21!z#

1~12c1!exp@2 1
2 ~A124iSr«11!z#. ~54!

Next, theO~«! equation can be collected from Eq.~49!. One
obtains

d2Y1
i

dz2 1
dY1

i

dz
1 iSr«Y1

i 5z
d2Y0

i

dz2 1~2z11!
dY0

i

dz

2~4n142 iSr«z!Y0
i . ~55!

While the homogeneous solution can be evaluated by ins
tion via

Y1,h
i 5B1 exp@ 1

2 ~A124iSr«21!z#

1B2 exp@2 1
2 ~A124iSr«11!z#, ~56!

the right-hand side of Eq.~55! can be rearranged into

c1@ 1
4 ~A124iSr«21!2z1~z1 1

2!~A124iSr«21!

2~4n142 iSr«z!#exp@ 1
2 ~A124iSr«21!z#

1~12c1!@ 1
4 ~A124iSr«11!2z2~z1 1

2!~A124iSr«

11!2~4n142 iSr«z!exp@2 1
2 ~A124iSr«11!z#.

~57!

A particular solution must therefore be assumed such th

Y1,p
i 5~B3z1B4z2!exp@ 1

2 ~A124iSr«21!z#

1~B5z1B6z2!exp@2 1
2 ~A124iSr«11!z#. ~58!

After differentiating and substituting Eq.~58! into the left-
hand side of Eq.~55!, equating terms of order 1 andz2 re-
quires that

B35c1F1

2
2

~4n1 9
2!

A124iSr«
G , B450,

B55~12c1!F1

2
1

~4n1 9
2!

A124iSr«
G , B650. ~59!

By writing Y1
i 5Y1,h

i 1Y1,p
i and enforcing Eq.~50!, the inner

solution turns into
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s

c-

Yn
i 5H c12B2«1c1z«F1

2
2

~4n1 9
2!

A124iSr«
G J

3exp@ 1
2 ~A124iSr«21!z#

1H ~12c1!1B2«1~12c1!z«F1

2
1

~4n1 9
2!

A124iSr«
G J

3exp@2 1
2 ~A124iSr«11!z#. ~60!

D. Asymptotic matching

Inner and outer solutions can be readily matched us
Prandtl’s matching principle.43 By requiring the inner solu-
tion in the outer domain to match the outer solution in t
inner domain, one may set

Yn
i ~z→`!5Yn

o~r→0!5Yn,cp, ~61!

whereYn,cp represents the common part in the overlap reg
shared by both inner and outer solutions. In our proble
both the outer and common parts are zero. The inner solu
in the outer domain will also vanish according to Eq.~61! if,
and only if,c15B250. These constants bring closure to t
inner solution by permitting the construction of a uniform
valid composite solution. Hence, by adding the inner a
outer solutions, lessYn,cp, one finally obtains

Yn~r !5$11~12r !@ 1
2 1~4n1 9

2!/A124iSr«#%

3exp@2 1
2 ~A124iSr«11!~12r !/«#. ~62!

E. The oscillatory velocity

Insertion of Eq.~62! into Eq. ~33! results in an expres
sion for the rotational velocity component. The addition
the acoustical component, given by Eq.~24!, enables us to
express the total axial velocity as an infinite sum, namely

u(1)~x,r !5 i S sin~vx!2 (
n50

`
~21!n~vx!2n11

~2n11!!

3H 11~12r !F1

2
1

~4n1 9
2!

A124iSr«
G J

3exp[2 1
2~A124iSr«11)(12r )/«# D .

~63!

Since (12r ) is small near the wall, one may usen50
in the secondary term arising from the first-order inner c
rection. The resulting expression can be summed, at lea
order, over all eigenvalues, and placed in closed form
recognizing and grouping the implicit sine function expa
sion. This manipulation produces

u(1)~x,r !5 i sin(vx){1 2@11 1
2 (12r !(119/A124iSr«)]

3exp[2 1
2 ~A124iSr«11!~12r !/«]}. ~64!
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Being practically equivalent to Eq.~63!, this formula com-
pletes our derivation of the acoustico-vortical contributio
Equation~64! clearly displays the key parameters affecti
the unsteady wave behavior.

