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Convergence of Two Analytical Flowfield Models Predicting
a Destabilizing Agent in Rocket Combustion
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In the combustion stability assessment of solid propellant rocket motors, several new destabilizing terms are
introduced when rotational-flow effects are properly accounted for. Such effects must be included when the wave
motion is parallel to the burning surface. A normal fluctuating velocity component then appears in a careful reso-
lution of intrinsic fluid dynamics, including acoustico–vortical interactions that must satisfy mass and momentum
conservation principles while accommodating the no-slip condition at the propellant surface. The source of this
destabilizing term appears explicitly in two separate, independently derived, analytical formulations of the internal
flowfield. Predictions generated by these analytical models are shown to agree with reliable computational data
produced recently by a numerical code that solves the unsteady nonlinear Navier–Stokes equations. Verification
of the analytical formulations by means of theoretical considerations, numerical comparisons, and global error
assessments are also undertaken before examining the impact of the new time-dependent radial-velocity correc-
tion on rocket stability. The new radial-velocity fluctuations introduce a correction comparable in importance to
the classical pressure coupling at the propellant surface. This effect along with several companion terms must be
accounted for properly in the assessment of motor stability characteristics.

Nomenclature
Ap = dimensional oscillatory pressure amplitude
a0 = mean stagnation sound speed,

√
(γ p0/ρ0)

(er , ez) = radial and axial normal unit vectors
km = wave number,mπ R/L = ω0R/a0

L = internal chamber length
Mb = wall injection Mach number,Vb/a0

m = pressure oscillation mode number
p = normalized pressure,p∗/(γ p0)
p0 = mean chamber pressure,ρ0a2

0/γ
R = dimensional effective radius
Rek = kinetic Reynolds number,ω0R2/ν0

r = radial position,r ∗/R
Sr = Strouhal number,ω0R/Vb = km/Mb

t = dimensionless time,t∗a0/R
U = Culick’s mean flow velocity,6 (Ur ,Uz)
Ur = radial mean flow velocity,−r −1 sinθ
Uz = axial mean flow velocity,πzcosθ
u = total velocity,u∗/a0

û = dimensionless acoustic velocity,û∗/a0

ũ = dimensionless vortical velocity,ũ∗/a0

u(1) = total unsteady velocity,u∗(1)/a0 is equal to(û + ũ)
Vb = radial injection speed at the wall
y = distance from the transpiring wall, 1− r
z = axial distance from the head end,z∗/R
α = order of the global asymptotic error
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γ = mean ratio of specific heats
ε = pressure wave amplitude,Ap/(γ p0)
θ = characteristic variable,(π/2)r 2

ν0 = mean kinematic viscosity
ξ = viscous parameter,ω2

0ν0R/V3
b

ρ0 = mean density
ω0 = dimensional circular frequency,mπa0/L

Subscripts

r, z = radial or axial component

Superscripts

0, 1, . . . = perturbation level
∗ = dimensional quantity
ˆ = acoustic oscillations
˜ = vortical oscillations

I. Introduction

I N combustion stability assessments of solid rocket motors, the
source of radial-velocity fluctuations is frequently attributed

