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In the presence of small-amplitude pressure oscillations, the linearized Navier{Stokes
equations are solved to obtain an accurate description of the time-dependent  eld
in a channel having a rectangular cross-section and two equally permeable walls.
The mean solution is based on Taylor’s classic pro le, while the temporal solution
is synthesized from irrotational and rotational  elds. Using standard perturbation
tools, the rotational component of the solution is derived from the linearized vortic-
ity transport equation. In the absence of an exact solution to rely on, asymptotic
formulations are compared with numerical simulations. In essence, the analytical for-
mulation reveals rich vortical structures and discloses the main link between pressure
oscillations and rotational wave formation. In the process, the explicit roles of vari-
able injection, viscosity and oscillation frequency are examined. Using an alternative
methodology, both WKB and multiple-scale techniques are applied to the linearized
momentum equation. The momentum equation is of the boundary-value type and
contains two small perturbation parameters. The primary and secondary parame-
ters are, respectively, the reciprocals of the kinetic Reynolds and Strouhal numbers.
The multiple-scale procedure employs two  ctitious scales in space: a base and an
undetermined scale. The latter is left unspeci ed during the derivation process until
®ow parameters are obtained in general form. Physical arguments are later used
to de ne the arbitrary scale, which could not have been conjectured a priori. The
emerging multiple-scale solution o¬ers several advantages. Its leading-order term is
simpler and more accurate than other formulations. Most of all, it clearly displays the
relationship between the physical parameters that control the  nal motion. It thus
provides the necessary means to quantify important ®ow features. These include the
corresponding vortical wave amplitude, rotational depth of penetration, near-wall
velocity overshoot and surfaces of constant phase. In particular, it discloses a viscous
parameter that has a strong in®uence on the depth of penetration, and furnishes a
closed-form expression for the maximum penetration depth in any oscillation mode.
These  ndings enable us to quantify the location of the shear layer and corresponding
penetration depth. By way of theoretical veri cation, comparisons between asymp-
totic formulations and numeric predictions are reassuring. The most striking result
is, perhaps, the satisfactory agreement found between asymptotic predictions and
data obtained, totally independently, from numerical simulations of the nonlinear
Navier{Stokes equations. In closing, a standard error analysis is used to con rm
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that the absolute error associated with the analytic formulations exhibits the correct
asymptotic behaviour.

Keywords: porous walls; periodic ° ows; WKB;
multiple scales; asymptotic expansions

1. Introduction

In this paper, we consider a weakly oscillatory ®ow inside a long and narrow channel
with porous walls. In this problem, the mean ®uid motion is induced by large injec-
tion at the walls. In addition to the mean motion, the presence of small-amplitude
oscillatory waves must be accounted for. These waves are due to self-excited pres-
sure disturbances that are caused by inevitable ®uctuations in the injection rate. The
strong coupling between oscillatory pressure gradients and mean ®uid motion entails
complex structures that we wish to describe. Such structures can arise in a number of
engineering applications that involve unsteady ®ows inside enclosures with transpir-
ing walls. For example, transpiring walls can be used to simulate surface ablation,
phase sublimation and the burning of solid propellant slabs. Relevant applications
may thus include rocket propulsion,  ltration mechanisms, sweat cooling, chemical
dispensing and other membrane separation processes. In order to develop asymptotic
formulations for the problem at hand, the total solution will be synthesized from its
mean and time-dependent components. The total solution will thus depend on an
accurate de nition of the steady  eld. The latter has been addressed previously by
a number of investigators.

Characterization of steady ®uid motions in porous channels may be traced back
to the pioneering works of Berman (1953). In fact, assuming a similarity transfor-
mation, Berman investigated the laminar two-dimensional ®ow of an incompressible
®uid driven by uniform injection inside a rectangular channel with porous walls. His
motivation was the industrial separation of U235 from U238 by gaseous di¬usion. He
thus reduced the Navier{Stokes equations to a single nonlinear fourth-order di¬er-
ential equation with four boundary conditions and a cross-®ow Reynolds number
R. The latter was based on the normal injection speed vw and channel half-spacing
h. Being unable to solve the resulting equation in general form, Berman employed
a regular perturbation scheme to produce an asymptotic formulation for small R.
Numerous studies of channel ®ows with permeable walls followed.

For large suction, Sellars (1955) obtained the  rst term of an approximation
that was further expanded by Terrill (1964). Using an integral approach, Proud-
man (1960) investigated the large R case with both equal and dissimilar injection
or suction velocities. Using numerical curve- tting principles, Morduchow (1957)
invoked the method of averages to arrive at simple approximations over the entire
injection range. For similar reasons, White et al . (1958), provided, for arbitrary R,
an absolutely convergent power series whose coe¯ cients were relegated to numerical
routines. Other authors considered the large-suction case, including Robinson (1976),
Lu et al . (1992), MacGillivray & Lu (1994) and Cox & King (1997).

For large injection, two contemporaneous and independently derived solutions were
reported by Taylor (1956) and Yuan (1956). The former was a subset of the latter
in the limiting case of an in nite R. The inability of Yuan’s regular perturbation
expansion to incorporate the viscous layer near the core was overcome by Terrill
(1965), who employed matched asymptotic expansions to capture the inner layer.
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The spatial stability of steady solutions of the Berman equation was also addressed
by several authors. These included Varapaev & Yagodkin (1969), Raithby & Knudsen
(1974), Hocking (1975), Sviridenkov & Yagodkin (1976), Brady (1984) and Durlof-
sky & Brady (1984). Some of their results suggested that injection ®ows tended to
be absolutely stable and well behaved, asymptotically in R, and that increasing R
reduced the steady ®ow development length. Conversely, suction ®ows appeared to be
amenable to instability and reversal, exhibiting in®ection points and dual solutions
in some ranges of R.

The proof of solution multiplicity over di¬erent ranges of R has also attracted
the attention of several mathematicians. Insofar as injection is concerned, Skalak
& Wang (1978) were the  rst to report a unique solution for all R. Their formal
conclusion was con rmed in a rigorous fashion by both Shih (1987) and Hastings et
al . (1992).

Recently, the temporal stability of such ®ows has received attention vis-µa-vis stud-
ies made by Zaturska et al . (1988), Taylor et al . (1991) and Watson et al . (1991).
Such studies agreed that steady symmetric ®ows corresponding to the wall injec-
tion type were stable to time-dependent perturbations. Temporal stability has been
considered also by Cox (1991).

While the majority of these pioneering studies relied on numerical simulations for
validation purposes, some drew conclusions from experimental observations. In fact,
laboratory experiments on steady channel ®ow through porous sheets were conducted
by Taylor (1956), Varapaev & Yagodkin (1969), Raithby & Knudsen (1974) and
Sviridenkov & Yagodkin (1976). These indicated that Taylor’s or Yuan’s similarity
solutions with injection were observed to develop rapidly within the channel.

The addition of longitudinal pressure oscillations in channels with plane porous
walls was realized experimentally by Ma et al . (1991), Barron et al . (1998), Avalon
et al . (1998) and Casalis et al . (1998). Both Ma and Barron borrowed the concept of
producing an alternating ®ow by external means from Richardson & Tyler (1929),
who used electric motors to control the reciprocating motion of a piston mounted
at the end of a crank. Naturally, the to-and-fro piston motion caused the injected
gas inside the channel to vibrate harmonically. In both instances, carbon dioxide
was expelled from ®at blocks of sublimating dry ice to simulate the injectant. More
recently, Avalon et al . (1998) and Casalis et al . (1998) demonstrated the existence
of intrinsic self-induced harmonic oscillations in their experimental facility. Their
apparatus comprised a long channel with two opposing permeable and impermeable
walls. As uniform air injection was maintained through the plane porous sections
of their apparatus, small unavoidable ®uctuations in the injectant rate led to the
onset of a strong acoustic environment. In all three experiments, the placement of a
choked ori ce or nozzle at the downstream end determined whether the oscillation
mode character was of the closed{closed or closed{open type. In this paper, we shall
focus on the basic laminar ®ow model that corresponds to pressure oscillations of
the closed{closed type.

The objective will be, therefore, to derive an accurate asymptotic solution to the
two-dimensional oscillatory  eld in a channel with plane porous walls. We hope that
the detailed knowledge we gain will help develop physical intuition into more realistic
®ows in channels and tubes.

The forthcoming treatment is organized in the following manner. We start in x 2
by de ning the geometry at hand, Berman’s mean ®ow solution and fundamental
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Figure 1. Two-dimensional mean ° ow streamlines.

criteria. This is followed in x 3 by linearizing the Navier{Stokes equations via regular
perturbations in the injection Mach number and ®uctuating pressure amplitude. In
x 4 we employ a powerful theorem that permits decomposing the time-dependent
 eld into irrotational and solenoidal components. While the irrotational pressure-
driven solution can be obtained rather straightforwardly, the solenoidal vorticity-
driven component demands a careful treatment and is deferred to x 5. Results are
compared with numerical solutions of the linearized Navier{Stokes equations in x 6.
In the ensuing discussion, the time-dependent vortical structure is closely examined.
Since one would expect the transpiring walls to become inactive when injection is
suppressed, our asymptotic formulation is compared with the corresponding exact
solution of the Stokes type for a plane periodic ®ow between parallel walls.

To complete our ®ow  eld investigation, we extend our work by devising alternative
formulations. These have the capability of elucidating the boundary layer structure
and corresponding ®ow characteristics. To that end, we develop a more sophisticated
strategy, based on WKB and multiple-scale theories, to obtain a more accurate and
yet simpler representation of the velocity  eld. In the process, we introduce a space-
reductive procedure that holds several advantages over our former perturbation solu-
tion set out in x 6. Thus, by devising alternative formulations, we are able to achieve
two additional objectives: to con rm the validity of the former asymptotic solution,
and to obtain closed-form expressions for the boundary-layer thickness and other
important ®ow features. Instead of working with the vorticity transport equation,
the velocity will now be derived directly from the momentum equation. This can be
accomplished in x 7 via separation of variables but will result in a singular ordinary
di¬erential equation. We proceed thereafter by expanding the separated equation via
WKB and two-variable multiple scales.