The foregoing methodology sketches the procedu
steps needed to arrive at a field approximation based o
matched-asymptotic solution of the vorticity wave. The sa
approach can be employed in other suction-driven proble
exhibiting more sophisticated mean flow functions. For a
preciable suction, however, an exact solution of the ro
tional contribution is possible. This will be presented nex

VII. EXACT SOLUTION

A. Motivation

For the case ofF5r 2, Eq. ~34! can be solved exactly
This requires setting

X5f, B~X!5cYn , ~65!

wheref andc are functions of the radial coordinater . These
transformations yield

dYn

dr
52

c8

c2 B1
f8

c

dB

dX
,

d2Yn

dr 2 5
f82

c

d2B

dX2

1S f9

c
2

2f8c8

c2 D dB

dX
2S c9

c2 2
2c82

c3 DB, ~66!

where primes stand for differentiation with respect tor . Sub-
stitution into Eq.~34! gives

d2B

dX2 1
1

f82 S f92
2f8c8

c
2r Ref81

f8

r D dB

dX
1F2

c9

c

1
2c82

c2 1
r Rec8

c
2

c8

rc
1Re~ iSr14n14!G B

f82 50.

~67!

At this point, c andf are chosen so that the variable coe
ficients in Eq.~67! are turned into pure constants. For th
purpose, the coefficient of the first derivative is suppres
via

f922f8c8/c2r Ref81f8/r 50,

c8/c5 1
2 ~f9/f82r Re1r 21!. ~68!

Integrating Eq.~68! gives c5T0Arf8 exp(2 Rer2/4),
whereT0 is constant. Equation~67! simplifies into

BXX1@Re~ iSr14n14!f8221b#B50, ~69!

where

b5
1

f82 F2
c9

c
1

2c82

c2 1S r Re2
1

r D c8

c G . ~70!

By setting Re(iSr14n14)/f825const, one obtainsf8
5ARe andX5f5rARe. Without losing generality, one pu
T051/A4 Re so thatc(r )5Ar exp(2Rer2/4). The outcome is
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BXX1@s2 1
4 ~X221/X2!#B50; s5514n1 iS ~71!

B. Complete solution

At this point, two additional variable transformations a
needed. The first applies to the dependent variable
H(X)5B(X)AX. Equation~71! becomes

HXX2HX /X1~s2 1
4 X211/X2!H50. ~72!

The second transformation, namely,Z5X2/2, affects the in-
dependent variable. This results in

d2H

dZ2 1S 2
1

4
1

s

2Z
1

1

4Z2DH50, ~73!

whose solution can be written as

H~Z!5C1M ~1/2! s,0~Z!1C2W~1/2! s,0~Z!, ~74!

where C1 and C2 are constants to be determined fro
boundary conditions; the functionsM and W, on the other
hand, are the Whittaker functions of the first and seco
kind. The Whittaker functions are related to the Kummer
confluent hypergeometric functions through44

Mk,m~Z!5Z~1/2! 1me2~1/2! ZF~ 1
2 1m2k,112m;Z!,

Wk,m~Z!5Z~1/2! 1me2~1/2! ZC~ 1
2 1m2k,112m;Z!,

~75!

wherefrom

H~Z!5AZ exp~2 1
2 Z!@C1F~ 1

2 2 1
2 s,1;Z!

1C2C~ 1
2 2 1

2 s,1;Z!#. ~76!

Returning to original variables, one gets

Yn~r !5A4 Re/4@C1F~ 1
2 2 1

2 s,1; 1
2 Rer 2!

1C2C~ 1
2 2 1

2 s,1; 1
2 Rer 2!#. ~77!

Note thatA4 Re/4 is a constant that can be absorbed intoC1

andC2 . Thus, without loss in generality, one puts

Yn~r !5C1F~ 1
2 2 1

2 s,1; 1
2 Rer 2!

1C2C~ 1
2 2 1

2 s,1; 1
2 Rer 2!,

~78!

Yn8~r !5r Re~ 1
2 2 1

2 s!@C1F~ 3
2 2 1

2 s,2; 1
2 Rer 2!

2C2C~ 3
2 2 1

2 s,2; 1
2 Rer 2!#.

To find C2 , C(a,b;z) must be expressed in terms o
F(a,b;z) using44
. A. Jankowski and J. Majdalani: Unsteady suction-driven porous tube
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sin~pb! F F~a,b;x!

G~11a2b!G~b!

2x12b
F~11a2b,22b;x!

G~a!G~22b! G . ~79!