to pressure oscillations at the propellant surface that, through the
pressure-coupling mechanism, namely,ṁ∼ pn, can induce an os-
cillatory component in the radial direction. This is done sometimes
without giving due consideration to certain fluid dynamical inter-
actions within the motor. In particular, effects related to the pro-
duction of unsteady vorticity are lost in the assumption that the
unsteady flow is a perturbed acoustic wave and, hence, irrotational.
This drawback is removed in two multidimensional formulations
of the time-dependent field that correctly satisfy applicable conser-
vation laws. As derived independently by Flandro1 using regular
perturbations and Majdalani and Van Moorhem2 using multiple-
scale expansions, two explicit formulations for the time-dependent
field are now available that satisfy the appropriate conservation prin-
ciples. In addition, these expressions agree very well with compu-
tational predictions obtained from full, compressible, nonlinearized
Navier–Stokes solvers.3,4
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An important consequence of introducing the unsteady rotational-
flow corrections is the appearance of new terms in the stability
assessment of the chamber.1 One of these is a radial-velocity fluctu-
ation with an amplitude proportional to the mean-flow Mach num-
ber. Hence, it has the same importance in the system stability as
the pressure-coupling effect (which exhibits a similar influence). In
this paper we demonstrate that this term arises in two separate for-
mulations of the problem. A careful numerical verification is also
undertaken in the hope of resolving possible doubts regarding its
physical origin. This paper begins by reviewing briefly in Sec. II
the two distinct analytical formulations of the unsteady rotational
flow in a rocket chamber. Because the correctness of either model
depends largely on how accurately it can replicate reality, a care-
ful verification process is undertaken in Sec. III. This verification
is threefold and includes theoretical, computational, and global er-
ror validations. The theoretical verification consists of ensuring that
flowfield components satisfy continuity. Computational validations
involve direct comparisons with recently acquired computational
fluid dynamics (CFD) data from a nonlinear Navier–Stokes solver.
These comparisons illustrate the reassuring agreement between an-
alytical and computational results. The global or total error that
accompanies each individual formulation is carefully determined in
addition to the order associated with each method. Having estab-
lished with certainty the reported accuracy, Sec. IV focuses on a key
flowfield component that produces a destabilizing effect that is of
the same order of magnitude as that attributed to pressure coupling.
The characteristics of this radial-velocity fluctuation are described,
emphasizing the nonzero value it assumes at the propellant surface,
that is, the edge of the combustion zone. The direct impact on sta-
bility is covered in Sec V.

II. Analytical Models
Following Flandro’s nomenclature,5 the total velocity is ex-

pressed in two-dimensional axisymmetric coordinates after normal-
izing by the speed of sound

u(r, z, t) = MbU(r, z) + εu(1)(r, z, t) (1)

whereU(r, z) is Culick’s mean-flow profile,6 Mb is the injection
Mach number at the wall, andε = Ap/(γ p0) is the normalized
pressure-wave amplitude representing the primary perturbation pa-
rameter used to linearize the Navier–Stokes equations. From the
axial and normal components of the velocity, the total unsteady
component is

u(1)(r, z, t) = u(1)
r er + u(1)

z ez (2)

A. Regular-Perturbation (RP) Formulation

Inasmuch as derivation details are presented in separate papers,1,5

the goal now is to focus on the results. The time-dependent ex-
pressions for the velocity field are repeated here for the reader’s
convenience, as originally published,

u(1)
z (r, z, t) = sin(kmz) sin(kmt)

+ (
Br sinϕ0 − Bi cosϕ0

)
r exp(φr ) sin(kmzsinθ) (3)

u(1)
r (r, z, t) = Mbr

2U 2
r

(
Br cosϕ0 + Bi sinϕ0

)

× exp(φr ) cos(kmzsinθ) (4)

where

ξ = ω2
0 Rν0

V3
b

, θ = π

2
r 2, Ur = −r −1 sinθ (5)

ϕ0 = kmt + (Sr/π) ln tan(θ/2) (6)

φr = (−ξ/π2)
[
(2π2/Sr2 − 1)I (θ) + cscθ + (π/2)

(
cosθ

/
U 2

r

)]

(7)

I (θ) ∼= θ + 1

18
θ3 + 7

1800
θ5 + 31

105840
θ7 + · · · (8)

Cr = (Sr2 + ξ)S3 exp[−φr (1)]

(Sr2 + ξ)2 + ξ2Sr2
(9)

Ci = ξ S4 exp[−φr (1)]

(Sr2 + ξ)2 + ξ2Sr2
(10)

Br = Cr Ur

Sr
+ Ci ξ

Sr2Ur
, Bi = Ci Ur

Sr
− Cr ξ

Sr2Ur
(11)

φr (1) = ξ(0.0842922527− 3.66386237665/Sr2) (12)

These results are accurate toO(1/Sr), the reciprocal of the Strouhal
number(Sr= ω0R/Vb), which is always smaller than about 10%
by virtue of Sr> 10. The global error, thus, decreases at higher
oscillation frequencies, larger effective radii, and smaller injection
speeds. It approaches the exact solution at higher oscillation modes,
which are very difficult to resolve numerically.