As we insist on veri cations, results from the multiple-scale solution are compared
with the former solution in x 8. This is accompanied by comparisons with compu-
tational data acquired from numerical simulations of the complete Navier{Stokes
equations in their nonlinear form. Having established a high level of con dence in
the asymptotic formulations, the Richardson velocity overshoot factor is evaluated
in both magnitude and location. The penetration depth is also quanti ed. The error
associated with the multiple-scale expansion is computed and compared with its
precursor. Finally, we recapitulate and conclude the analysis in x 9.
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2. Model description

(a) Geometry

The ®ow to be studied is established inside a long rectangular channel of length L,
width w and bounded by plane porous walls that are 2h apart. Through these walls,
a Newtonian ®uid is injected with constant uniform velocity vw. In this article, we
shall, in fact, limit our attention to a perfect gas. Taking one side of the cross-section
to be smaller than the other two sides enables us to treat the problem as a case of two-
dimensional ®ow. We note parenthetically that it has been demonstrated by Terrill
(1964, pp. 309{310) that the ratio of the width to the height of the channel does not
have to be large to justify ignoring the in®uence of passive side walls. In addition,
symmetry reduces the solution domain by half, making it su¯ cient to investigate
the ®ow behaviour over half of the channel. This is especially true since, for large
injection (see, for example, Zaturska et al . 1988), one expects unique, stable and
symmetric temporal solutions about the channel’s centreline. As shown schematically
in  gure 1, a coordinate system can be chosen with the origin at the porous wall. After
normalizing all spatial coordinates by h, the streamwise, transverse and spanwise
coordinates are denoted by x, y and z, respectively. The bene t of selecting y to be
the normal distance measured from the wall will become apparent in later discussions
of boundary-layer issues. Disregarding the in®uence of rigid boundaries, we assume
no variations in z and con ne our solution to 0 6 x 6 l, and 0 6 y 6 1, where
l = L=h.

When the channel is closed at the head end and choked at the downstream end,
small ®uctuations in the injectant rate give rise to harmonic pressure oscillations.
These small pressure ®uctuations can, in turn, couple with the mean ®ow to induce a
time-dependent  eld that we wish to investigate. The streamlines depicted in  gure 1
correspond to typical ®ow patterns pertaining to the undisturbed state.

(b) Criteria

In seeking a closed-form solution, several criteria must be met. In connection with
the mean ®ow motion, we require that steady conditions prevail in a laminar, rota-
tional and incompressible regime. Furthermore, neither swirling nor mixing can take
place between incoming streams. The condition of uniform porosity is simulated
by prescribing a constant normal velocity at the wall that is independent of posi-
tion. On the one hand, we limit our scope to cross-®ow Reynolds numbers satisfying
R = vwh=¸ > 20, where ¸ is the kinematic viscosity. The advantage is that, in this
range, the mean ®ow can be adequately expressed by the well-known Taylor solu-
tion. The upper limit imposed on R is decreed, on the other hand, by the need to
maintain an injection Mach number M = vw=a s of order 10¡3, with a s referring to
the stagnation speed of sound. The reason is this: in linearizing the Navier{Stokes
equations, M will be employed as a perturbation parameter. Consequently, the  nal
formulation will entail an error of O(M ). As a s far exceeds vw in most applications,
M will be small in practice.

In what concerns the harmonic  eld performing small oscillations about the base
®ow, we constrain the oscillatory pressure amplitude A to remain small when com-
pared with the stagnation pressure p s evaluated at x = 0. This enables us to construct
another small parameter that scales with A=p s . Since the mean pressure decreases
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in the streamwise direction, we limit the channel length to l < 100, for consistency
in perturbation levels. Finally, we assume that the presence of isentropic oscillations
does not a¬ect the bulk ®uid motion.

(c) Mean ° ow de¯nition

In the absence of harmonic disturbances, the Navier{Stokes equations can be solved
exactly using a similarity transformation. As demonstrated by Berman (1953), when
the steady stream function ª is taken to vary linearly in the streamwise direction,
namely ª = ¡ xF (y), one can write (following Varapaev & Yagodkin (1969) or Proud-
man (1960)), (u0; v0) = (¡ xF 0; F ), where u0 = u0i + v0j is the mean velocity vector
normalized by vw. The separable component F must satisfy Berman’s equation,

F 0000 + R(F 0F 00 ¡ F F 000) = 0;

which depends on R and four boundary conditions: F 0(0) = F (1) = F 00(1) = 0 and
F (0) = 1. Note that, in our notation, we follow Morduchow (1957) and Terrill (1965)
in de ning R to be positive for injection. With this choice, the unstable solution
reported by Zaturska et al . (1988) will correspond to the R < ¡ 6 suction range.
Although it is possible to manage a time-dependent formulation for arbitrary F , we
are inclined to use a simple and practical solution corresponding to F = cos( 1

2
º y),

which becomes exact as R ! 1. More sophisticated Berman functions can give rise
to technical issues that tend to complicate and slightly obscure the necessary analysis.
This ideal solution, attributed to Taylor (1956), has been thoroughly veri ed both
numerically and experimentally to be a reasonable approximation for R > 20. In this
range, Varapaev & Yagodkin (1969) notes minimal solution changes and almost no
changes for R > 100. With this choice of F , the velocity and vorticity  elds can be
expressed by

u0 = 1
2
º x sin( 1

2
º y); v0 = cos( 1

2
º y) and !0 = ¡ 1

4
º 2x cos( 1

2
º y); (2.1)

which satisfy all the boundary conditions, including the no-slip at the wall. After
normalizing the mean pressure by ® ps (where ® is the ratio of speci c heats), one
can integrate the ideal momentum equation to get

p0(x; y) = 1=® ¡ 1
2
M 2[1

4
º 2x2 + cos2( 1

2
º y)] = 1=® + O(M 2x2): (2.2)

The last formula makes it abundantly clear that the error associated with a uniform
mean pressure assumption will be less than a few per cent when x 100. Were it
not for this limitation, our analysis would have been applicable to a semi-in nite
channel.

3. Linearized Navier{Stokes equations

(a) Fundamental equations

Assuming constant kinematic viscosity and negligible bulk viscosity, the di¬erential
conservation of mass and momentum can be cast into the familiar non-dimensional
form,

@«

@t
+ r ( « u) = 0; (3.1)

«

µ
@u

@t
+ (u r)u

¶
= ¡ rp + ·R¡1[4

3r(r u) ¡ r £ (r £ u)]; (3.2)
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where the total instantaneous velocity u is normalized by the speed of sound a s ,
spatial coordinates by h, and time is made dimensionless by reference to h=a s , the
average time it takes for a pressure disturbance to travel from the wall to the core.
Using asterisks for dimensional variables, the instantaneous pressure and density can
be referenced to stagnation conditions. Setting p ² p ¤ =( ® ps ), « ² « ¤ =« s , the acoustic
Reynolds number ·R that appears in (3.2) will be a s h=¸ .

(b) Variable decomposition

When periodic oscillations are introduced at a radian frequency k, the instanta-
neous pressure can be written as a sum of its steady and ®uctuating components.
Using subscripts for perturbation orders, the total pressure can be expanded into

p ¤ = p ¤
0(x ¤ ; y ¤ ) + p ¤

1(x ¤ ; y ¤ ; t ¤ ) = p ¤
0 + AP (x ¤ ; y ¤ ) exp( ¡ ikt¤ ); (3.3)

where P is a function of O(1) that will be determined in x 4 d. Normalizing and using
p ¤

0 = p s , we get

p(x; y; t) = 1=® + ·"P (x; y) exp( ¡ ikmt) + O(M 2x2) ¹= 1=® + ·"p1(x; y; t); (3.4)

where km = kh=as is the non-dimensional frequency, and ·" = A=( ® p s ) is the pressure
wave amplitude. Other ®uctuating variables can be expanded in a similar fashion.
For example, one can de ne « ¤

1 ² ·"« s « 1 and u¤
1 ² ·"a s u1, where « 1 and u1 are

time-dependent functions of O(1) that can be evaluated later. At the outset, one can
write

« (x; y; t) = ( « s + « ¤
1)=« s = 1 + ·"« 1(x; y; t): (3.5)

In much the same way, velocity lends itself to decomposition. Knowing the mean
solution from (2.1) and (2.2), we may follow Lighthill (1954) by assuming small
velocity oscillations about the mean and expand the dimensional velocity as

u ¤ (x ¤ ; y ¤ ; t ¤ ) = u ¤
0(x ¤ ; y ¤ ) + u ¤

1(x ¤ ; y ¤ ; t ¤ ) = vwu0(x ¤ ; y ¤ ) + u¤
1(x ¤ ; y ¤ ; t ¤ ): (3.6)

Normalizing by a s begets, for the velocity and vorticity companion,

u(x; y; t) = Mu0(x; y) + ·"u1(x; y; t) and !(x; y; t) = M !0(x; y) + ·"!1(x; y; t):
(3.7)

(c) Linearization

Inserting (3.4){(3.7) back into (3.1), (3.2) produces the zero-order expansion in the
wave amplitude (which is already satis ed by the mean ®ow). Collecting terms of
O(·"), the  rst-order linearized expansion of the fundamental equations is obtained:

@« 1=@t + r u1 = ¡ Mr ( « 1u0); (3.8)

@u1=@t = ¡ M [r(u0 u1) ¡ u1 £ (r £ u0) ¡ u0 £ (r £ u1)]

¡ rp1 + ·R¡1[4
3 r(r u1) ¡ r £ (r £ u1)]: (3.9)

This set encapsulates the in®uence of bulk ®uid motion on the temporal  eld. The
reader unfamiliar with this set may, if so inclined, derive it straightforwardly or apply
to the  rst author for a typescript.
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4. Vector superposition

(a) Flow ¯eld decomposition

It is useful to decompose the time-dependent vector into an irrotational and a
solenoidal component, the former being the gradient of a scalar s and the latter
being the curl of a vector q. This notion correlates to a known mathematical the-
orem which can be used to synthesize the total harmonic disturbance out of two
components associated with irrotational, pressure-driven and solenoidal vorticity-
driven modes. Using a hat to designate irrotational parts, and a tilde for solenoidal
parts, the time-dependent velocity can be expressed as

u1 = û + ~u ² rs + r £ q: (4.1)

Clearly, r £ û = 0 and r ~u = 0. Similar decomposition of a small disturbance into
pressure and vorticity modes has been e¬ectuated previously by numerous authors,
including Chu & Kov´asznay (1957), Carrier & Carlson (1946) and others. It follows
that

!1 ² r £ u1 = ~! ² r £ ~u; p1 = p̂ and « 1 = ^« : (4.2)

In other words, time-dependent vorticity is ascribed to the rotational mode and
harmonic pressure is associated with the irrotational mode. The pseudo-pressure
arising in the vortical mode analysis can be safely dismissed, being of second order.
The last term in (4.2) stems from the known relation, p̂ = ^« , for a perfect gas
undergoing isentropic oscillations.