This expression leads to an infinite value at the core fob
.1 except whenC250. The remainingC1 is determined
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using the boundary condition at the wall. One finds

Yn~r !5F~ 1
2 2 1

2 s,1; 1
2 Rer 2!/F~ 1

2 2 1
2 s,1; 1

2 Re!, ~80!

which indicates that the characteristic coordinate scales w
rARe/2. Following the same lines as before, one can sum
acoustical and vortical contributions to obtain the unstea
velocity component. This takes the form
u(1)~x,r !5 i F sin~vx!2 (
n50

` ~21!n~vx!2n11F~22n222 1
2 iSr,1; 1

2 Rer 2!

~2n11!!F~22n222 1
2 iSr,1; 1

2 Re!
G . ~81!
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Unlike the matched-asymptotic solution given by Eq.~62!,
the physical clarity of the exact solution is encumbered
the infinite summation of the Kummer function.

VIII. DISCUSSION

A. A formerly tested methodology

The decomposition of the time-dependent govern
equations presented in Sec. IV, during the momentum tra
port formulation, was first introduced by Flandro42 and fur-
ther developed by Majdalani and Roh.38 For injection-driven
flows with superimposed oscillations, a similar analytic
framework has provided accurate flow field prediction
Those could be substantiated using fully nonlinear comp
tional models. The asymptotic approximations obtained p
viously were also shown to agree favorably with experim
tal data obtained in cold-flow simulations of transpirin
surfaces.39–42 Although the physical nature of the proble
changes when suction is introduced, the assumptions us
reducing the governing equations remain valid, regardles
the inflow or outflow boundary conditions. By analogy wi
the injection-driven problem, one can expect a compara
level of agreement between the asymptotic formulatio
given here and either numerical or experimental studies
the model at hand. However, in the absence of experime
measurements to compare with, numerical simulations m
be resorted to.

B. Numerical confirmation

Due to the lack of experimental data for the suctio
driven flow, we have compared the matched-asymptotic
pansion to a numerical solution of Eq.~36! obtained from a
code that was originally developed for injection-driven flow
by Majdalani and Van Moorhem.39 The same code was teste
by comparing its results to the exact solution derived in S
VII. The algorithm employs a fixed step fifth-order Rung
Kutta method with shooting to handle the boundary con
tions. For the suction case, the step size used was 1026 on a
normalized interval. In former studies,39–41 the same code
was shown to provide satisfactory agreement with exp
mental data. Therein, the code was also shown to clo
y

g
s-

l
.
a-
-
-

in
of

le
s
of
tal
st

-
x-

c.

i-

i-
ly

match computational data obtained independently by Y
and Roh who utilized a fully compressible, finite-volum
Navier-Stokes solver.45

C. Graphical confirmation

Figure 2 illustrates the agreement between the exac
numerical solutions and Eq.~62!. Over typical ranges of
physical parameters, the graphical comparison clearly in
cates that the matched-asymptotic solution is in close ag
ment with the numerical results. Graphically, the accuracy
the approximate formulation is seen to increase with incre
ing Reynolds and Strouhal numbers. This observation is
assuring since it indicates that the solution exhibits
proper asymptotic behavior as«5Re21→0 and Sr21→0. It
is also satisfying to note the nearly critical damped-wa
response. This rapid damping in both depth and amplitud
consistent with the arguments introduced in Sec. V regard
the scaling orders of Sr and«. Also note that the wave be
havior is different from the highly under-damped wave so
tion associated with injection-driven flows. In the latter, n
merous peaks of diminishing amplitude appear as
distance from the wall is increased.1

In order to assess the truncation error associated w
Eq. ~62!, the maximum absolute error between asymptot
and numerics is shown in Fig. 3 for the first three eigenv
ues and a range of Sr and Re. When plotted versus«, this
error is seen to exhibit a clear asymptotic order as«→0. It
also decreases in magnitude with successive increases i
It can also be seen that the slope of the error curves and
turn, the order of the truncation error approach unity

FIG. 2. HereYn is plotted forn50 over a range of Reynolds and Strouh
numbers. The figures show the slightly under-damped response at Re520
and 50.
3455kowski and J. Majdalani: Unsteady suction-driven porous tube
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sufficiently small«. This confirms the order claimed for thi
approximation. In particular, it may be useful to note that
slight increase in the error intercept at higher eigenval
does not affect the summed up solution. This is due to
rapid convergence of the series in Eq.~63! asn is increased.