A shorter version of the regular perturbation (RP) solution can be
formulated at the expense of a loss in accuracy that is insignificant
at high kinetic Reynolds numbers. The outcome consisting of

u(1)
z (r, z, t) = sin(kmz) sin(kmt) + rUr exp(φr) sinϕo sin(kmzsinθ)

(13)

u(1)
r (r, z, t) = Mbr

2U 3
r exp(φr ) cosϕo cos(kmzsinθ) (14)

carries a maximum error bound of 18% forRek = 5× 105 and
Sr= 100. The order of the error associated with Eqs. (13) and (14)
approaches 1/Sr asymptotically asRek → ∞.

B. Multiple-Scale (MS) Formulation

Based on a two-variable derivative expansion procedure, an al-
ternative solution is furnished by Majdalani and Van Moorhem2

u(1)
z (r, z, t) = sin(kmz) sin(kmt) + rUr sin(kmzsinθ) exp(ζ ) sinϕ0

(15)

u(1)
r (r, z, t) = Mbr

2U 3
r cos(kmzsinθ) cosϕ0 exp(ζ ) (16)

where the spatial damping termζ = ξηU−3
r is based on an effective

scale function that controls the solution,

η = y[1 + cyc(yr−1 − c ln r )]−1, y = 1 − r, c = 3
2

(17)

Note that the global error associated with Eqs. (15) and (16) is
O(1/Rek) ≡O(ν0ω

−1
0 R−2). The latter is a very small quantity, in-

dependent of the injection speed, being the square of the ratio of
the thin hard wall Stokes layer thickness [

√
(ν0/ω0)] and the cham-

ber radius. The error, thus, decreases at higher oscillation modes
and larger radii. In comparison to the Strouhal number, the kinetic
Reynolds number is a much larger quantity because the ratio

Rek

Sr
= ω0R2/ν0

ω0R/Vb
= VbR

ν0
À 1 (18)

results in the classic injection Reynolds number, which is always
significant. From a practical standpoint, the global errors associated
with both models remain too small to affect the overall assessment
by an appreciable amount. This will be confirmed in the forthcoming
assessments.

III. Verifications
To confirm the accuracy reported in the preceding section, we

undertake analytical and computational verifications along with a
careful error analysis to ascertain the order of the global error asso-
ciated with each analytical formulation.
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A. Analytical Verification

From mass conservation, both steady and time-dependent com-
ponents of the total velocity must satisfy continuity. The steady
function U(r, z) is clearly solenoidal, that is, divergence free, and
satisfies∇ · U = 0. Satisfaction of mass conservation by the time-
dependent field requires a more delicate assessment. In fact, one
must recall5,7−9 that the temporal componentu(1)(r, z, t) is the sum
of two fluctuations: an irrotational, pressure-driven partû and a
rotational, vorticity-driven part̃u.

On one hand, the pressure-driven part corresponding to either
asymptotic formulations iŝu = sin(kmz) sin(kmt)ez. This must sat-
isfy the conservation of mass written, atO(Mb), for the acoustic
field2

∂û
∂t

+ ∇ p̂ = O(Mb) (19)

The preceding relationship does not pose a problem inasmuch as
one may verify, by mere inspection, that Eq. (19) is true for acous-
tic pressure oscillations of the type assumed here, namely, when
p̂= cos(kmz) cos(kmt).

On the other hand, the vorticity-driven part is given by

ũ = Mbr
2U 2

r

(
Br cosϕ0 + Bi sinϕ0

)
exp(φr ) cos(kmzsinθ)er

+ (
Br sinϕ0 − Bi cosϕ0

)
r exp(φr ) sin(kmzsinθ))ez (20)

following the RP approach and by

ũ = Mbr
2U 3

r cos(kmzsinθ) cosϕ0 exp(ζ )er

+ rUr sin(kmzsinθ) exp(ζ ) sinϕ0ez (21)

following the multiple-scale (MS) approach. Evidently, both
Eqs. (20) and (21) must satisfy independently the conservation of
mass written, atO(Mb), for the rotational field2

∇ · ũ = ∂ũr

∂r
+ ũr

r
+ ∂ũz

∂z
= 0 (22)

Here also, one can show, without much difficulty, that both Eqs. (20)
and (21) satisfy, in their leading-order terms, the continuity equation
expressed by Eq. (22).