(b) Splitting the linearized Navier{Stokes equations

When (4.1), (4.2) are substituted back into (3.8), (3.9), two independent sets of
formulae can be segregated. These are coupled through existing boundary conditions
and are given by the following.

(i) Irrotational set

@ ^«

@t
+ r û = ¡ Mr (^« u0); (4.3)

@û

@t
= ¡ rp̂ ¡ M [r(û u0) ¡ û £ (r £ u0)] + 4

3
·R¡1r(r û): (4.4)

(ii) Solenoidal set

r ~u = 0; (4.5)

@ ~u

@t
= ¡ M [r(~u u0) ¡ ~u £ (r £ u0) ¡ u0 £ (r £ ~u)] ¡ ·R¡1r £ (r £ ~u): (4.6)

(c) Auxiliary conditions

In deriving u1, both û and ~u must be  rst determined and then superposed in a
manner to satisfy correctly two auxiliary conditions. These are (1) no slip at the wall
demanding that u1(x; 0) = 0, or û(x; 0) + ~u(x; 0) = 0; and (2) symmetry at y = 1
requiring that @u1(x; 1)=@y = 0.
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(d ) Irrotational solution

When p̂ = ^« is used, standard manipulation of (4.3), (4.4) condenses the set into
a single hyperbolic partial di¬erential equation:

@2p̂

@t2
¡ r2p̂ = ¡ M

«
r

³
u0@p̂

@t

´
¡ r2(û u0) + r [û £ (r £ u0)]

¼
: (4.7)

At this juncture, a solution can be managed at O(M ) by applying separation of
variables and the rigid wall boundary conditions. Since l ¾ 1, the lowest natu-
rally excited frequencies will correspond to the least damped longitudinal oscillation
modes, making it safe to neglect transverse modes of higher frequencies. In practice,
laboratory experiments con rm that low-frequency modes tend to dominate because
they require less energy to become excited. For axial harmonic waves in a long chan-
nel with constant cross-section, a solution to (4.7) is readily available. Expressed in
Euler’s notation, the corresponding harmonic pressure component is

p̂(x; t) = cos(kmx) exp( ¡ ikmt) + O(M ); (4.8)

where the dimensionless wavenumber is given by

km = kh=as = mº =l; m = 1; 2; 3; : : : ;

and m is the oscillation mode number. The velocity companion can be integrated
from (4.4) to get

û(x; t) = i sin(kmx) exp( ¡ ikmt)i + O(M ): (4.9)

(e) Solenoidal equations

Letting ·u(x; y) ² ·ui + ·vj, and ·!(x; y) ² r £ ·u = ·!k, we use Euler’s notation and
write the vortical ®uctuations as

~u(x; y; t) = ·u(x; y) exp( ¡ ikmt); ~!(x; y; t) = ·!(x; y) exp( ¡ ikmt): (4.10)

In lieu of (4.5) and (4.6), we now have

r ·u = 0; (4.11)

i·u = [r(·u u0) ¡ ·u £ !0 ¡ u0 £ ·!]=S + r £ ·!=K; (4.12)

where

S =
kh

vw
and K =

kh2

¸
=

h2

(
p

¸ =k)2
: (4.13)

The two emerging similarity parameters are the Strouhal number S and the kinetic
Reynolds number K , each representing the quotient of time-dependent inertia to
either mean ®ow convection or di¬usion. Practically, since the kinematic viscosity
of most gases happens to be very small, the parametric variation in K reported
by many researchers has fallen into the range 104 < K < 108. On that account,
we de ne " ² 1=K to be a primary perturbation parameter. For similar reasons,
since unsteady ®ows are characterized by appreciable Strouhal numbers, we de ne
¼ = 1=S. We note that " is always smaller than ¼ since the ratio ¼ =" = vwh=¸ is the
cross-®ow Reynolds number R, which is typically large irrespective of frequency.
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Subject to con rmation at the conclusion of the forthcoming analysis, we now
make the conditional stipulation that ·v=·u = O(M ). This proviso is necessary to
forge ahead with the leading-order approximation. Being a smaller quantity, ·v can
be omitted at the  rst perturbation level. On that account, (4.12) collapses at O(M )
into

i·u = ¼

µ
@

@x
(·uu0) + v0

@·u

@y

¶
¡ "

@2·u

@y2
or i·u = ¼

µ
@

@x
(·uu0) ¡ v0 ·!

¶
+ "

@ ·!

@y
: (4.14)

5. Vorticity transport formulation

(a) Vorticity transport equation

Taking the curl of (4.12) and using (4.10), the vorticity transport equation emerges:

i ·! = ¡ ¼ r £ ( ·u £ !0 + u0 £ ·!) ¡ "r2 ·! + O(M ): (5.1)

This can be rearranged in a scalar form that places leading-order terms on the left-
hand side:

@ ·!

@y
¡

i·!

¼ v0

+
u0

v0

@ ·!

@x
= ¡

·u

v0

@!0

@x
+

"

¼ v0

³
@2 ·!

@x2
+

@2 ·!

@y2

´
: (5.2)

The right-hand side quantities representing the steady vorticity gradient and the
viscous di¬usion of time-dependent vorticity can be ignored at the  rst perturbation
level. The base solution can now be achieved by expanding ·! in powers of M , namely
·! = $0 + M$1 + O(M 2). Following substitution into (5.2), the leading-order term
can be obtained, by separation of variables, from

@$0

@y
¡

i$0

¼ v0

+
u0

v0

@$0

@x
= 0: (5.3)

This, of course, must be contingent upon satisfaction of both the no-slip condition
at the wall, and the no-®ow restriction at the head end. Using $0 = X(x)Y (y) in
(5.3), integration gives

$0(x; y) =
X

¶ n

cn[x cos( 1
2
º y)] ¶ n exp

«
2i

º ¼
ln tan[ 1

4
º (1 + y)]

¼
; (5.4)

where $0 contains a denumerable set of arbitrary constants cn associated with each
¶ n. Here ¶ n must be a positive number for a non-trivial solution. Both cn and ¶ n

must be speci ed in a manner to satisfy the no-slip condition at the wall, written for
vorticity. The latter requires a delicate treatment and is addressed separately.

(b) Pressure-driven vorticity

Recalling that !1 = ~!, v1 = ~v, p1 = p̂ and that u1(x; 0; t) must vanish to prevent
slippage, (3.9) can be projected along x and evaluated at the wall. The result is

0 = ¡ M

µ
@

@x
(~vv0) ¡ ~v!0 ¡ v0 ~!

¶
¡

@p̂

@x
¡

1
·R

@ ~!

@y
: (5.5)
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Rearranging, and using the fact that the no-slip condition translates into

~! =
1

M

@p̂

@x
+

"

¼

@ ~!

@y
+

@~v

@x
+ 1

4
º 2x~v = ¡ S sin(kmx) exp( ¡ ikmt) +

1

R

@ ~!

@y
+ O(M );

(5.6)

one obtains

·!(x; 0) = ¡ S sin(kmx) +
1

R

@ ·!

@y
+ O(M ): (5.7)

Equation (5.7) indicates that `fresh’ vorticity owes its origin at the wall to the oscil-
latory pressure gradient that is at right angles to incoming ®uxes. We also realize
that vorticity is most intense at x=l = (2m ¡ 1)=(2m), coinciding with pressure
nodes where the pressure-induced û has maximum amplitude. By comparison with
the pressure, time-dependent vorticity is larger by O(S).

(c) Inviscid vorticity

Equation (5.7) can now be used in conjunction with (5.4) to specify the separation
eigenvalues:

$0(x; 0) = ¡ S sin(kmx) + O(M; R¡1) ² ¡ S

1X

n = 0

( ¡ 1)n(kmx)2n + 1

(2n + 1)!
; (5.8)

) ¶ n = 2n + 1 and cn = ¡ S( ¡ 1)n(km)2n + 1=(2n + 1)!; (5.9)

whence

$0(x; y) = S

« 1X

n = 0

( ¡ 1)n

(2n + 1)!
[ ¡ kmx cos( 1

2
º y)]2n + 1

¼
exp

«
2

º
iS ln tan[ 1

4
º (1 + y)]

¼
:

(5.10)

Recalling Taylor’s mean ®ow stream function from x 2 c, we recognize that the in nite
series between braces is a sine function of ª . At the outset, we let Z(x; y) ² km ª (x; y)
and simplify (5.10) into

$0(x; y) = S sin(Z) exp( ¡ i © 0); (5.11)

where the temporal phase lead of the vortical wave is found to depend on

© 0(y) = ¡ 2

º
S ln tan[ 1

4
º (1 + y)] = ¡ 2

º
S gd¡1( 1

2
º y): (5.12)

The last expression corresponds to gd(&) = 2 arctan(&) ¡ 1
2
º , the Gudermannian

function described in Abramowitz & Stegun (1964).

(d ) Inviscid stream function

We now resort to the time-dependent stream function ¹s = Ák, where ·u ² r £ ·s.
These expressions are used to replace the velocity components via ·u = @Á=@y and
·v = ¡ @Á=@x. Starting with

·! =
@·v

@x
¡

@·u

@y
= ¡

@2Á

@x2
¡

@2Á

@y2
; (5.13)

Proc. R. Soc. Lond. A (2000)



1636 J. Majdalani and T.-S. Roh

we then proceed heuristically by posing that Á must possess the same axial depen-
dence as ·!. Since we are using successive approximations, we set Á0 = Ác$0, and
substitute back into (5.13). Balancing leading-order terms implies

Ác = ¼ 2 cos2(1
2
º y) or Á0 = ¼ cos2( 1

2
º y) sin[ ¡ kmx cos( 1

2
º y)] exp( ¡ i © 0): (5.14)

Having determined the inviscid ®ow stream function, it follows that the companion
velocity is

·u(x; y) = [i cos( 1
2
º y) sin(Z)i + M cos3( 1

2
º y) cos(Z)j] exp( ¡ i © 0): (5.15)

(e) Viscous corrections

Subject to veri cation at the conclusion of this section, we state without proof that
both ·u and ·! must possess the same axial dependence as their inviscid counterparts.
This is implemented by setting

·u(x; y) = uc(y) sin(Z) exp( ¡ i © 0) and ·!(x; y) = $c(y) sin(Z) exp( ¡ i © 0); (5.16)

where viscous correction multipliers, uc and $c, must be evaluated. After substitution
into the full vorticity transport equation, given by (5.2), several terms cancel out
except for lower-order terms and terms of O(S2). Balancing leading-order terms
requires that

d$c=dy + ¹ sec3( 1
2
º y)$c ¡ 1

4
º 2uc = 0; (5.17)

where ¹ = k2
m=(M 3 ·R) appears as a dynamic similarity parameter, chie®y in control

of the viscous correction multiplier. In seeking a relationship between uc and $c, we
use (4.14) and  nd that

uc = [i ¼ cos( 1
2
º y) + ¹ ¼ 2 sec(1

2
º y)]$c: (5.18)