D. Variation of flow parameters

The four subsets of Fig. 4 illustrate the effect of varyi
either the suction velocity or the oscillation frequency on
time-dependent solution. In all four cases, the velocity
seen to be a wave traveling in time. While a viscous a
rotational layer is present near the wall, a broad inviscid a
irrotational region covers the remaining domain. Intere
ingly, the unsteady velocity reaches a maximum value ins
the viscous layer where a small velocity overshoot is reali
near the wall. This phenomenon is well known as Richa
son’s annular effect and seems to be characteristic of o
latory flows in tubes and channels with and without w
permeation.46 The small percentage overshoot that accom
nies a suction-driven flow is of the same order as that a
ciated with the exact Sexl profile inside a nonporous tube
is significantly smaller than the 100% overshoot~i.e., veloc-
ity doubling! that recurs near the walls of injection-drive
flows.

According to the theory of laminar periodic flows, on
could expect the magnitude of the velocity overshoot to
crease at higher oscillation frequencies.46 The reason is this
As the Strouhal number is increased, the spatial wavelen
diminishes, being inversely proportional to Sr. The first o

FIG. 3. Plot of the maximum error in the approximate solution versus«.

FIG. 4. The oscillatory velocityu(1) exp(2it) is shown at four different
times form51 andx/ l 50.5. Angles in the figures represent dimensionle
time. Properties correspond to an order of magnitude variation in Reyn
and Strouhal numbers.
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cillation peak stemming from a favorable coupling betwe
acoustical and vortical waves will then form closer to t
wall. Since the rotational component diminishes with the d
tance from the wall, a larger vortical contribution augmen
the acoustical wave when their coupling occurs closer to
wall ~e.g., at higher frequencies!. The reduction in spatia
wavelength at higher Strouhal numbers increases the ra
viscous dissipation and causes the boundary-layer thick
to decrease.47 The latter is often referred to as the penetrati
depth and is a measure of the viscous and rotational la
above the solid boundary.

The top two subsets in Fig. 4 illustrate the effects
increasing the Reynolds number while decreasing the St
hal number via an order of magnitude increase inVs . As the
suction speed is increased, the rotational layer is reduce
both depth and overshoot. While the reduction in oversh
can be attributed to the smaller vortical contribution asso
ated with a smaller Sr, the smaller depth may be attribute
the increased Re. Evidently, the increased fluid withdra
rate has the effect of attracting the viscous layer closer to
wall.

The bottom two subsets, on the other hand, confirm
previous statements made regarding the oscillation
quency. Clearly, through an order of magnitude increase
Sr, the penetration depth is decreased, while Richards
effect is made more appreciable.

E. Oscillation modes

In closing, we use Fig. 5 to show the spatial evolution
the oscillatory velocity for the first three oscillation mode
Also plotted are the amplitudes of the inviscid velocity
nine equally scattered times. This is done to illustrate

ds

FIG. 5. The spatial distribution of the oscillatory velocityu(1) exp(2it) is
illustrated for the first three acoustical oscillation modes by plotting
velocity modulus at several evenly spaced axial positions for Re520 and
Sr510. The corresponding longitudinal mode shapes of the acoustica
locity component are also shown at nine equally dispersed times. In add
to the head end location, the smallest disturbances occur at thenth internal

acoustical node located atx* /L5n/(m2
1
2), n,m, m51,2,3, etc.
. A. Jankowski and J. Majdalani: Unsteady suction-driven porous tube
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strong correspondence between the pressure-driven inv
mode shapes and the spatial distribution of the total veloc
Since the rotational contribution always decays away fr
the walls, it is clear that the inviscid solution dominates n
the core. The spatial amplitude of the oscillatory velocity
hence controlled by the pressure-driven mode shapes as
ated with the inviscid wave. Except for the small visco
layer that is drawn to the wall by hard suction, the flow
primarily irrotational. In addition to the head end locatio
where no oscillations can be entertained, the weakest di
bances take place in the vicinity ofnth internal acoustica
nodes. This is due to the smallest wave amplitudes be
located atx/ l 5n/(m2 1

2) for all n,m as shown on the
graph.

In this article, the main thrust has been placed on p
senting the procedural steps needed to obtain an unst
flow approximation based on matched-asymptotic exp
sions of the vortical wave contribution. For the special ca
of appreciable wall suction, an exact solution was also p
sible. Despite its algebraic opacity, the exact solution ser
a dual purpose by helping to validate both numerics a
asymptotics. In later work, we hope to extend this analysi
an oscillating gas with arbitrary levels of suction.
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