B. Computational (CFD) Verification

In previous work,2,3 the analytical expressions just reported
were found to concur, as they should, with the numerical solution
of their governing, linearized Navier–Stokes equations. A recent
comparison with computational data acquired from a full, nonlin-
earized Navier–Stokes solver developed by Roh et al.10 and Roh
and Culick11 shows very good agreement between analytical and
computational predictions.

Comparisons are shown in Fig. 1 for a typical case at the first
two oscillation modes. The physical parameters correspond to an
average tactical rocket motor proposed by Flandro.1 Additional
test parameters include a chamber pressure of 5.066× 106 N m−2

(50 atm), a density of 6.586 kg m−3, a kinematic viscosity of
7.69× 10−6 m2 s−1, a temperature of 2000 K, a ratio of specific heats
of 1.3, a Prandtl number of 0.9, a speed of sound of 1000 m s−1, and
an injection speed of 3 m s−1. The CFD scheme employs a grid sys-
tem that includes 60× 150 nodes (in the axial and radial directions,
respectively) for mode 1 and 80× 240 nodes for mode 2, with a
clustering ratio that increases with distance from the wall. This is
necessitated by the need to resolve rapid variations that occur away
from the wall as the spatial wavelength of vortical waves diminishes,
being a direct function of Culick’s radial velocity.3 Because the spa-
tial wavelength gradually vanishes as the centerline is approached,
an increasingly larger number of nodes will be needed to maintain a
uniform numerical error. A highly refined grid quickly becomes
unaffordable due to increased memory requirements and CPU
time.

Fig. 1 Unsteady axial velocity obtained analytically (——) and from
Navier–Stokes solvers (–––) overlaid at two evenly spaced times in a
typical tactical rocket motor. Results are for the first two oscillation
modes evaluated at the first and last acoustic pressure nodes.

In Fig. 1, the expected buildup in numerical error as the center-
line is approached is attributed to the rough grid resolution used to
generate the CFD data. This slight discrepancy, owing to unavoid-
able numerical errors, does not undermine the surprisingly good
agreement with analytical predictions.

Another contribution to such deviations can be attributed to the
finite time discretization, used in the numerical scheme, which al-
lows producing CFD data at approximate times. Whereas analytical
predictions are shown at two instants separated by a phase differ-
ence that is exactly equal toπ , numerical predictions are furnished
at approximate phase differences.

Finally, one must not forget that the analytical models are solu-
tions to the linearized Navier–Stokes equations. As such, they cannot
account for the small nonlinearity effects that are captured by nu-
merical simulations. Overall, within computational uncertainty, the
data indicate that, when turbulence is ignored, the analytical models
tend to represent fairly well the nature of the internal flowfield. Rep-
resentative data sets used to generate one time evolution in Fig. 1a
are listed in Table 1 for confirmatory purposes.

C. Absolute Error Verification

In a recent paper, Bosely12 describes a rigorous technique that
can be employed to verify the error associated with an asymptotic
solution. His technique serves two purposes: 1) to evaluate the order
of the error and 2) to ensure that the final expression is free from
human errors. His technique is used here to verify the error associ-
ated with both RP and MS formulations, in the hope of dispelling
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Table 1 Unsteady axial velocity predictions

y RP MS CFD

1.0 1.00000 1.00000 1.00000
0.9 1.00020 1.00020 1.00073
0.8 0.99560 0.99584 1.00069
0.7 0.98662 0.98858 0.99667
0.6 1.04700 1.04160 1.02463
0.5 0.89730 0.88565 0.90050
0.4 0.86056 0.83989 0.82500
0.3 1.30870 1.28400 1.19759
0.2 1.77650 1.78480 1.79982
0.1 0.80323 0.82064 0.83152
0.0 5.00E−5 6.3E−12 0.00688

Table 2 Maximum error for a tactical motor

Sr = ω0R/Vb RP MS

10.000000 0.1285786 3.39398E−5
12.589258 0.0946560 5.61192E−5
15.848941 0.0876632 8.44848E−5
19.952633 0.0723662 1.31394E−4
25.118875 0.0547265 2.22025E−4
31.622753 0.0458222 3.54939E−4
39.810661 0.0359189 5.99515E−4
50.118782 0.0290877 0.0010290
63.095862 0.0236003 0.0017954
79.432534 0.0195297 0.0032031
100.00000 0.0167755 0.0057601

remaining doubts regarding the declared accuracy reported in the
preceding paragraphs.