Inserting this formula into (5.17) leads to an ordinary di¬erential equation in $c:

d$c=dy + [ ¹ sec3( 1
2
º y) ¡ i ¼ 1

4
º 2 cos( 1

2
º y)]$c = 0; (5.19)

which, after some algebra, gives

$c(y) = C exp ± ; (5.20)

where, by omitting the imaginary argument in ± of e¬ective O( ¼ 2), we  nd

± = ¡ ¹

Z y

0

v¡3
0 ( ½ ) d ½ = ¡ ¹

Z y

0

F ¡3( ½ ) d ½

= ¡
1

º
¹ [ln tan 1

4
º (1 + y) + sec(1

2
º y) tan( 1

2
º y)]: (5.21)

(f ) Corrected vorticity

The complex constant of integration C can be evaluated from the vorticity bound-
ary condition at the wall as speci ed by (5.7). Updating $c gives, at O(M; ¼ 2),

Cf1 ¡ ¹ ¼ 2[ ± 0(0) ¡ i © 0
0(0)]g sin[Z(x; 0)] exp[ ± (0) ¡ i © 0(0)] = ¡ S sin(kmx); (5.22)
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where

± 0(0) = ¡ ¹ ; © 0
0(0) = ¡ S and ± (0) = © 0(0) = 0: (5.23)

Direct substitution gives

Cr = S3=(S2 + ¹ 2); C i = ¹ S2=(S2 + ¹ 2): (5.24)

The superscripts here designate real and imaginary parts. Backward substitution
into (5.20), (5.16) and (4.10) yields

~!(x; y; t) = C sin(Z) exp( ± ¡ i © 0 ¡ ikmt): (5.25)

(g) Corrected axial velocity

In much the same way, the velocity corrective multiplier can be deduced from
(5.18), namely

uc = [i ¼ cos( 1
2
º y) + ¹ ¼ 2 sec(1

2
º y)]C exp ± ² iB exp ± ; (5.26)

where

Br = ¼ (C rv0 + ¹ ¼ C i=v0); Bi = ¼ (C iv0 ¡ ¹ ¼ C r=v0) (5.27)

so that ~u is soluble by backward substitution into (5.16) and (4.10). At length, we
 nd that

~u(x; y; t) = ·u exp( ¡ ikmt) = iB sin(Z) exp( ± ¡ i © 0 ¡ ikmt): (5.28)

(h) Normal velocity

In principle, the normal component ~v can be derived from continuity. In practice,
this may prove di¯ cult unless we proceed heuristically by  rst proposing an ansatz
of the form

~v = g(y) cos[ ¡ kmx cos( 1
2
º y)] exp( ± ¡ i © 0 ¡ ikmt): (5.29)

Later substitution into (4.5) furnishes g(y). Setting @~v=@y ² ¡ @~u=@x, we  nd, to
leading order, g = MBv2

0 . Therefore,

~v(x; y; t) = MBv2
0 cos(Z) exp(± ¡ i © 0 ¡ ikmt); (5.30)

which lends support to the former stipulation contending that ~v=~u = O(M ).

(i) The real time-dependent solution

Retracing our steps, the meaningful components of time-dependent axial and nor-
mal velocity are recapitulated along with their vorticity companion as follows:

u1 = sin(kmx) sin(kmt) ¡ (Br sin ’ ¡ Bi cos ’) exp ± sin(kmx cos ³ ); (5.31)

v1 = ¡ Mv2
0(Br cos ’ + B i sin ’) exp ± cos(kmx cos ³ ); (5.32)

!1 = ¡ (Cr cos ’ + C i sin ’) exp ± sin(kmx cos ³ ); (5.33)
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Figure 2. A plot of u1 versus y at four successive times separated by a º =2 phase di® erence.
For every oscillation mode, pro¯les are depicted at the last harmonic pressure node, where
x=l = (2m ¡ 1)=2m. Here S = 25m and K = 106 m. To the accuracy of the graph, asymptotics
(full lines) and numerics (broken lines) are indistinguishable.

where

³ = 1
2
º y and ’ = kmt ¡

2

º
S ln tan( 1

4
º + 1

2
³ ): (5.34)

As the harmonic motion is driven by the oscillatory pressure  eld, the  rst term in
(5.31) can be envisaged as the inviscid response to the ®uctuating pressure. Like-
wise, the second term can be interpreted as the viscous and vortical response that
disappears asymptotically with increasing distance from the wall.

6. Vortical wave character

(a) Numerical veri¯cation

In order to gain con dence in the asymptotic formulae based on (5.31), we rely on
computer-generated numerics and numerics combined with physical arguments. To
that end, we use a shooting method to handle the two-point boundary-value problem
posing itself via (4.14) and the two auxiliary conditions described in x 4 c. Careful
choices of initial guesses are found to be necessary to ensure convergence. Our pref-
erence is to guess small non-zero values at the core and integrate backwards using a
seventh-order Runge{Kutta scheme until the no-slip condition at the wall is satis ed.
Uniform steps, albeit very minute ones because of the desired accuracy, are found
to be adequate for the most part. If the spatial grid is too coarse, then a numerical
over®ow occurs. Naturally, the numerical di¯ culty arises at large kinetic Reynolds
numbers. Continual spatial grid re nement is hence necessary at successive increases
in K. The number of grid points needed for convergence varied in our monitored
routine from 10 000 to 20 000 000 points, but no e¬ort was made to optimize the
number by employing non-uniform meshes.

For typical values of the control parameters, the velocity’s numerical solution is
compared in  gure 2 with its asymptotic counterpart evaluated from (5.31). For the
 rst three oscillation modes, pro les are shown at four selected times of a complete
cycle. For the fundamental mode, u1 starts at zero at the wall, in satisfaction of the

Proc. R. Soc. Lond. A (2000)



Oscillatory channel ° ow with large injection 1639

0 0.25

0

0

0

100

(c)

(b)

(a)

80 60 40 20

100

100

80

80
80

80

60

60

60

60

40

40

40

40

20

20

20

20

0.5

L

0.75 1

Figure 3. Evenly spaced iso-vorticity lines shown in (a), (b) and (c) for S = 10, 20 and 100.
In each case, m = 1 and K = 106 m. This variation can be ascribed to an order of magnitude
depreciation in wall injection.

no-slip condition, then undergoes a velocity overshoot of twice the irrotational core
amplitude, before decaying gradually to its inviscid form. This overshoot near the
wall is a well-known feature of oscillatory ®ows that was  rst reported by Richardson
(1928). The observed doubling in amplitude takes place when rotational and irro-
tational waves happen to be in phase. This virtual 100% ampli cation is far more
intense than the 13% overshoot described in Rott (1964, p. 402) and reported in
laboratory experiments conducted, in the absence of wall injection, by Richardson
(1928) and Richardson & Tyler (1929).

For higher modes, similar damped waves are observed for 0 < x=l < 1=m in the
upstream portion that is delimited by the  rst internal velocity node. In the down-
stream portion, additional structures emerge. Speci cally, a premature decay in the
rotational wave is noted m ¡ 1 times downstream of the mth velocity node. Such
structures are depicted in  gure 2 for m = 2 and 3, at the last pressure node where
irrotational velocity amplitudes are largest. Beyond these premature rotational veloc-
ity `nodes’, so to speak, the vortical  eld recuperates some strength before resuming
its normal depreciation. In order to justify the presence of such intellectually chal-
lenging rotational nodes, a characterization of the time-dependent vortical structure
is deemed necessary. In the process, the in®uence of varying wall injection and kine-
matic viscosity is captured.

(b) Time-dependent vortical structure

For m = 1, (5.33) can be used to generate contour plots showing constant vor-
ticity lines in per cent of the maximum vorticity amplitude that is produced at the
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Figure 4. Evenly spaced iso-vorticity lines shown in (a), (b) and (c) for the ¯rst three harmonics
when S = 25m and K = 106 m. The oscillatory velocity u1 is abbreviated by four evenly spread
timelines depicted at select locations coinciding with harmonic pressure nodes.

wall’s pressure nodes. When the frequency and kinematic viscosity are held constant,
corresponding to a typical K = 106 value, the Strouhal number can be modi ed by
an order of magnitude by reducing the injection rate. The corresponding vortical
structures are shown in  gure 3, for S = 10, 20 and 100. In particular, we note in
 gure 3a the deeper vortical penetration with higher injection, and the downstream
convection of vorticity, originating at the wall, that follows the mean ®ow stream-
lines. In  gure 3a; b, intense vorticity is still present at the downstream end measuring
close to 100% of its maximum generated at the wall. When injection is diminished
in  gure 3c, the irrotational region anchored at the core broadens out, resulting in a
substantial reduction in rotational depth. When this happens, intense vortical waves
are entrained in the vicinity of the wall, and only weak vorticity persists at the
downstream end.

When, instead, vw and k are held constant, the e¬ect of kinematic viscosity can
be extrapolated in a similar fashion by varying K. We  nd that, when viscosity is
suppressed, a wider and deeper spread of vorticity ensues. As such, one can envisage
viscosity as an attenuation agent whose role is to resist the propagation of rotational
waves. This is contrary to the role it plays in similar con gurations with impermeable
walls discussed, for example, in a survey by Rott (1964, p. 397).

As the oscillation mode evolves to m = 2, 3 and 4, isovorticity lines begin exhibit-
ing interesting structures. These are shown in  gure 4 for typical values of the con-
trol parameters. In particular, these structures feature (m ¡ 1) lines of zero-vorticity
amplitude, stemming from the harmonic pressure antinodes at the wall, for m > 1.
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Figure 5. As in ¯gure 4, unsteady velocity pro¯les overlay evenly spaced iso-vorticity lines in
(a), (b) and (c) for the ¯rst three harmonics. Here K = 105 m, corresponding to an order of
magnitude increase in kinematic viscosity. In the presence of surface injection, the penetration
of rotationality is inhibited by viscous dissipation.

These irrotational streaks partition the channel into m zones characterized by alter-
nating directions of particle rotation. When crossing these delineation lines, vorticity
changes sign and therefore direction. This e¬ect is captured graphically by switching
between zones from full lines to broken lines. When time-dependent velocity pro les
are superimposed at select axial locations, we  nd that the so-called rotational nodes
in u1 coincide precisely with the transverse location of the zero vorticity streaks. Sim-
ilar e¬ects are noted in  gure 5, where an order of magnitude increase in viscosity is
shown to reduce both vortical wave propagation depth and also amplitude at higher
modes.

(c) Limiting process veri¯cation

In order to establish the lower limit that our mathematical model can tolerate for
injection speeds, we reduce vw until it drops below the di¬usion speed, v d =

p
2k¸ .

The latter is associated with a Stokes oscillatory  eld in a channel bounded by
impermeable walls. This is necessitated by the insoluble singularity at vw = 0 in
our formulation. For example, when vw = v d = 3

p
2, corresponding to S =

p
(K= 3

p
2),

and R = 21=6h
p

(k=¸ ), the Stokes number, de ned here as ¶ S =
p

(K=2), will
match the viscous parameter ¹ = S3=K . When such conditions are established ( ¹ =
¶ S ), our asymptotic formulation can be compared with the known exact solution
found, for example, in Rott (1964, p. 402). The latter corresponds to an oscillatory
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Figure 6. Velocity pro¯les of u1 shown at eight successive time intervals. Results are obtained
from asymptotic predictions (broken lines) and the exact Stokes formula (full lines) at two arbi-
trary values of K and ¹ = ¶ S . In the absence of surface injection, the penetration of rotationality
is more pronounced at higher viscosity settings (left).

®ow in an in nitely long impermeable channel that is not tailored to accommodate
either variations in the streamwise direction, or oscillation modes brought about
by the  nite geometry. As such, it maintains a constant core amplitude. In order
to reproduce this condition caused by `pistons-at-in nity’, we compare solutions at
x=l = 1

2
and m = 1, where the e¬ects of  nite body-length are not felt. Results

are shown in  gure 6 at eight successive times separated by a 1
4
º phase di¬erence.

Apparently, our approximate solution embraces the exact solution when injection is
suppressed. Thus, although it is possible to approximate the impermeable channel
solution from ours, the converse is not true. This unexpected result may be attributed
to the fact that Taylor’s mean ®ow solution matches, near the wall, the more accurate
formulation derived by Berman (1953) for small injection. In our notation, the latter
is given by

F = 1 ¡ 3
2
y2 + 1

2
y3;

which resembles, near y = 0, Taylor’s

F = cos( 1
2
º y) = 1 ¡ 1

8
º 2y2 + O(y4):

7. Momentum transport formulation

(a) Separation of variables

In x 5, the rotational velocity was produced from the vorticity and vorticity transport
equations following a number of successive approximations. Here, ~u will be obtained
directly from the momentum equation, written to O(M ). To that end, we rearrange
(4.14) into

x
@·u

@x
=

2

º
S cosec( 1

2
º y)

«
[i ¡ 1

2
º ¼ sin( 1

2
º y)]·u ¡ ¼ cos( 1

2
º y)

@·u

@y
+ "

@2·u

@y2

¼
+ O(M ):

(7.1)
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We then call for separation of variables in order to investigate a solution of the type
·u(x; y) = X(x)Y (y). Inserting back into (7.1) renders

x

X

dX

dx
=

2S

º Y
cosec( 1

2
º y)

«
[i ¡ 1

2
º ¼ sin( 1

2
º y)]Y ¡ ¼ cos( 1

2
º y)

dY

dy
+ "

d2Y

dy2

¼
= ¶ n;

(7.2)

where ¶ n must be strictly positive. Integration of the axially dependent equation is
straightforward. Owing to the linearity of (7.1), the general solution takes the form

·u(x; y) =
X

¶ n

cnx ¶ n Yn(y); (7.3)

where cn is a simple integration constant, and ¶ n must be determined from the
no-slip boundary condition at the wall. The latter can be translated into ~u = ¡ û, or

·u(x; 0) = ¡ i sin(kmx): (7.4)

After inserting (7.4) into (7.3), the Taylor series expansion for the sine function can
be written out to get

X

¶ n

cnx ¶ n Yn(0) ² ¡ i

1X

n = 0

( ¡ 1)n(kmx)2n + 1

(2n + 1)!
; (7.5)

which is true when

¶ n = 2n + 1; n = 0; 1; 2; : : : ; cn = ¡ i
( ¡ 1)n(km)2n+ 1

(2n + 1)!
; (7.6)

Yn(0) = 1; (7.7)

turning (7.3) into

·u(x; y) = ¡ i

1X

n= 0

( ¡ 1)n(kmx)2n+ 1

(2n + 1)!
Yn(y): (7.8)

From (7.2), the velocity eigenfunction Yn is left to be determined from

"
d2Yn

dy2
¡ ¼ cos( 1

2
º y)

dYn

dy
+ [i ¡ 1

2
º ¼ (1 + ¶ n) sin( 1

2
º y)]Yn = 0; (7.9)

which must satisfy the two existing boundary conditions:

Yn(0) = 1 (no-slip condition) and
dYn(1)

dy
= 0 (core symmetry): (7.10)

Due to the variable coe¯ cients in (7.9), an exact closed-form solution is not feasible.
The presence of a small multiplier in the highest derivative suggests, however, the
possibility of a perturbation treatment. Knowing from x 6 that the solution exhibits
an oscillatory behaviour, both WKB and multiple-scale expansion methods may be
attempted. In fact, the latter technique has been shown by Majdalani (1998) to result
in partly valid solutions corresponding to outer, inner and intermediate scales. In the
same work, a uniform two-scale expansion was presented using a hybrid technique.
The technique was based on the choice of a composite scale that reproduced the inner,
outer and intermediate scales in their respective domains. Instead of constructing
the composite scale from our foreknowledge of scaling structures, we consider here a
di¬erent avenue to determine the necessary scaling transformation.
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(b) The WKB approach

The problem set out in (7.9), (7.10) contains two small perturbation parameters,
" and ¼ . Note that, since ¼ =" = R, we are interested in cases for which " ! 0 for
 xed ¼ . As such, two cases may arise depending on the order of the Strouhal number.

(i) The outer expansion

For small Strouhal numbers, ¼ = O(1), and the leading-order term of the outer
solution Y o

n can be obtained from

¡ ¼ cos( 1
2
º y)

dY o
n

dy
+ [i ¡ 1

2
º ¼ (1 + ¶ n) sin( 1

2
º y)]Y o

n = 0: (7.11)

Ful lment of Yn(0) = 1 gives

Y o
n = [cos( 1

2
º y)] ¶ n + 1 exp

«
2

º
iS ln tan[ 1

4
º (1 + y)]

¼
² (cos ³ )2n + 2 exp

³
2

º
iS gd¡1 ³

´
:

(7.12)

On the one hand, since the cosine factor in Y o
n decays rapidly as y ! 1, the boundary

condition at the core is satis ed by the  rst derivative. This eliminates the need for an
inner solution at this order. On the other hand, the exponential term in Y o

n denotes
an oscillatory behaviour that is commensurate with the size of S. Since S can be
large, the limitation of this regular perturbation approach becomes apparent when
the  rst-order correction is evaluated. In fact, the resulting outer solution, at O("2),
is

Y o
n = (cos ³ )2n+ 2 exp

³
2

º
iS gd¡1 ³

´

£
³

1 ¡ "S

«
1

º
S2(gd¡1 ³ + sec ³ tan ³ ) + º (n + 1) gd¡1 ³ ¡ º (n + 1)(2n + 1

2
)

£ [sec ³ tan ³ + ln cos ³ ¡ ln(1 ¡ sin ³ )] + iS(2n + 3
2
) tan2 ³

¼ ´
: (7.13)

Due to the O("S3) term in (7.13), a secular behaviour can be expected at large S.
Since oscillations often occur at S > 10, a WKB analysis is certainly more suitable.

(ii) The WKB expansion

For large Strouhal numbers, ¼ ½ 1, and rapid oscillations occur on a short scale
while a slow drift takes place on the scale x = O(1). The WKB ansatz can be
formulated from

¡ cos( 1
2
º y)Y 0

n + iSYn = 0; Yn(0) = 1 or Yn = exp

³
2

º
iS gd¡1 ³

´
: (7.14)

Setting Yn = g(y) exp[(2=º )iS gd¡1 ³ ] and substituting back into (7.9) gives

g0 + ["S3 cos¡3 ³ + º (n + 1) tan ³ ]g = O("S2): (7.15)
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The leading-order WKB formulation, at O("S2), can be obtained therefrom:

Y 0
n = (cos ³ )2n + 2 exp( ± 0 ¡ i © 0); ± 0 = ¡ 1

º
¹ (gd¡1 ³ + sec ³ tan ³ );

© 0 = ¡ 2

º
S gd¡1 ³ ;

9
>=

>;
(7.16)

where ¹ = "S3 = k2 ¸ hv¡3
w controls the exponential rate of decay as y ! 1. The

superscript in Y 0
n refers to the zero-order WKB expansion.

(c) The multiple-scale approach

Following the approach described by Majdalani (1998), we introduce two inde-
pendent virtual coordinates, y0 = y and y1 = "s(y), where `s’ is an undetermined
scale function that we propose to  nd. Note that the proposed transformation rep-
resents a slight departure from conventional linear transformations bearing the form
y1 = ¯ (")y. The current stipulation of y1 o¬ers the necessary freedom that leads to
a uniformly valid solution. Subsequently, functions and derivatives are expanded via

Yn(y0; y1) = Y0(y0; y1) + "Y1(y0; y1) + O("2);
d

dy
=

@

@y0

+ "
ds

dy0

@

@y1

;

d2

dy2
=

@2

@y2
0

+ O("):

9
>>=

>>;
(7.17)

After substitution into (7.9), terms of the same order can be segregated to arrive at
the following set of coupled partial di¬erential equations:

@Y0

@y0

+ [1
2
º (1 + ¶ n) tan( 1

2
º y0) ¡ iS sec( 1

2
º y0)]Y0 = 0; (7.18)

@Y0

@y0

+ [1
2
º (1 + ¶ n) tan( 1

2
º y0) ¡ iS sec( 1

2
º y0)]Y1 = ¡ ds

dy0

@Y0

@y1

+ S sec(1
2
º y0)

@2Y0

@y2
0

:

(7.19)

In much the same way, boundary conditions given by (7.10) can be converted into

Y0(0) = 1;
@Y0

@y0
(1) = 0: (7.20)

Next, (5.2) can be integrated to produce

Y0 = C1(y1) exp

«
(1 + ¶ n) ln cos( 1

2
º y0) +

2i

º
S ln tan[ 1

4
º (1 + y0)]