The way this technique works is quite straightforward. It starts
by calculating the maximum absolute error, defined as the absolute
difference between analytical and numerical solutions,

Emax = max
0≤ r ≤ 1

∣∣u(1)

numeric− u(1)

analytic

∣∣ (23)

whereu(1)

numeric is the solution to the linearized momentum equation
over the normalized interval 0≤ r ≤ 1. As a result of using a seventh-
order Runge–Kutta technique and a mesh size of 10−6, the error
associated with calculatingu(1)

numeric is negligible. This enables us to
useu(1)

numericas a benchmark against which asymptotic solutions can
be compared. Thus, ifEmax is of O(1/Sr), as foretold by the RP
solution, one can write

Emax = K (1/Sr)α (24)

and show thatα → 1 for largeSr. The order of the error can be
determined from the slope ofEmax vs 1/Sr plotted on a log-log
scale. This slope can be determined quite accurately by using, for
instance, the method of least squares.

If, on the other hand,Emax is ofO(1/Rek), as predicted theoreti-
cally for the MS formulation, then one could set

Emax = K (1/Rek)
α (25)

and show thatα → 1 for largeRek.
The maximum error is, thus, evaluated and shown in Fig. 2 for

the RP (Fig. 2a) and MS (Fig. 2b) formulations. For the RP case, the
error decreases and its order approaches unity with large Strouhal
and kinetic Reynolds numbers. It deteriorates for small Strouhal
numbers. For the MS formulation, the same occurs for decreas-
ing Strouhal and increasing kinetic Reynolds numbers. In a sense,
the errors from both models are complementary with respect to the
Strouhal number. This is clearly seen in Fig. 3, where errors from
both models are shown at discrete values of the Strouhal number. In
the same vein, a typical comparison of maximum absolute errors ob-
tained for a tactical rocket motor withRek = 2.1× 106 is furnished
in Table 2.

Fig. 2 Maximum absolute error associated with a) Flandro’s1 RP and
b) Majdalani and Van Moorhem’s2 MS formulations.

Fig. 3 Comparison of maximum absolute errors associated with
Flandro’s1 and Majdalani and Van Moorhem’s2 formulations.

IV. Nonzero Radial Fluctuations
In this section, we address the character of unsteady radial ve-

locities obtained from both analytical models. Before addressing
the influence of this velocity component on stability, we carry out a
comparative verification process to confirm the accuracy associated
with both explicit formulations.

The explicit radial velocities expressed by Eqs. (4) and (16), de-
rived totally separately, are compared to each other and to the corre-
sponding numerical solution, for three cases reported in Ref. 1 that
span a wide range of rocket motors. These comparisons are drawn
in Fig. 4 for the first oscillation mode atz∗/L = 15%, where the
flowfield is predominantly laminar.



496 MAJDALANI, FLANDRO, AND ROH

Fig. 4 Modulus of radial velocity fluctuations from both RP and MS
formulations compared with numerical predictions; comparisons cor-
respond tom= 1 andz∗/L = 0.15.

Clearly, both RP and MS formulations coincide everywhere with
the numerical solution. The same level of agreement persists at
higher oscillation modes and at different locations within the cham-
ber (not shown here). The modulus of the rotational radial velocity
expressed in complex notation, which is plotted in Fig. 4, is largest
at the wall and decays as the centerline is approached. This is to
be expected because the vorticity-coupled axial counterpart decays
and vanishes when approaching the centerline as well. In partic-
ular, note that the nonzero value of the radial velocity at the wall
negates traditional one-dimensional flowfield predictions that at-
tribute velocity fluctuations to the pressure-coupling response. This
value foru(1)

r can be determined from either Eq. (4) or Eq. (16). The
result is

u(1)
r (1, z, t) = −Mb cos(kmz) = −Mb cos(mπz∗/L) (26)

which, for z∗/L = 15%, is−0.891Mb. In Fig. 4, this value of the
radial-velocity amplitude at the wall is indicated for further empha-
sis. The graphical agreement shown in Fig. 4 is presented in tabular
format for one case in Table 3, where data corresponding to the
Shuttle rocket booster (SRB) are listed at 10 evenly spaced points.
Note that the agreement with computational data is very good near
the wall and deteriorates as we approach the centerline due to pro-
gressive buildup in the numerical error for reasons already stated
in Sec. III.B. These solutions concur in both amplitude and phase,
as shown in Fig. 5, where radial velocity profiles are compared at
three evenly spaced times for a typical tactical rocket motor. The
agreement between RP and MS predictions is remarkable and in-

Table 3 Unsteady radial velocity amplitudes (SRB)

y RP MS Numerical

1.0 0.00000000 0.00000000 0.00000000
0.9 8.53137E−8 8.52946E−8 5.63200E−8
0.8 2.81421E−6 2.81590E−6 2.46140E−6
0.7 2.12909E−5 2.12990E−5 1.95797E−5
0.6 8.75767E−5 8.75969E−5 8.21043E−5
0.5 2.53138E−4 2.53175E−4 2.40537E−4
0.4 5.70289E−4 5.70344E−4 5.49830E−4
0.3 0.00104740 0.00104750 0.00102800
0.2 0.00159440 0.00159450 0.00159710
0.1 0.00200820 0.00200830 0.00204940
0.0 0.00204930 0.00204930 0.00210990

Fig. 5 Radial velocity profiles at three different phases separated by
90 deg. Results are obtained from RP, MS, and numerical predictions;
comparisons correspond to a typical tactical rocket motor withm = 1
and z∗/L = 0.15.

cludes, in some cases, matching digits up to the eighth decimal
place.

The counterintuitive appearance of a nonzero radial component
at the wall is decreed by the mass conservation requirement in the
time-dependent fluctuations. In retrospect, examination of Eq. (22)
reveals that

∂ũr

∂r
+ ũr

r
= −∂ũz

∂z
(27)

which indicates that the existence of a nonzeroũr can stem from a
nonzero axial variation iñuz at the wall. Because the axial vortical
component̃uz varies along the wall in the streamwise directionz, the
transverse componentũr is forced, via continuity, to assume what-
ever finite value is necessary to counterbalance the axial gradient.

V. Stability Implications
Three different methods have been employed to determine the part

of the radial-velocity fluctuation that is created by rotational-flow
corrections. In assessing the motor system stability characteristics,
this radial-velocity component must be added to others that arise in
the irrotational (acoustic) part of the problem. In particular, terms
that appear as a result of pressure-sensitive combustion effects rep-
resent separate elements of the radial-velocity fluctuation.

It should be apparent that the three separate calculations of the
radial rotational velocity fluctuation are in substantial agreement.
What is most important is that the predicted value of the radial
velocity at the surface,−Mb cos(mπz∗/L), is proportional to the
mean-flow Mach number as already described. That is, it is of the
same order of magnitude as other key ingredients of the system gain
or loss balance. The velocity fluctuation is in phase with the pres-
sure fluctuation. It, therefore, has the same significance as pressure
coupling in the stability of the motor because the response function
is also proportional to the mean-flow Mach number.

The new destabilizing term was discussed in detail in Ref. 5,
where its inclusion was demonstrated to improve the agreement be-
tween stability predictions and experimental data for motor systems
that exhibit linear stability behavior.
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VI. Conclusion
What has been accomplished here is the verification that a new

destabilizing agent must be included in linear stability calculations
for cases with wave motion parallel to the burning surfaces. The
new findings are not the result of double bookkeeping as some crit-
ics contend. They represent natural gas motions that must be present
when the no-slip boundary conditions at the surfaces are accommo-
dated. They arise in the same set of interactions that lead to the much
discussed flow turning damping effect.
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