¼
² C1(y1) À (y0);

(7.21)

where C1 is an integration function that must be determined in a manner to ensure a
converging series expansion in Yn. Di¬erentiating (7.21) and substituting the results
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back into (7.19) gives

@Y1

@y0

+ [1
2
º (1 + ¶ n) tan ³ 0 ¡ iS sec ³ 0]Y1

=

«
¡ ds

dy0

dC1(y1)

dy1

+ C1(y1) sec ³ 0[ ¡ S3 sec2 ³ 0 + 1
4
º 2(1 + ¶ n)( ¶ n tan2 ³ 0 ¡ 1)S

¡ i º S2( 1
2

+ ¶ n) sec ³ 0 tan ³ 0]

¼
À (y0); (7.22)

where ³ 0 ² 1
2
º y0. Removing secular-producing terms requires that the right-hand

side of (7.22) be zero. The resulting equation in C1 can be easily integrated. In
addition, satisfaction of (7.20) gives

C1(y) = expf¡ ¹ [ ² (y) sec3 ³ ¡ ² (0)] + ¹ ¼ 2 1
4
º 2(1 + ¶ n)

£ [sec ³ ² (y)( ¶ n tan2 ³ ¡ 1) + ² (0)] ¡ i º ¹ ¼ ( 1
2

+ ¶ n) ² (y) sec2 ³ tan ³ g; (7.23)

where the viscous parameter ¹ = "S3 makes its appearance here along with the
e¬ective scale functional ² (y). The latter is de ned by

² (y) ² s(y)=s0(y): (7.24)

The leading-order term can now be constructed from (7.23) and (7.21). In like fashion,
further terms in the series of O("2) can be obtained, but they become increasingly
complicated. Since the overall solution is sought at O(M ), and M > ", there is no
justi cation for retaining other than Y0. Thus the expansion in (7.17) reduces to

Yn(y) = (cos ³ )1+ ¶ n exp

«
¡ ¹ [ ² sec3 ³ ¡ ² (0)]

+
º 2

4S2
¹ (1 + ¶ n)[ ² sec ³ ( ¶ n tan2 ³ ¡ 1) + ² (0)]

+
2i

º
S ln tan[ 1

4
º (1 + y)] ¡ i º

¹

S
(1

2
+ ¶ n) ² sec2 ³ tan ³

¼
+ O("): (7.25)

The undetermined scale function remains, at present, unspeci ed. However, one can
verify that, near the wall, an asymptotic solution exists for s(y) = y, as shown in
detail by Majdalani (1998). Mathematically, this translates into

lim
y ! 0

² (y) = y ) ² (0) = 0; (7.26)

which can be used to simplify (7.25) before substitution into (7.8). At the outset,
one gets

~u(x; y; t) = ¡ i cos ³

1X

n = 0

( ¡ 1)n(kmx cos ³ )2n+ 1

(2n + 1)!

£ exp

«
¡ ¹ ² sec3 ³ [1 + 1

4
º 2 ¼ 2(2n + 2)(cos 2³ + 2n sin2 ³ )]

+
2

º
iS ln tan( 1

2
³ + 1

4
º ) ¡ i º ¹ ¼ (2n + 3

2
) ² sec2 ³ tan ³ ¡ ikmt

¼
+ O(");

(7.27)
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which is a rapidly converging series that displays distinctly terms of O( ¼ 2). In fact,
the error associated with n > 1 terms is much smaller than the O(") entailed in the
n = 0 term.

(d ) Closed-form solution

Careful examination of (7.27) indicates that a closed-form equivalent is possible
when terms that do not a¬ect the reported precision are neglected. This can be
accomplished by ignoring the O( ¼ 2) quantities arising in the n > 1 terms. The
equivalent expression becomes

~u(x; y; t) = ¡ i cos ³ sin(kmx cos ³ ) exp ± exp[ ¡ i(kmt + © )] + O("); (7.28)

where

± = ± 0 + ± 1 = ¡ ¹ ² sec3 ³ ¡ 1
2
º 2 ¹ ¼ 2 ² sec3 ³ cos 2³ ; (7.29)

© = © 0 + © 1 = ¡ 2

º
S ln tan( 1

2
³ + 1

4
º ) + 3

2
º ¹ ¼ ² sec2 ³ tan ³ : (7.30)

Clearly, each spatial damping function ± and spatial phase angle © comprises a
leading-order term and a small correction of O(¼ 2).

(e) Other vortical components

Having obtained an accurate expression for ~u, the transverse component ~v can be
derived from mass conservation. Setting an ansatz of the form

~v(x; y; t) = G(y) cos(kmx cos ³ ) exp ± exp[ ¡ i(kmt + © )]; (7.31)

G(y) is a subsidiary function that must be determined in a manner to satisfy @~u=@x+
@~v=@y = 0. After some manipulations, continuity is satis ed in leading-order quan-
tities when G = Mv3

0 . Henceforth,

~v(x; y; t) = M cos3 ³ cos(kmx cos ³ ) exp ± exp[ ¡ i(kmt + © )]; (7.32)

indicating that the initial claim of ~v=~u = O(M ) was legitimate. This conclusion can
also be veri ed numerically. In a similar fashion, temporal vorticity can be derived:

~!(x; y; t) = ¡ S sin(kmxv0) exp[ ± ¡ i(kmt + © )]: (7.33)

(f ) Specifying the undetermined scale

(i) Velocity consideration

One may proceed by contending that the multiple-scale formula should match,
to leading order, the uniformly valid WKB expansion. This can be achieved by
suppressing terms of O( ¼ 2) in (7.25) and equating the resulting expression to (7.16).
At the outset, one  nds

¡ ¹ ² sec3 ³ = ¡ 1

º
¹ (gd¡1 ³ + sec ³ tan ³ ) or ² =

1

º
(cos ³ gd¡1 ³ + tan ³ ) cos2 ³ :

(7.34)
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From (7.24), the appropriate scale function can be solved for via s0 ¡ ² ¡1s = 0.
Recalling that s(0) = 0, direct integration yields

s(y) = exp

Z y

0

² ¡1( ½ ) d ½ = sec(1
2
º y) tan( 1

2
º y) + ln tan 1

4
º (1 + y): (7.35)

With this choice of s, the multiple-scale solution given by (7.28) will coincide with
the corresponding WKB formulation when ± 1 = © 1 = 0. Retention of the  rst-order
corrections ± 1 and © 1 in (7.28) slightly increases the accuracy of the multiple-scale
formulation beyond its WKB counterpart.

(ii) Vorticity consideration

The current expression for vorticity can be compared with its counterpart in x 5 f .
Knowing that the exponential decay of time-dependent vorticity must be a¬ected by
the same physical mechanisms irrespective of the perturbation technique, the spatial
damping function ± must be the same as that obtained previously. This implies that,
in (7.29), we must have

¡ ¹ ² sec3( 1
2
º y) = ¡

1

º
¹ [ln tan 1

4
º (1 + y) + sec(1

2
º y) tan( 1

2
º y)]; (7.36)

which leads to the same expressions obtained from velocity consideration.

(iii) Comparison with previous work

Fortuitously, we are able to obtain, this time, an exact expression for the nonlinear
transformation, y1 = "s(y), that leads to a uniformly valid multiple-scale solution.
The complexity of formula (7.35) precludes the possibility of guessing this coordinate
transformation beforehand, as demanded by conventional multiple-scale procedures.
It also justi es the need to employ the `reverse engineering’ process in determining
the scales. The most striking result is, perhaps, the agreement with the ad hoc for-
mulation obtained by Majdalani (1998). In the previous analysis, a composite scale
s(y) = y(1 ¡ y)¡3y3=2=2 was constructed in such a manner as to reproduce asymp-
totically the inner, outer and intermediate scales that appeared in the problem. As
a result, usage of the composite scale reduced the number of spatial scales to two,
which was necessary for the success of the multiple-scale expansion. At the outset,
the e¬ective scale functional ² was derived and then substituted into the solution.
In the current analysis, ² is determined  rst, and it is only at the conclusion of the
analysis that one may verify that the space-reductive coordinate does indeed reduce
to the proper spatial scales in their regions of applicability. For instance, in the vicin-
ity of the transpiring wall and core, one can recover the scales found by Majdalani
(1998). Thus,

y1 = "[sec(1
2
º y) tan( 1

2
º y) + ln tan 1

4
º (1 + y)] !

(
"y; y ! 0;

"(1 ¡ y)¡2; y ! 1:
(7.37)

For the sake of illustration, ² and s obtained herein are compared in  gure 7 with
their counterparts from Majdalani (1998). Clearly, predictions from the multiple-
scale solution agree with those obtained previously using the composite-scale tech-
nique.
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Figure 7. Comparing the e® ective scale functional ² in (a) and corresponding scale function s
in (b) to existing composite results given by Majdalani (1998). Superscripts refer to m̀ultiple’
or c̀omposite’ scale solutions.

8. Results and discussion

(a) The oscillatory velocity pro¯le

Since ~v=~u = O(M ), ~u dominates the rotational  eld, and the temporal velocity can
be obtained by adding both irrotational and rotational contributions. The result,
from (7.28), is

u1(x; y; t) = ifsin(kmx) exp(¡ ikmt) ¡ cos ³ sin(kmx cos ³ ) exp[ ± ¡ i(kmt + © )]g:
(8.1)

As Euler’s notation is no longer needed, it is more convenient to focus on the real
part of (8.1):

u1(x; y; t) =

irrotation al p artz }| {
sin(kmx) sin(kmt) ¡

rotation al p artz }| {
cos ³ sin(kmx cos ³ ) exp ±| {z }

wave am p litu d e

sin(kmt + © )| {z }
wave p rop agation

: (8.2)

The  rst term in (8.2) denotes the pressure-driven inviscid response and the second
term represents the vorticity-driven viscous response. In concurrence with conven-
tional theory, formula (8.2) assumes a traditional form encountered in studies of
periodic ®ows of the Stokes type, reminiscent of equation (10.3) in Rott (1964). As
such, it displays the vortical wave characteristics that permit explicit formulations
for the vortical depth of penetration, velocity overshoot and surfaces of constant
phase. Unlike theoretical studies that are concerned with in nitely long channels
with oscillatory motions induced by pistons at in nity, a dependence on the axial
coordinate x is caused here by the body’s  nite length. Further examination of (8.2)
reveals that the vortical amplitude is a¬ected by two separate terms: an exponen-
tially damped function due to viscous dissipation; and a space-harmonic function due
to the axial mean ®ow convection of temporal vorticity. While both terms decrease
with increasing distance from the wall, the latter varies sinusoidally in the stream-
wise direction. Moreover, inspection of the spatial damping function ± reveals that
successive increases in viscosity reduce the rotational strength.
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Figure 8. Comparing the asymptotic solution (full curves) to numerical computations of the non-
linear Navier{Stokes equations (chain curves) at two successive times. Here S = 25, x=l = 1=2,
and m = 1. Using a 40 £300 mesh resolution, simulation results are shown after nine iteration
cycles for (a) K = 104 , (b) K = 105 , and (c) K = 106 .

(b) Comparison with computational data

In order to ensure the validity of our asymptotics, we insist on comparisons with
computational predictions. These are obtained from a dual time-stepping code, devel-
oped totally independently by Roh et al . (1995). The code is devoted to analysing gas-
phase processes based on the complete conservation equations of mass, momentum
and energy. When executed, the algorithm uses pressure decomposition and precon-
ditioning techniques to circumvent di¯ culties encountered in low-speed compressible
®ows. Subsequently, the set of governing equations with appropriate boundary con-
ditions is solved numerically by means of a  nite-volume approach. A fully coupled
implicit formulation is further used to enhance numerical stability and e¯ ciency. The
scheme has the advantage of achieving a high degree of temporal accuracy with only
a modest increase in computational cost. Moreover, since the governing equations
are solved implicitly, the numerical method is stable. As a result, the selection of
the integration time-step is dictated by the individual process, and not by stability
constraints.

For the same physical parameters used in our asymptotic formulae, numerical sim-
ulations are monitored until convergence is ensured. Results obtained for a number
of test cases are found to be quite satisfactory. For illustration purposes, we show in
 gure 8 both asymptotics and numerics at three orders of the kinetic Reynolds num-
ber. Cases corresponding to K = 107 and higher become nearly inviscid and bear a
striking resemblance to  gure 8c. In every case, the velocity pro les, characterized
by oscillations that progressively decay from the wall, are depicted at two successive
times separated by a 1

2
º phase di¬erence. The small disparity between theoretical

and computational data can be attributed to small discretization errors and non-
linearity e¬ects that elude our analytic formulation. This agreement is consistent at
higher modes where an increasing number of cycles is required. In the absence of an
exact solution to the case at hand, this comparison to a full Navier{Stokes solution
is pivotal.
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Table 1. Oscillatory velocity predictions for S = 50, K = 106 , km t = 1
2 º , x=l = 1

2 and m = 1

(5.31) (8.2) (5.31) (8.2)

y numeric asymptotic asymptotic error (%) error (%)

0.00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00

0.05 1.795 17 1.795 19 1.795 16 0.001 05 0.000 51

0.10 0.704 21 0.704 18 0.704 30 0.005 08 0.012 27

0.15 0.733 20 0.733 23 0.732 98 0.003 76 0.029 96

0.20 1.679 81 1.679 81 1.680 09 0.000 13 0.016 83

0.25 0.144 82 0.144 80 0.144 65 0.016 50 0.116 03

0.30 1.835 52 1.835 57 1.835 41 0.002 63 0.006 10

0.35 0.272 91 0.272 82 0.273 35 0.029 91 0.162 26

0.40 1.626 42 1.626 55 1.625 74 0.008 07 0.042 05

0.45 0.420 48 0.420 31 0.421 18 0.042 76 0.165 82

0.50 1.563 96 1.564 11 1.563 64 0.009 39 0.020 37

0.55 0.530 14 0.530 30 0.529 58 0.029 91 0.105 54

0.60 1.140 62 1.139 81 1.142 04 0.070 86 0.124 12

0.65 1.271 83 1.272 44 1.271 21 0.047 72 0.048 85

0.70 0.964 05 0.965 48 0.963 23 0.147 45 0.085 47

0.75 0.930 11 0.931 69 0.929 84 0.170 65 0.028 19

0.80 1.042 57 1.044 24 1.042 80 0.160 40 0.022 56

0.85 0.989 24 0.987 34 0.988 39 0.192 49 0.086 01

0.90 0.996 54 0.995 49 0.995 82 0.105 54 0.072 38

0.95 0.999 95 1.000 01 1.000 00 0.005 46 0.005 12

1.00 1.000 00 1.000 00 1.000 00 0.000 00 0.000 00

(c) Comparison with both theoretical and numerical data

In table 1, we now compare numerical simulations of the linearized Navier{Stokes
equations (described in x 5 a) to the asymptotic results, given by (5.31) and (8.2).
We select a test case with ®ow parameters that fall in the middle of the physical
range under investigation. The last two columns give the percentage deviation of the
preceding entries relative to numerical approximations. It is very satisfying to note
the agreement, in many cases, to three or more decimal places, between theoretical
and numerical predictions.

(d ) Wave characteristics

For the purpose of con rming the agreement between (5.31) and (8.2), the max-
imum velocity overshoot factor that occurs near the wall is quanti ed in  gure 9.
Practically, the calculated overshoot is the same, in both magnitude and location,
irrespective of the formulation used. As discussed earlier, this phenomenon is a key
feature of periodic ®ows that appears to be far more signi cant in the presence of
wall injection.

From (8.2), the normal speed of propagation of rotational waves, dy ¤ =dt ¤ , can
be determined explicitly due to the compact formulation. The wave speed is thus
found to match the steady ®ow velocity (vwv0). Forthwith, the normalized spatial
wavelength can be determined to be (2 º v0=S). This implies progressively diminishing
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Figure 9. For the ¯rst oscillation mode, we compare the Richardson velocity overshoot in both
magnitude and location over a wide spectrum of physical parameters half way across the channel.
To the accuracy of the graph, predictions from (5.31) and (8.2) are indistinguishable.

vortical wavelengths near the core, where v0 is small, and at high Strouhal numbers.
This also explains the need to re ne the computational mesh near the core to capture
the rotational e¬ects occurring at increasingly smaller length-scales.

Unlike (5.31), (8.2) permits de nition of the surfaces of constant phase in closed
form. From the wave propagation term, we consider cos km(t + © =km) = const:, and
derive, by way of the Gudermannian function, the equation for the characteristic
surfaces at various c values:

y =
4

º
arctan[ 1

2
º M (t ¡ c)] ¡ 1:

(e) Penetration depth

The penetration depth ¢ can be de ned to be the normalized distance from the
wall to the point where 99% of the rotational wave amplitude in (8.2) would have
vanished. As the viscous layer delineates two essentially inviscid zones, a rotational
zone near the wall and an irrotational zone near the core, ¢ may serve to also locate
the blown-o¬ layer. If one de nes the point y = ¢ above the wall where the rotational
amplitude reduces to ¬ = 1% of its irrotational counterpart, then ¢ is soluble from

cos( 1
2
º ¢ ) sin[kmx cos( 1

2
º ¢ )] exp[ ¡ ² ( ¢ ) ¹ sec3( 1

2
º ¢ )] ¡ ¬ j sin(kmx)j = 0: (8.3)

Despite its transcendental form, (8.3) indicates that the exponential decay is a strong
function of a dimensionless penetration number, ¤ = ¹ ¡1. This observation suggests
generating curves of ¢ versus ¤ for large variations in K and S . In fact,  gure 10
shows how entire families of asymptotic curves over wide ranges of K and S collapse
into single curves per axial position. Here too, asymptotics and numerics concur. This
interesting result reveals that ¢ does not depend on K and S separately, but rather
on ¤ = KS¡3. This parameter resembles, in importance, the Stokes or Womersley
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Figure 10. Penetration depth for a wide range of parameters and axial locations including both
numerical (K = 106 ) and asymptotic predictions (104 < K < 108 ). Part of the graph is enlarged
in the inset.

numbers in periodic ®ows over hard walls. Physically, it represents the relative inten-
sity of time-dependent inertia to viscous di¬usion in the cross-streamwise direction.
The pertinent ratio scales with

temporal inertia

viscous force
º

«
@v

@t

·
@2u

@y2

º
«

vw

(1=k)

·
kh

(vw=k)2

=
v3

w

h¸ k2
² ¤ : (8.4)

Figure 10, along with formula (8.3), brings into focus the character of the rotational
penetration depth over permeable walls. For instance, it is clear that ¢ depends on ¤ ,
m and, to a lesser degree, on the axial station, especially within the aft portion of the
channel. For small ¤ , the penetration depth ¢ varies linearly with the penetration
number ¤ , irrespective of x. Apparently, the larger the penetration number, the
larger the penetration depth will be. This dimensionless group reveals that increasing
injection, or decreasing viscosity, frequency or channel height broadens the depth of
penetration. The time-dependent solution thus represents a strongly damped wave
whose penetration depth into the ®uid is inversely proportional to ¸ . This is in sharp
contrast to the depth of penetration of periodic ®ows over impermeable walls, where
the dependence on the kinematic viscosity is the same as in boundary-layer theory,
namely, proportional to

p̧
.

As borne out in the graph, for su¯ ciently large ¤ , ¢ approaches a maximum  xed
value per axial station. In order to locate this maximum possible depth, ¢ 1 (m; x) =
¢ ( ¤ ! 1; m; x), we note that, for the ideal case of zero viscosity, rotational waves
face minimum resistance and, thereby, travel the furthest distance from the wall.
This asymptotic limit can thus be evaluated from the inviscid formulation of the
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penetration depth, which only depends on the axial station and pressure oscillation
mode. From (8.3), one obtains

cos( 1
2
º ¢ 1 ) sin[kmx cos( 1

2
º ¢ 1 )] ¡ ¬ j sin(kmx)j = 0: (8.5)

Solving for the inviscid penetration depth from (8.5), we get

¢ 1 (m; x) = 1 ¡ 2

º

q
¬ j sin(kmx)jk¡1

m x¡1 + O(1 ¡ ¢ 1 )3; (8.6)

which exhibits a maximum absolute error of 2:62 £ 10¡4 when ¢ 1 (1; 0) = 0:9364.
In practice, this expression can be quite useful, being correct to O(10¡4).

(f ) Asymptotic error behaviour

In arriving at the  nal asymptotic formulation set out in (5.31), a number of succes-
sive approximations were made that introduced uncertainty in the total cumulative
error. In order to remove this uncertainty, one may refer to a technique described
by Bosley (1996). In fact, Bosley’s technique provides a rigorous veri cation for the
order of the error incurred in the derivation. To that end, the maximum error Em can
be de ned to be the maximum absolute di¬erence between u1 given asymptotically
and u n

1 computed numerically. Then for every m, S and K , one can calculate, over
a complete oscillation cycle,

Em (m; S; K) = max
06x6l
06y61

ju n
1(x; y; t; m; S; K) ¡ u1(x; y; t; m; S; K)j: (8.7)

Suspecting that the error could be of O(K¡ ¬ ), one can assume an error variation of
the form

Em (m; S; K) =  (m; S)(1=K) ¬ (8.8)

and determine the slope ¬ from the log{log plot of Em versus 1=K .
Results are shown in  gure 11 at several values of the Strouhal number. The

errors associated with (5.31) and (8.2) are compared in  gure 11b and show a slight
improvement in the error associated with the multiple-scale formulation. As one can
infer from the graph, the slope of the maximum error approaches one asymptotically
irrespective of S. This result has been con rmed using the method of least squares
in decreasing ranges of ", but is omitted here for brevity. The consistent asymptotic
behaviour is gratifying and, according to Bosley (1996), indicates that both asymp-
totic formulations are legitimate uniformly valid expansions. Overall, both remain
at O("). It is reassuring to note that " < M is the smallest naturally occurring per-
turbation parameter encountered heretofore. Overall, it must not be forgotten that
the error associated with the governing di¬erential equation is only correct to O(M ),
and so will the  nal formulations.

9. Concluding remarks

In the current paper we have considered the e¬ects of unsteadiness caused by small-
amplitude pressure oscillations about the classic Taylor ®ow in a porous channel.
We have speci cally excluded questions regarding hydrodynamic stability or tur-
bulence in order to manage a basic laminar solution for large wall injection. We
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Figure 11. Asymptotic behaviour of the maximum absolute error between numerical and asymp-
totic predictions for the fundamental oscillation mode. The error curves shown correspond to
(a) the multiple-scale solution, and (b) both asymptotic solutions.

have exploited a popular method that breaks down the analysis into a steady fun-
damentally nonlinear solution and a superimposed linearized time-dependent part.
Expressions were derived from both the vorticity and momentum transport equa-
tions. The accurate analytic formulae obtained were instrumental in revealing rich
vortical structures that are byproducts of mean and time-dependent ®ow interactions.
They also revealed dimensionless parameters that control the ®ow character. By way
of validation, comparisons to numerical solutions of the Navier{Stokes equations were
reassuring. Comparisons with the exact solution arising in the analogous setting with
impermeable walls were also favourable. A formal assessment of the maximum error
entailed at the conclusion of the asymptotic analysis revealed an unexpected bonus.
The error was found to be very small as it varied with the reciprocal of the kinetic
Reynolds number. The interesting mathematical aspect of this investigation, that
could possibly be extended to other practical problems, is the way in which the
inclusion of an undetermined scale can lead to the nonlinear scaling transformation.

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of mathematical functions, p. 77. National
Bureau of Standards. New York: Dover.

Avalon, G., Casalis, G. & Gri® ond, J. 1998 Flow instabilities and acoustic resonance of channels
with wall injection. AIAA paper 98-3218.

Barron, J., Majdalani, J. & Van Moorhem, W. K. 1998 A novel investigation of the oscillatory
¯eld over a transpiring surface. AIAA paper 98-2694.

Berman, A. S. 1953 Laminar ° ow in channels with porous walls. J. Appl. Phys. 24, 1232{1235.

Bosley, D. L. 1996 A technique for the numerical veri¯cation of asymptotic expansions. SIAM
Rev. 38, 128{135.

Brady, J. F. 1984 Flow development in a porous channel or tube. Phys. Fluids 27, 1061{1067.

Carrier, B. T. & Carlson, F. D. 1946 On the propagation of small disturbances in a moving
compressible ° uid. Q. Appl. Math. 4, 1{12.

Casalis, G., Avalon, G. & Pineau, J.-P. 1998 Spatial instability of planar channel ° ow with ° uid
injection through porous walls. Phys. Fluids 10, 2558{2568.

Proc. R. Soc. Lond. A (2000)



1656 J. Majdalani and T.-S. Roh

Chu, B.-T. & Kov¶asznay, L. S. G. 1957 Non-linear interactions in a viscous heat-conducting
compressible gas. J. Fluid Mech. 3, 494{514.

Cox, S. M. 1991 Two-dimensional ° ow of a viscous ° uid in a channel with porous walls. J. Fluid
Mech. 227, 1{33.

Cox, S. M. & King, A. C. 1997 On the asymptotic solution of a high-order nonlinear ordinary
di® erential equation. Proc. R. Soc. Lond. A 453, 711{728.

Durlofsky, L. & Brady, J. F. 1984 The spatial stability of a class of similarity solutions. Phys.
Fluids 27, 1068{1076.

Hastings, S. P., Lu, C. & MacGillivray, A. D. 1992 A boundary value problem with multiple
solutions from the theory of laminar ° ow. SIAM Jl Math. Analysis 23, 201{208.

Hocking, L. M. 1975 Non-linear instability of the asymptotic suction velocity pro¯le. Q. Jl Mech.
Appl. Math. 28, 341{353.

Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to ° uctuations in
the stream velocity. Proc. R. Soc. Lond. A 224, 1{23.

Lu, C., MacGillivray, A. D. & Hastings, S. P. 1992 Asymptotic behaviour of solutions of a
similarity equation for laminar ° ows in channels with porous walls. IMA Jl Appl. Math. 49,
139{162.

Ma, Y., Van Moorhem, W. K. & Shorthill, R. W. 1991 Experimental investigation of velocity
coupling in combustion instability. J. Propul. Power 7, 692{699.

MacGillivray, A. D. & Lu, C. 1994 Asymptotic solution of a laminar ° ow in a porous channel
with large suction: a nonlinear turning point problem. Meth. Appl. Analysis 1, 229{248.

Majdalani, J. 1998 A hybrid multiple scale procedure for boundary layers involving several
dissimilar scales. J. Appl. Math. Phys. 49, 849{868.

Morduchow, M. 1957 On laminar ° ow through a channel or tube with injection: application of
method of averages. Q. Jl Appl. Math. 14, 361{368.

Proudman, I. 1960 An example of steady laminar ° ow at large Reynolds number. J. Fluid Mech.
9, 593{612.

Raithby, G. D. & Knudsen, D. C. 1974 Hydrodynamic development in a duct with suction and
blowing. Trans. Am. Soc. Mech. Engnrs: J. Appl. Mech. E 41, 896{902.

Richardson, E. G. 1928 The amplitude of sound waves in resonators. Proc. Phys. Soc. 40, 206{
220.

Richardson, E. G. & Tyler, E. 1929 The transverse velocity gradient near the mouths of pipes in
which an alternating or continuous ° ow of air is established. Proc. R. Soc. Lond. A 42, 1{15.

Robinson, W. A. 1976 The existence of multiple solutions for the laminar ° ow in a uniformly
porous channel with suction at both walls. J. Engng Math. 10, 23{40.

Roh, T. S., Tseng, I. S. & Yang, V. 1995 E® ects of acoustic oscillations on ° ame dynamics of
homogeneous propellants in rocket motors. J. Propul. Power 11, 640{650.

Rott, N. 1964 Theory of time-dependent laminar ° ows. In High speed aerodynamics and jet
propulsion|theory of laminar ° ows (ed. F. K. Moore), vol. IV, pp. 395{438. Princeton Uni-
versity Press.

Sellars, J. R. 1955 Laminar ° ow in channels with porous walls at high suction Reynolds numbers.
J. Appl. Phys. 26, 489{490.

Shih, K.-G. 1987 On the existence of solutions of an equation arising in the theory of laminar
° ow in a uniformly porous channel with injection. SIAM Jl Appl. Math. 47, 526{533.

Skalak, F. M. & Wang, C.-Y. 1978 On the non-unique solutions of laminar ° ow through a porous
tube or channel. SIAM Jl Appl. Math. 34, 535{544.

Sviridenkov, A. A. & Yagodkin, V. I. 1976 Flow in the initial sections of channels with permeable
walls. Fluid Dyn. (Izv. AN SSSR. MZhG) 11, 689{693.

Taylor, C. L., Banks, W. H. H., Zaturska, M. B. & Drazin, P. G. 1991 Three-dimensional ° ow
in a porous channel. Q. Jl Mech. Appl. Math. 44, 105{133.

Proc. R. Soc. Lond. A (2000)

http://figaro.catchword.com/nw=1/rpsv/0022-1120^28^29227L.1[csa=0022-1120^26vol=227^26iss=^26firstpage=1]
http://figaro.catchword.com/nw=1/rpsv/0748-4658^28^297L.692[csa=0748-4658^26vol=7^26iss=5^26firstpage=692]
http://figaro.catchword.com/nw=1/rpsv/0036-1399^28^2947L.526[csa=0036-1399^26vol=47^26iss=3^26firstpage=526]
http://figaro.catchword.com/nw=1/rpsv/0022-1120^28^29227L.1[csa=0022-1120^26vol=227^26iss=^26firstpage=1]


Oscillatory channel ° ow with large injection 1657

Taylor, G. I. 1956 Fluid ° ow in regions bounded by porous surfaces. Proc. R. Soc. Lond. A 234,
456{475.

Terrill, R. M. 1964 Laminar ° ow in a uniformly porous channel. Aero. Quart. 15, 299{310.

Terrill, R. M. 1965 Laminar ° ow in a uniformly porous channel with large injection. Aero. Quart.
16, 323{332.

Varapaev, V. N. & Yagodkin, V. I. 1969 Flow stability in a channel with porous walls. Fluid
Dyn. (Izv. AN SSSR. MZhG) 4, 91{95.

Watson, P., Banks, W. H. H., Zaturska, M. B. & Drazin, P. G. 1991 Laminar channel ° ow driven
by accelerating walls. Eur. Jl Appl. Math. 2, 359{385.

White Jr, F. M., Bar¯eld, B. F. & Goglia, M. J. 1958 Laminar ° ow in a uniformly porous
channel. Trans. Am. Soc. Mech. Engnrs: J. Appl. Mech. E 25, 613{617.

Yuan, S. W. 1956 Further investigation of laminar ° ow in channels with porous walls. J. Appl.
Phys. 27, 267{269.

Zaturska, M. B., Drazin, P. G. & Banks, W. H. H. 1988 On the ° ow of a viscous ° uid driven
along a channel by suction at porous walls. Fluid Dyn. Res. 4, 151{178.

Proc. R. Soc. Lond. A (2000)

http://figaro.catchword.com/nw=1/rpsv/0169-5983^28^294L.151[csa=0169-5983^26vol=4^26iss=3^26firstpage=151]

